#### Riccardo Pengo

Mahler measure: definition and basic properties

Exact polynomials: from Darboux to Lalín

Our contribution: a geometric approach



Riccardo Pengo (based on joint work in progress with François Brunault<sup>1</sup>)

- Unité des mathématiques pures et appliquées, École normale supérieure de Lyon
- riccardo.pengo@ens-lyon.fr, riccardopengo@gmail.com
- https://sites.google.com/view/riccardopengo/

Geometry, Arithmetic and Differential Equations of Periods (GADEPs), 27 August 2021



1

<sup>&</sup>lt;sup>1</sup>Unité des mathématiques pures et appliquées, École normale supérieure de Lyon

#### Riccardo Pengo

Mahler measure: definition and basic properties

Exact polynomials: from Darboux to Lalín

Our contribution: a geometric approach

## 2 Exact polynomials: from Darboux to Lalín

**1** Mahler measure: definition and basic properties

**3** Our contribution: a geometric approach



Riccardo Pengo

Mahler measure: definition and basic properties

Exact polynomials: from Darboux to Lalín

Our contribution: a geometric approach

## **2** Exact polynomials: from Darboux to Lalín

**1** Mahler measure: definition and basic properties

3 Our contribution: a geometric approach



Riccardo Pengo

#### Mahler measure: definition and basic properties

Exact polynomials: from Darboux to Lalín

Our contribution: a geometric approach



Alexander Grothendieck

## So many periods...

Periods  $z \in \mathbb{C}$  admit the following equivalent characterizations: Elementary  $|\Re(z)|, |\Im(z)|$  are volumes of Q-semi-algebraic sets; K.-Z.  $|\Re(z)|, |\Im(z)|$  are of the form  $\int_{g \leq 0} f$ , for  $f, g \in \mathbb{Q}(t)$ ;

Motivic  $z = \langle \eta, \gamma \rangle_{(X,D)}$ , where  $\eta \in H^n_{dR}(X, D)$  and  $\gamma \in H^B_n(X, D)$ , for some smooth variety  $X_{/\mathbb{Q}}$  and some divisor  $D \hookrightarrow X$  which can be taken to have simple normal crossings.

Example:  $\Im(2\pi i)/2 = \operatorname{Vol}(x^2 + y^2 \le 1) = \int_{-\infty}^{+\infty} \frac{dt}{t^2 + 1}$ , and  $2\pi i = \left\langle \begin{bmatrix} \frac{dz}{z} \\ z \end{bmatrix}, \begin{bmatrix} 0 \end{bmatrix} \right\rangle$ Problem: Given a period, express it as a motivic one. This allows to:

- make predictions about transcendence, via the *period conjecture*;
- place our period in various filtrations (e.g. study its weight).

Today: We are going to see this for the *Mahler measure* of a polynomial.

Riccardo Pengo

Mahler measure: definition and basic properties

Exact polynomials: from Darboux to Lalín

Our contribution: a geometric approach





 $Z_{u}=(Z_{1}, Z_{u}), Z_{u}^{*}=Z_{1}^{*}-Z_{u}^{*}$ 

Kurt Mahler

Mahler (1962): For  $P \in \mathbb{C}[z_n^{\pm 1}] \setminus \{0\}$ , let  $m(P) := \int_{\mathbb{T}^n} \log |P| d\mu_n$ , where  $\mathbb{T}^n := (S^1)^n$  and  $\mu_n = \frac{1}{(2\pi i)^n} \left( \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n} \right)$  is the Haar probability measure. We have  $m(P) = \log(\lim_{p \to 0} ||P||_{p,\mu_n})$ , but also m(PQ) = m(P) + m(Q). Moreover,  $m(P) \simeq \log(\ell(P))$ , where  $\ell(\sum_{v \in \mathbb{Z}^n} a_v \cdot \underline{z}_n^v) = \sum_{v \in \mathbb{Z}^n} |a_v|$  is the length. In particular,  $m(P) \ge 0$  if  $P \in \mathbb{Z}[z_n^{\pm 1}] \setminus \{0\}$ . Lawton (1977): If  $P \in \mathbb{Z}[z_n^{\pm 1}] \setminus \{0\}$ , then  $m(P) = 0 \Leftrightarrow P = z_n^w \cdot \prod_{i>1} \Phi_i^j (z_n^{\vee_i})^{a_i}$ . This generalizes Kronecker (1884). Other proofs by Boyd (1981), Smyth (1981). Pierce (1917) If  $P(z_1) = \prod_j (z_1 - \alpha_j) \in \mathbb{Z}[z_1]$ , then  $\Delta_n(P) := \prod_j \alpha_j^n - 1$  is easier to factor than a random integer. Often,  $\Delta_n(P)/\Delta_1(P)$  is prime, if n is prime. Lehmer (1933) We have  $\Delta_{n+1}(P)/\Delta_n(P) \rightarrow \exp(m(P))$ . Thus, we want the smallest m(P) > 0. Does it exist? If so, is it achieved by:

A huge problem about small Mahler measures

$$P(z_1) = z_1^{10} + z_1^9 - z_1^7 - z_1^6 - z_1^5 - z_1^4 - z_1^3 + z_1 + 1 ?$$

Riccardo Pengo

#### Mahler measure: definition and basic properties

Exact polynomials: from Darboux to Lalín

Our contribution a geometric approach



David William Boyd

## The multivariate aspects of Lehmer's problem

Let  $\mathcal{M}_n := m(\mathbb{Z}[\underline{z}_n^{\pm 1}] \setminus \{0\}) \subseteq \mathbb{R}_{\geq 0}$ , and  $\mathcal{M}_\infty := \lim_{n \geq 1} \mathcal{M}_n(\mathbb{Z}) \subseteq \mathbb{R}_{\geq 0}$ . Boyd (1981)  $m(P) = \lim_{d \to +\infty} m(P(z_1, z_1^d, z_1^{d^2}, \dots, z_1^{d^C}))$ , if  $P \in \mathbb{C}[z_n^{\pm 1}] \setminus \{0\}$ . Hence, we have  $\mathcal{M}_1 \subseteq \mathcal{M}_\infty \subseteq \mathcal{M}_1$ , and  $\mathcal{M}_1 = \mathbb{R}_{\geq 0}$  if  $\inf(\mathcal{M}_1 \setminus \{0\}) = 0$ . Thus, if  $\mathcal{M}_{\infty}$  is closed, then Lehmer's question has a positive answer. For  $P \in \mathbb{C}[z_n^{\pm 1}]$  and  $A \in \mathbb{Z}^{m \times n}$ , let  $P_A(z_m) := P(z_1^{a_{1,1}} \cdots z_m^{a_{m,1}}, \dots, z_1^{a_{1,n}} \cdots z_m^{a_{m,n}})$ . Smyth (2018) For  $P \in \mathbb{C}[z_n^{\pm 1}]$ , the set  $\mathcal{M}(P) := \{m(P_A) : A \in \mathbb{Z}^{* \times n}\}$  is closed. Moreover,  $\mathcal{M}_{\infty}$  is filtered by the sets  $\mathcal{M}(Q_d)$ , where  $Q_d := \sum_{j=1}^d (z_{2j-1} - z_{2j})$ . Brunault, Guilloux, Mehrabdollahei, P. (2021) For  $P \in \mathbb{C}[z_n^{\pm 1}] \setminus \{0\}$ , we have that  $m(P) = \lim_{\rho(A) \to +\infty} m(P_A)$ , where  $\rho(A) := \min\{\|v\|_{\infty} : v \in \ker(A) \setminus \{0\}\}$ . This gives us new limit points inside  $\mathcal{M}_{\infty}$ , and generalizes Lawton (1983).

As a special case, we recover an identity of Mehrabdollahei (2020), concerning the limit of  $m(P_d)$ , where  $P_d(z_1, z_2) = \sum_{\substack{0 \le a+b \le d}} z_1^a z_2^b$ .

#### Riccardo Pengo

- Mahler measure: definition and basic properties
- Exact polynomials: from Darboux to Lalín
- Our contribution: a geometric approach



Christopher Deninger

## Mahler measures and special values of *L*-functions

Boyd (1998) looked for small numbers inside  $\mathcal{M}_2$ , and found numerically:  $m\left(\frac{1}{z_1} + \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_2} + \frac{1}{z_2} + \frac{1}{z_2}\right) \stackrel{?}{\sim}_{\mathbb{Q}^{\times}} L'(\mathcal{E}_k, 0)$ 

whenever  $k^2 \in \mathbb{Z}$ . Today, this has been proven for:

$$\begin{bmatrix} k \in \{-4\sqrt{2}, -2\sqrt{2}, 1, 2, 3, 2\sqrt{2}, 3\sqrt{2}, 5, 8, 12, 16, i, 2i, 3i, 4i, \sqrt{2}i\} \end{bmatrix}$$

by Rodriguez-Villegas (1999), Rogers & Zudilin (2014), Brunault (2016), etc...)

These identities can be related to the conjectures of Beilinson (1984) on special values of L-functions. Indeed, Deninger (1997) proved that:

$$\widehat{m(P)} = \widehat{m(P(\underline{z}_{n-1}, 0))} + \langle r_{V_P}^{\infty}(\{\underline{z}_1, \dots, \underline{z}_n\}), [\gamma_P] \otimes (2\pi\sqrt{-1})^{1-n} \rangle_{(V_P, \partial \gamma_P)}$$
  
where  $V_P := \{P = 0\} \hookrightarrow \mathbb{G}_m^n$  and  $\gamma_P := V_P(\mathbb{C}) \cap \{[\underline{z}_1] = \dots | \underline{z}_{n-1}| = 1, |\underline{z}_n| \le 1\}$ .  
Hence, if  $V_P$  is smooth,  $P$  is tempered, and  $\partial \gamma_P = \emptyset$ , Beilinson's conjectures  
predict  $\underline{m(P)} \longleftrightarrow \underline{L}^*(\underline{H}^{n-1}(\overline{V_P}), 0)$ , for a smooth compactification  $\overline{V_P}$  of  $V_P$ 

Riccardo Pengo

#### Mahler measure: definition and basic properties

Exact polynomials from Darboux to Lalín

Our contribution: a geometric approach



Spencer Janney Bloch

In particular, Bornhorn (1999), following the ideas of Deninger (1997), proves that Boyd's conjecture:

Some little steps...

$$m\left(z_{1}+\frac{1}{z_{1}}+z_{2}+\frac{1}{z_{2}}+k\right)\stackrel{?}{\sim}_{\mathbb{Q}^{\times}}L'(E_{k},0)$$

holds under Beilinson's conjectures. This can be generalized to the family:

$$P(z_1, z_2) = z_1 + \frac{1}{z_1} + z_2 + \frac{1}{z_2} + \frac{z_1}{z_2} + \frac{z_2}{z_1} + \frac{z_2}{z_1} + k$$

which was treated in Theorem 4.4.3 of P. (2020).

One can also use a weak form of Beilinson's conjectures for CM elliptic curves  $E_{/\mathbb{Q}}$ , proved by Bloch (1978) (see also Rohrlich (1987)), to show that:

 $m(P) = rL'(E,0) + \log|s|$ 

for some  $P \in \mathbb{Z}[z_1, z_2]$ , and two numbers  $r \in \mathbb{Q}$  and  $s \in \overline{\mathbb{Q}}^{\times}$ . This was done in Theorem 9.2.4 of P. (2020).

#### Riccardo Pengo

Mahler measure: definition and basic properties

Exact polynomials: from Darboux to Lalín

Our contribution: a geometric approach

### **2** Exact polynomials: from Darboux to Lalín

**1** Mahler measure: definition and basic properties

**3** Our contribution: a geometric approach

ENS DE LYON

#### Riccardo Pengo

Mahler measure: definition and basic properties

Exact polynomials: from Darboux to Lalín

Our contribution: a geometric approach





Fernando Rodriguez-Villegas

A gallery of explicit relations

Some identities between Mahler measures and zero-dimensional *L*-functions: Smyth (1981)  $m(L_2) = L'(\chi_{-3}, -1)$  and  $m(L_3) = -14 \cdot \zeta'(\underline{C})$ , with  $L_n = \sum_{j=0}^n z_{j+1}$ Ray (1987), Boyd & Rodriguez-Villegas (2002) Many more  $L'(\chi_{\Delta}, -1)$  for  $\Delta < 0$ . Lalín (2006)  $m(z_0 S_{2k}^- + S_{2k}^+) \in \langle \zeta'(-2), \dots, \zeta'(-2k) \rangle_{\mathbb{Q}}$ , for  $S_m^{\pm} = \prod_{i=1}^m (1 \pm z_i)$ . D'Andrea & Lalín (2007)  $m((1-z_1)(1-z_2)-(1-z_3)(1-z_4)) = -18 \cdot \zeta'(-2).$ What about higher-dimensional L-functions? Rodriguez-Villegas (2004)  $m(L_4) \stackrel{?}{=} -L'(f, -1)$  and  $m(L_5) \stackrel{?}{=} -8 \cdot L'(g, -1)$ , for two modular forms  $f \in S_3(15)$  and  $g \in S_4(6)$ . How to go on? Note that  $m(L_n)$  is related to the probability density of a random walk with *n*-steps, as studied by Borwein & Straub & Wan & Zudilin (2012).

Finally, some elliptic curves may appear, such as:

 $m(z_1 - (1 - z_2)(1 - z_3)) \stackrel{?}{=} -2 \cdot L'(X_1(15), -1)$ 

studied by Boyd & Rodriguez-Villegas (2004) and Lalín (2013).

Riccardo Pengo

Mahler measure: definition and basic properties

Exact polynomials: from Darboux to Lalín

Our contribution: a geometric approach





Matilde Noemí Lalín

## Looking for answers: the notion of exactness

In all the previous examples, either  $\partial \gamma_P \neq \emptyset$  or  $V_P$  is not smooth. Maillot (2004) We should look at  $W_P := V_P \cap V_{P^*}$ , where  $P^*(z_n) := P(\overline{z_n}^{-1})$ . Why this? Suppose P is exact, i.e.  $r_{V_P}^{\infty}(\{z_1,...,z_n\}) = 0$  inside  $H_{dR}^{n-1}(V_P)$ . Then, using Stokes, we can write  $m(P) = \int_{\partial Y_P} \omega$  for some  $\omega \in \Omega^{n-2}(W_P)$ . This already explains Smyth's identity  $m(L_2) = L'(\chi_{-3}, -1)$ , because  $W_{L_2} = \{(\zeta_3, -\zeta_3 - 1), (-\zeta_3, \zeta_3 - 1)\}$ . What about  $m(L_3) = -14 \cdot \zeta'(-2)$ ? Lalín (2007) Some polynomials are *successively exact*, so we can apply Stokes's theorem multiple times. Since  $\partial \circ \partial = 0$ , this can't be done directly. However, if  $W_P$  is singular, the pullback of  $\omega$  to the desingularization  $\overline{W_P}$  of  $W_P$  may become exact, while  $\partial \gamma_P$  might acquire a boundary! For instance, if  $P \in \mathbb{C}[z_3^{\pm 1}]$ , one can take  $\overline{W_P} = \{ \operatorname{Res}_{z_3}(P, P^*) = 0 \}$ .

#### Riccardo Pengo

Mahler measure: definition and basic properties

Exact polynomials: from Darboux to Lalín

Our contribution: a geometric approach

## **2** Exact polynomials: from Darboux to Lalín

**1** Mahler measure: definition and basic properties

**3** Our contribution: a geometric approach



#### Riccardo Pengo

Mahler measure: definition and basic properties

Exact polynomials: from Darboux to Lalín

Our contribution: a geometric approach



Jean Gaston Darboux

The first step: symmetrizing the Deninger cycle Brunault & P. (2021): If  $P \in \mathbb{C}[\underline{z}_n^{\pm 1}] \setminus \{0\}$  and  $V_0: \{P \cdot P^* = 0\} \hookrightarrow \mathbb{G}_m^n$ , then:  $(\{\downarrow_{n-1}^{*}(N_0) \ m(P) - m(P(\underline{z}_{n-1}, 0)) = \langle \eta_0, \gamma_0 \rangle_{V_0})$ where  $\eta_0 = r_{V_0}^{\infty}(\{z_1, \dots, z_n\})$  and  $\gamma_0 \in H_{n-1}^{\mathsf{B}}(V_0)$  is a symmetrized version of  $\gamma_P$ . Thus, looking at the Mayer-Vietoris long exact sequence:

 $\cdots \to H^{n-2}_{\mathrm{dR}}(W_P) \xrightarrow{\delta} H^{n-1}_{\mathrm{dR}}(V_0) \to H^{n-1}_{\mathrm{dR}}(V_P) \oplus H^{n-1}_{\mathrm{dR}}(V_{P^*}) \to \dots$ 

we get a class  $\eta_1 \in H^{n-2}_{dR}(W_P)$  if  $\eta_0|_{V_P} = 0$ . Hence, we get:

 $m(P) - m(P(\underline{z}_{n-1}, 0)) = \langle \eta_1, \gamma_1 \rangle_{V_1} \rangle_{P}$ 

where  $\gamma_1 = \partial(\gamma_0)$  is obtained by looking at the adjoint Mayer-Vietoris long exact sequence in homology. Thus, say that P is exact if  $\eta_0|_{V_P} = 0$ , as before. Historical note: Maillot points out that the relation between the involution  $\underline{z}_n \mapsto \underline{z}_n^{-1}$  and the intersection  $V_P(\mathbb{C}) \cap \mathbb{T}^n$  might go back to Darboux (1875).

#### Riccardo Pengo



Exact polynomials: from Darboux to Lalín

Our contribution: a geometric approach







Heisuke Hironaka

## How to go on: successive desingularization

There exist exact reciprocal polynomials, such as  $P = z_1 + z_1^{-1} + z_2 + z_2^{-1} + 4$ . In this case,  $W_P = V_P$  is not the good variety. How to deal with them? Brunault & P. (2021): Generically,  $W_P = V_0^{\text{sing}}$ . So, one can look at:  $\dots \longrightarrow \widetilde{V}_{k+1} \longrightarrow \widetilde{V}_k \longrightarrow \dots \longrightarrow \widetilde{V}_2 \longrightarrow \widetilde{V}_1 \longrightarrow \widetilde{V}_0$  $\mathbb{G}_m^n$  $\dots \longrightarrow V_{k+1} \longrightarrow V_k \longrightarrow \dots \longrightarrow V_2$  $\dots \longrightarrow W_{k+1} \longrightarrow W_k \longrightarrow \dots \longrightarrow W_2 \longrightarrow W_1$ where each  $\tilde{V}_k$  is smooth. Here, a polynomial is exact if  $\eta_0|_{\tilde{V}_0} = 0$ . By induction, P is *k*-exact if it is (k-1)-exact and  $\eta_{k-1}|_{\mathcal{U}_{k-1}} = 0$ . We get:  $m(P) - m(P(z_{n-1}, 0)) = \langle \eta_k, \gamma_k \rangle_{V_k}$ 

for  $\eta_k \in H^{n-1-k}_{dR}(V_k)$  and  $\gamma_k = \partial(\gamma_{k-1}) \in H^B_{n-1-k}(V_k)$ .

#### Riccardo Pengo

Mahler measure: definition and basic properties

Exact polynomials: from Darboux to Lalín

Our contribution: a geometric approach







Pierre René Deligne  $\left( \left| \mathcal{A}^{\mathcal{N}-\mathcal{V}} \left( \overline{\mathcal{D}}^{(\mathcal{W})} \right) \right| \mathcal{N} \right)$ 

 $\dots \to H^{n-2}_{dR}(D) \longrightarrow H^{n-1}_{dR}(X,D) \longrightarrow H^{n-1}_{dR}(X) \longrightarrow H^{n-1}_{dR}(D) = 0$ 

and consider the spectral sequence  $H^q(D^{(p)}) \Rightarrow H^{p+q}(X,D)$ , inducing  $\operatorname{Fil}^{\bullet}_{\operatorname{rel}}$ . Brunault & P. (2021): Say that P is k-exact if  $\tilde{\eta} \in \operatorname{Fil}^k_{\operatorname{rel}}(H^{n-1}_{\operatorname{dR}}(X,D))$ . Let  $\tilde{\gamma} \in H^{\mathsf{B}}_{n-1}(X,D)$ . If  $\tilde{\eta} \notin \operatorname{Fil}^{k+1}_{\operatorname{rel}}$  and  $\tilde{\gamma} \in \operatorname{Fil}^{\operatorname{rel}}_k \setminus \operatorname{Fil}^{\operatorname{rel}}_{k-1}$ , we have:

 $m(P) - m(P(\underline{z}_{n-1}, 0)) = \langle \operatorname{gr}_{\operatorname{rel}}^{k}(\widetilde{\eta}), \operatorname{gr}_{k}^{\operatorname{rel}}(\widetilde{\gamma}) \rangle_{(X,D)} = \langle \widetilde{\eta}_{k}, \widetilde{\gamma}_{k} \rangle_{D^{(k)}}$ 

which computes m(P) as an absolute period on the smooth variety  $D^{(k)}$ .

15

#### Riccardo Pengo

Mahler measure: definition and basic properties

Exact polynomials from Darboux to Lalín

Our contribution: a geometric approach





Christopher Smyth

 $m(t+t^{\sigma}+t^{s^{2}}t_{1})$  An example: the three-variable linear polynomial

Let  $P = L_3 = z_1 + z_2 + z_3 + 1$ . Recall that  $M(P) = -14\zeta'(-2)^1$  by Smyth (1981). Let  $Z = \{z_1 = 0\} \cup \{z_2 = 0\} \cup \{z_1 + z_2 = 1\}$  and  $S = \{z_1 = 1\} \cup \{z_2 = 1\} \cup \{z_1 + z_2 = 0\}$ . We have  $V_P \cong \mathbb{A}^2 \setminus Z$ , thus  $H^2_{dR}(V_P) \cong H^1_{dR}(V_P) \cong \mathbb{R}^3$ , and  $W_P \cong S \setminus (S \cap Z)$ . Hence,  $H^1_{dR}(W_P) \cong \mathbb{R}^4$  and  $\operatorname{Im}(H^1_{dR}(V_P) \oplus H^1_{dR}(V_{P^*}) \to H^1_{dR}(W_P)) \cong \mathbb{R}^3$ . Therefore,  $H^1_{dR}(V_0) \cong \mathbb{R}^3$  and  $H^2_{dR}(V_0) \cong \mathbb{R}^7$ . We get a diagram:

whose rows are exact. Note that  $D = W_P \sqcup W_P$  and  $X = V_P \sqcup V_{P^*}$ . Finally,  $\tilde{\eta} \in \operatorname{Fil}^1_{\operatorname{rel}}(H^2(X,D)) = \operatorname{Fil}^2_{\operatorname{rel}}(H^2(X,D)) \cong \mathbb{R}^2$ , and  $D^{(2)} \cong \operatorname{Spec}(\mathbb{Q})^{\sqcup 6}$ . Thus, we should indeed expect (and we can prove)  $m(P) \sim_{\mathbb{Q}^{\times}} \zeta'(-2)$ .

#### Riccardo Pengo

- Mahler measure: definition and basic properties
- Exact polynomials: from Darboux to Lalín
- Our contribution: a geometric approach



Francois Brunault

# $L_{eg}(x), x \in \overline{Q_{1}} \cap \mathbb{R}_{>0} \quad (e^{-1}) = (e^{-1}) - m(P(z_{1}, z_{2}))$ Further steps and directions

- Resolve the ambiguity  $\operatorname{Im}(H^{n-2}_{dR}(V^{\operatorname{sing}}_{0}) \to H^{n-1}_{dR}(X,D))$  for  $\widetilde{\eta}$ .
- Write m(P) as a period for  $(\overline{X \setminus A, B \setminus (A \cap B)})$ , with  $\overline{X}$  smooth projective. Relate this to  $\mathfrak{X}(\Delta_P)$  (toric variety) and to (successive) *temperedness*.
- Compare with the weight filtration on  $H^{n-1}(V_0)$ .
- Compare with the degeneration P · P\* = t for t → 0. To do so, study P · P\* - t ∈ C((t))[z<sup>±1</sup><sub>n</sub>], maybe via tropical homology.
- Make  $\gamma_P$  more canonical, following (perhaps) Besser & Deninger (1999).
- Study the families  $L_n$  (1-exact if  $n \neq 3$ ) and  $z_0 S_n^- + S_n^+$  ((n-1)-exact).
- "Compute"  $m(L_4)$  and  $m(L_5)$  up to  $\mathbb{Q}^{\times}$ , and assuming Beilinson's conj.
- Study the co-exactness filtration on  $\mathscr{M}_\infty.$
- Write m(P) as a motivic period, following Brown (2017)
  Maybe it's a single valued period, as in Brown & Dupont (2021).
- Study this in fibrations, as in Doran & Kerr (2011).
- Compute trdeg(Q(π, m(P<sub>1</sub>),..., m(P<sub>r</sub>))/Q), assuming the period conj.

Riccardo Pengo

Mahler measure: definition and basic properties

Exact polynomials from Darboux to Lalín

Our contribution: a geometric approach



## Thank you very much for your attention!

Está preparando seu espírito e sua vontade, porque existe uma grande verdade neste planeta: seja você quem for ou o que faça, quando quer com vontade alguma coisa, é porque esse desejo nasceu na alma do Universo.

Paulo Coelho de Souza, O Alquimista

P.S: Did you get curious about Mahler measures? Check out the book: Many Variations of Mahler Measures: A Lasting Symphony by Brunault and Zudilin (2020).