Mahler measures, special values and exactness: a periodic journey

Riccardo Pengo (based on joint work in progress with François Brunault ${ }^{1}$)

Unité des mathématiques pures et appliquées, École normale supérieure de Lyon
riccardo.pengo@ens-lyon.fr, riccardopengo@gmail.com
https://sites.google.com/view/riccardopengo/
Geometry, Arithmetic and Differential Equations of Periods (GADEPs), 27 August 2021

[^0](1) Mahler measure: definition and basic properties
(2) Exact polynomials: from Darboux to Lalín
(3) Our contribution: a geometric approach

The plan

三玉
from
Darboux to
Darboux
Our
contribution
a geometric
approach
(1) Mahler measure: definition and basic properties
(2) Exact polynomials: from Darboux to Lalín
(3) Our contribution: a geometric approach

The plan

三玉

三玉

Alexander Grothendieck

So many periods...

Periods $z \in \mathbb{C}$ admit the following equivalent characterizations:
Elementary $|\Re(z)|,|\Im(z)|$ are volumes of \mathbb{Q}-semi-algebraic sets;
K.-Z. $|\Re(z)|,|\Im(z)|$ are of the form $\int_{g \leq 0} f$, for $f, g \in \mathbb{Q}(t)$;

Motivic $z=\langle\eta, \gamma\rangle_{(X, D)}$, where $\eta \in H_{\mathrm{dR}}^{n}(X, D)$ and $\gamma \in H_{n}^{\mathrm{B}}(X, D)$, for some smooth variety $X_{/ \mathbb{Q}}$ and some divisor $D \hookrightarrow X$ which can be taken to have simple normal crossings.

Example: $\Im(2 \pi i) / 2=\operatorname{Vol}\left(x^{2}+y^{2} \leq 1\right)=\int_{-\infty}^{+\infty} \frac{d t}{t^{2}+1}$, and $2 \pi i=\left\langle\left[\frac{d z}{z}\right],[\circlearrowleft]\right\rangle$
Problem: Given a period, express it as a motivic one. This allows to:

- make predictions about transcendence, via the period conjecture;
- place our period in various filtrations (e.g. study its weight).

Today: We are going to see this for the Mahler measure of a polynomial.

Kurt Mahler

Kurt Mahler

Mahler (1962): For $P \in \mathbb{C}\left[z_{n}^{ \pm 1}\right] \backslash\{0\}$, let $m(P):=\int_{\mathbb{T}^{n}} \log |P| d \mu_{n}$, where $\mathbb{T}^{n}:=\left(S^{1}\right)^{n}$ and $\mu_{n}=\frac{1}{(2 \pi i)^{n}}\left(\frac{d z_{1}}{z_{1}} \wedge \cdots \wedge \frac{d z_{n}}{z_{n}}\right)$ is the Haar probability measure. We have $m(P)=\log \left(\lim _{p \rightarrow 0}\|P\|_{p, \mu_{n}}\right)$, but also $[m(P Q)=m(P)+m(Q)$.] Moreover, $m(P)=\log (\ell(P))$, where $\ell\left(\sum_{\mathrm{v} \in \mathbb{Z}^{n}} a_{\mathrm{v}} \cdot \underline{z}_{n}^{\mathrm{v}}\right)=\sum_{\mathrm{v} \in \mathbb{Z}^{n} \mid a_{\mathrm{v}}}$ is the length. In particular, $m(P) \geq 0$ if $P \in \mathbb{Z}\left[z_{n}^{ \pm 1}\right] \backslash\{0\}$.
Lawton (1977): If $P \in \mathbb{Z}\left[\underline{z}_{n}^{ \pm 1}\right] \backslash\{0\}$, then $m(P)=0 \Leftrightarrow P=\underline{z}_{n}^{w} \cdot \Pi_{j \geq 1} \widehat{\Phi}_{j}\left(\underline{z}_{n}^{v_{j}}\right)^{a_{j}}$.
This generalizes Kronecker (1884). Other proofs by Boyd (1981), Smyth (1981).
Pierce (1917) If $P\left(z_{1}\right)=\Pi_{j}\left(z_{1}-\alpha_{j}\right) \in \mathbb{Z}\left[z_{1}\right]$, then $\Delta_{n}(P):=\Pi_{j} \alpha_{j}^{n}-1$ is easier to factor than a random integer. Often, $\Delta_{n}(P) / \Delta_{1}(P)$ is prime, if n is prime. Lehmer (1933) We have $\Delta_{n+1}(P) / \Delta_{n}(P) \rightarrow \exp (m(P))$. Thus, we want the smallest $m(P)>0$. Does it exist? If so, is it achieved by:

$$
P\left(z_{1}\right)=z_{1}^{10}+z_{1}^{9}-z_{1}^{7}-z_{1}^{6}-z_{1}^{5}-z_{1}^{4}-z_{1}^{3}+z_{1}+1 ?
$$

The multivariate aspects of Lehmer's problem

Mahler

 definition and basic properties

David William Boyd

Let $\mathscr{M}_{n}:=m\left(\mathbb{Z}\left[\underline{z}_{n}^{ \pm 1}\right] \backslash\{0\}\right) \subseteq \mathbb{R}_{\geq 0}$, and $\mathscr{M}_{\infty}:=\lim _{n>1} \mathscr{M}_{n}(\mathbb{Z}) \subseteq \mathbb{R}_{\geq 0}$.
Boyd (1981) $m(P)=\lim _{d \rightarrow+\infty} m\left(P\left(z_{1}, z_{1}^{d}, z_{1}^{d^{2}}, \ldots, z_{1}^{d \Pi}\right)^{n-1}\right)$, if $P \in \mathbb{C}\left[z_{n}^{ \pm 1}\right] \backslash\{0\}$.
Hence, we have $\mathscr{M}_{1} \subseteq \mathscr{M}_{\infty} \subseteq \overline{\mathscr{M}_{1}}$, and $\overline{\mathscr{M}_{1}}=\mathbb{R}_{\geq 0}$ if $\inf \left(\mathscr{M}_{1} \backslash\{0\}\right)=0$.
Thus, if \mathscr{M}_{∞} is closed, then Lehmer's question has a positive answer.
For $P \in \mathbb{C}\left[\underline{z}_{n}^{ \pm 1}\right]$ and $A \in \mathbb{Z}^{m \times n}$, let $P_{A}\left(\underline{z}_{m}\right):=P\left(z_{1}^{a_{1,1}} \cdots z_{m}^{a_{m, 1}}, \ldots, z_{1}^{a_{1, n}} \cdots z_{m}^{a_{m, n}}\right)$.
Smyth (2018) For $P \in \mathbb{C}\left[z_{n}^{ \pm 1}\right]$, the set $\mathscr{M}(P):=\left\{m\left(P_{A}\right): A \in \mathbb{Z}^{* \times n}\right\}$ is closed.
Moreover, \mathcal{M}_{∞} is filtered by the sets $\mathscr{M}\left(Q_{d}\right)$, where $Q_{d}:=\sum_{j=1}^{d}\left(z_{2 j-1}-z_{2 j}\right)$.
Brunault, Guilloux, Mehrabdollahei, P. (2021) For $P \in \mathbb{C}\left[z_{n}^{ \pm 1}\right] \backslash\{0\}$, we have that $m(P)=\lim _{\rho(A) \rightarrow+\infty} m\left(P_{A}\right)$, where $\rho(A):=\min \left\{\|v\|_{\infty}: v \in \operatorname{ker}(A) \backslash\{0\}\right\}$. This gives us new limit points inside \mathscr{M}_{∞}, and generalizes Lawton (1983).

As a special case, we recover an identity of Mehrabdollahei (2020), concerning the limit of $m\left(P_{d}\right)$, where $P_{d}\left(z_{1}, z_{2}\right)=\sum_{0 \leq a+b \leq d} z_{1}^{a} z_{2}^{b}$.

Christopher Deninger

Mahler measures and special values of L-functions Boyd (1998) looked for small numbers inside \mathscr{M}_{2}, and found numerically:

$$
m\left(\frac{1 k=0}{z_{1}+\frac{1}{z_{1}}+z_{2}+\frac{1}{z_{2}}+k}\right) \stackrel{?}{\sim} \mathbb{Q}^{\times} L^{\prime}\left(\left(E_{k}, 0\right)\right.
$$

whenever $k^{2} \in \mathbb{Z}$. Today, this has been proven for:

$$
[k \in\{-4 \sqrt{2},-2 \sqrt{2}, 1,2,3,2 \sqrt{2}, 3 \sqrt{2}, 5,8,12,16, i, 2 i, 3 i, 4 i, \sqrt{2} i\}]
$$

by Rodriguez-Villegas (1999), Rogers \& Zudilin (2014), Brunault (2016), etc...)
These identities can be related to the conjectures of Beilinson (1984) on special values of L-functions. Indeed, Deninger (1997) proved that:

$$
\widetilde{m}^{(P)}=\sqrt{m\left(P\left(\underline{z}_{n-1}, 0\right)\right)}+\left\langle r_{V_{P}}^{\infty}\left(\left\{z_{1}, \ldots, z_{n}\right\}\right),\left[\gamma_{P}\right] \otimes(2 \pi \sqrt{-1})^{1-n}\right\rangle_{\left(V_{P}, \partial \gamma_{P}\right)}
$$

where $V_{P}:=\{P=0\} \hookrightarrow \mathbb{G}_{m}^{n}$ and $\gamma_{P}:=\overparen{V_{P}(\mathbb{C})} \cap\left\{\left|z_{1}\right|=\ldots\left|z_{n-1}\right|=1,\left|z_{n}\right| \leq 1\right\}$. Hence, if V_{P} is smooth, P is tempered, and $\partial \gamma_{P}=\varnothing$, Beilinson's conjectures predict $m(P) \nrightarrow L^{*}\left(\underline{H}^{n-1}\left(\bar{V}_{P}\right), 0\right)$, for a smooth compactification \bar{V}_{P} of V_{P}. properties

Some little steps...

In particular, Bornhorn (1999), following the ideas of Deninger (1997), proves that Boyd's conjecture:

$$
m\left(z_{1}+\frac{1}{z_{1}}+z_{2}+\frac{1}{z_{2}}+k\right) \stackrel{?}{\sim}_{\mathbb{Q}^{\times}} L^{\prime}\left(E_{k}, 0\right)
$$

holds under Beilinson's conjectures. This can be generalized to the family:

$$
P\left(z_{1}, z_{2}\right)=z_{1}+\frac{1}{z_{1}}+z_{2}+\frac{1}{z_{2}}+\frac{z_{1}}{z_{2}}+\frac{z_{2}}{z_{1}}+k
$$

which was treated in Theorem 4.4.3 of P. (2020).
One can also use a weak form of Beilinson's conjectures for CM elliptic curves $E_{/ \mathbb{Q}}$, proved by Bloch (1978) (see also Rohrlich (1987)), to show that:

$$
m(P)=r L^{\prime}(E, 0)+\log |s|
$$

for some $P \in \mathbb{Z}\left[z_{1}, z_{2}\right]$, and two numbers $r \in \mathbb{Q}$ and $s \in \overline{\mathbb{Q}}^{\times}$. This was done in Theorem 9.2.4 of P. (2020).

The plan
(1) Mahler measure: definition and basic properties
(2) Exact polynomials: from Darboux to Lalín
(3) Our contribution: a geometric approach

Fernando
Rodriguez-Villegas

A gallery of explicit relations

Some identities between Mahler measures and zero-dimensional L-functions: Smyth (1981) $m\left(\sqrt{L_{2}}\right)=L^{\prime}(\sqrt{\chi-3},-1)$ and $m\left(L_{3}\right)=-14 \cdot \zeta^{\prime}\left(\frac{1}{(-2)}\right)$, with $L_{n}=\sum_{j=q^{2}}^{n} z_{j \neq 1}$ Ray (1987), Boyd \& Rodriguez-Villegas (2002) Many more $L^{\prime}\left(\chi_{\Delta},-1\right)$ for $\Delta<0$. Lalín (2006) $m\left(z_{0} S_{2 k}^{-}+S_{2 k}^{+}\right) \in\left\langle\zeta^{\prime}(-2), \ldots, \zeta^{\prime}(-2 k)\right\rangle_{\mathbb{Q}}$, for $S_{m}^{ \pm}=\prod_{j=1}^{m}\left(1 \pm z_{j}\right)$. D'Andrea \& Lalín (2007) $m\left(\left(1-z_{1}\right)\left(1-z_{2}\right)-\left(1-z_{3}\right)\left(1-z_{4}\right)\right)=-18 \cdot \zeta^{\prime}(-2)$.
What about higher-dimensional L-functions?
Rodriguez-Villegas (2004) $m\left(L_{4}\right) \stackrel{?}{=}-L^{\prime}(f,-1)$ and $m\left(L_{5}\right) \stackrel{?}{=}-8 \cdot L^{\prime}(g,-1)$, for two modular forms $f \in S_{3}(15)$ and $g \in S_{4}(6)$. How to go on? Note that $m\left(L_{n}\right)$ is related to the probability density of a random walk with n-steps, as studied by Borwein \& Straub \& Wan \& Zudilin (2012).
Finally, some elliptic curves may appear, such as:

$$
m\left(z_{1}-\left(1-z_{2}\right)\left(1-z_{3}\right)\right) \stackrel{?}{=}-2 \cdot L^{\prime}\left(X_{1}(15),-1\right)
$$

studied by Boyd \& Rodriguez-Villegas (2004) and Lalín (2013).

Matilde Noemí Lalín

Looking for answers: the notion of exactness

In all the previous examples, either $\partial \gamma_{P} \neq \varnothing$ or V_{P} is not smooth.
Maillot (2004) We should look at $W_{P}:=V_{P} \cap V_{P^{*}}$, where $P^{*}\left(\underline{z}_{n}\right):=\overline{P\left(\underline{\bar{z}}_{n}^{-1}\right)}$.
Why this? Suppose P is exact, i.e. $r_{V_{P}}^{\infty}\left(\left\{z_{1}, \ldots, z_{n}\right\}\right)=0$ inside $H_{d R}^{n-1}\left(V_{P}\right)$.
Then, using Stokes, we can write $m(P)=\int_{\partial \gamma_{P}} \omega$ for some $\omega \in \Omega^{n-2}\left(W_{P}\right)$.
This already explains Smyth's identity $m\left(L_{2}\right)=L^{\prime}\left(\chi_{-3},-1\right)$, because $W_{L_{2}}=\left\{\left(\zeta_{3},-\zeta_{3}-1\right),\left(-\zeta_{3}, \zeta_{3}-1\right)\right\}$. What about $m\left(L_{3}\right)=-14 \cdot \zeta^{\prime}(-2)$?
Lalín (2007) Some polynomials are successively exact, so we can apply Stokes's theorem multiple times. Since $\partial \circ \partial=0$, this can't be done directly.
However, if W_{P} is singular, the pullback of ω to the desingularization \widetilde{W}_{P} of W_{P} may become exact, while $\partial \gamma_{P}$ might acquire a boundary!
For instance, if $P \in \mathbb{C}\left[\underline{z}_{3}^{ \pm 1}\right]$, one can take $\widetilde{W}_{P}=\left\{\operatorname{Res}_{z_{3}}\left(P, P^{*}\right)=0\right\}$.
(1) Mahler measure: definition and basic properties
(2) Exact polynomials: from Darboux to Lalín
(3) Our contribution: a geometric approach

The plan

The first step：symmetrizing the Deninger cycle Brunault \＆P．（2021）：If $P \in \mathbb{C}\left[z_{n}^{ \pm 1}\right] \backslash\{0\}$ and $V_{0}:\left\{P \cdot P^{*}=0\right\} \hookrightarrow \mathbb{G}_{m}^{n}$ ，then：

Jean Gaston Darboux

$$
\left(f_{d R}^{u^{-1}}\left(N_{0}\right)\right.
$$

$$
m(P)-m\left(P\left(\underline{z}_{n-1}, 0\right)\right)=\left\langle\eta_{0}, \gamma_{0}\right\rangle V_{0}
$$

where $\eta_{0}=r_{V_{0}}^{\infty}\left(\left\{z_{1}, \ldots, z_{n}\right\}\right)$ and $\gamma_{0} \in H_{n-1}^{\mathrm{B}}\left(V_{0}\right)$ is a symmetrized version of γ_{P} ． Thus，looking at the Mayer－Vietoris long exact sequence：

$$
\cdots \rightarrow H_{\mathrm{dR}}^{n-2}\left(W_{P}\right) \xrightarrow{\delta} H_{\mathrm{dR}}^{n-1}\left(V_{0}\right) \rightarrow H_{\mathrm{dR}}^{n-1}\left(V_{P}\right) \oplus H_{\mathrm{dR}}^{n-1}\left(V_{P^{*}}\right) \rightarrow \ldots
$$

we get a class $\eta_{1} \in H_{d R}^{n-2}\left(W_{P}\right)$ if $\left.\eta_{0}\right|_{V_{P}}=0$ ．Hence，we get：

$$
m(P)-m\left(P\left(\underline{z}_{n-1}, 0\right)\right)=\left\langle\eta_{1}, \gamma_{1}\right\rangle \eta_{1} / p
$$

where $\gamma_{1}=\partial\left(\gamma_{0}\right)$ is obtained by looking at the adjoint Mayer－Vietoris long exact sequence in homology．Thus，say that P is exact if $\left.\eta_{0}\right|_{V_{P}}=0$ ，as before． Historical note：Maillot points out that the relation between the involution $\underline{z}_{n} \mapsto \underline{z}_{n}^{-1}$ and the intersection $V_{P}(\mathbb{C}) \cap \mathbb{T}^{n}$ might go back to Darboux（1875）．

Heisuke Hironaka

How to go on: successive desingularization
There exist exact reciprocal polynomials, such as $P=z_{1}+z_{1}^{-1}+z_{2}+z_{2}^{-1}+4$. In this case, $W_{P}=V_{P}$ is not the good variety. How to deal with them?

Brunault \& P. (2021): Generically, $W_{P}=V_{0}^{\text {sing }}$. So, one can look at:

where each \widetilde{V}_{k} is smooth. Here, a polynomial is exact if $\left.\eta_{0}\right|_{\widetilde{V}_{0}}=0$.
By induction, P is k-exact if it is $(k-1)$-exact and $\left.\eta_{k-1}\right|_{\tilde{V}_{k-1}}=0$. We get:

$$
m(P)-m\left(P\left(\underline{z}_{n-1}, 0\right)\right)=\left\langle\eta_{k}, \gamma_{k}\right\rangle v_{k}
$$

for $\eta_{k} \in H_{\mathrm{dR}}^{n-1-k}\left(V_{k}\right)$ and $\gamma_{k}=\partial\left(\gamma_{k-1}\right) \in H_{n-1-k}^{\mathrm{B}}\left(V_{k}\right)$.

三玉

$$
p\left(z_{1}\right)=z_{1}-\lambda
$$

A more canonical approach: the exactness filtration Let $X:=\widetilde{V}_{0}$ (smooth), and $D:=V_{1} \hookrightarrow X$ (simple normal crossings divisor). Write $D=D_{1} \cup \cdots \cup D_{r}$ and $D^{(i)}=\bigsqcup_{|I|=i} D_{I}$, where $D_{I}=\bigcap_{i \in I} D_{i}$ (smooth). Take $\underset{\eta}{ } \in H_{d \mathrm{~d}}^{n-1}(X, D)$ lifting $\eta_{0} \in H_{\mathrm{dR}}^{n-1}\left(V_{0}\right)$ through the diagram:
and consider the spectral sequence $H^{q}\left(D^{(p)}\right) \Rightarrow H^{p+q}(X, D)$, inducing Fil rel ${ }^{\circ}$.
Brunault \& P. (2021): Say that P is k-exact if $\widetilde{\eta} \in \operatorname{Fil}_{\text {rel }}^{k}\left(H_{\mathrm{dR}}^{n-1}(X, D)\right)$. Let $\widetilde{\gamma} \in H_{n-1}^{\mathrm{B}}(X, D)$. If $\widetilde{\eta} \notin \mathrm{Fil}_{\text {rel }}^{k+1}$ and $\tilde{\gamma} \in \mathrm{Fil}_{k}^{\text {rel }} \backslash \mathrm{Fil}_{k-1}^{\text {rel }}$, we have:

$$
m(P)-m\left(P\left(\underline{z}_{n-1}, 0\right)\right)=\left\langle\operatorname{gr}_{\text {rel }}^{k}(\widetilde{\eta}), \operatorname{gr}_{k}^{r e l}(\widetilde{\gamma})\right\rangle_{(X, D)}=\left\langle\widetilde{\eta}_{k}, \widetilde{\gamma}_{k}\right\rangle_{D^{(k)}}
$$

which computes $m(P)$ as an absolute period on the smooth variety $D^{(k)}$.

An example: the three-variable linear polynomial
Let $P=L_{3}=z_{1}+z_{2}+z_{3}+1$. Recall that $\Gamma_{m(P)=-14 \zeta^{\prime}(-2)}$ by Smyth (1981).
Let $Z=\left\{z_{1}=0\right\} \cup\left\{z_{2}=0\right\} \cup\left\{z_{1}+z_{2}=1\right\}$ and $S=\left\{z_{1}=1\right\} \cup\left\{z_{2}=1\right\} \cup\left\{z_{1}+z_{2}=0\right\}$.
We have $V_{P} \cong A^{2} \backslash Z$, thus $H_{d R}^{2}\left(V_{P}\right) \cong H_{\mathrm{dR}}^{1}\left(V_{P}\right) \cong \mathbb{R}^{3}$, and $W_{P} \cong S \backslash(S \cap Z)$. Hence, $H_{\mathrm{dR}}^{1}\left(W_{P}\right) \cong \mathbb{R}^{4}$ and $\operatorname{Im}\left(H_{\mathrm{dR}}^{1}\left(V_{P}\right) \oplus H_{\mathrm{dR}}^{1}\left(V_{P^{*}}\right) \rightarrow H_{\mathrm{dR}}^{1}\left(W_{P}\right)\right) \cong \mathbb{R}^{3}$.
Therefore, $H_{d R}^{1}\left(V_{0}\right) \cong \mathbb{R}^{3}$ and $H_{d \mathbb{R}}^{2}\left(V_{0}\right) \cong \mathbb{R}^{7}$. We get a diagram:

whose rows are exact. Note that $D=W_{P} \sqcup W_{P}$ and $X=V_{P} \sqcup V_{P^{*}}$.
Finally, $\widetilde{\eta} \in \overparen{\text { Fil }}_{\text {rel }}^{1}\left(H^{2}(X, D)\right)={\widetilde{\mathrm{Fil}_{\mathrm{rel}}^{2}}}^{2}\left(H^{2}(X, D)\right) \cong \mathbb{R}^{2}$, and $D^{D^{(2)} \cong \operatorname{Spec}(\mathbb{Q})^{\sqcup 6}}$.
Thus, we should indeed expect (and we can prove) $m(P) \sim \mathbb{Q}^{\times} \zeta^{\prime}(-2)$.
$\log (\alpha), \alpha \in \overline{Q_{1}} \cap \mathbb{R}_{>0} \quad \in \theta^{x}$
$\forall \Delta<0, L^{\prime}\left(X_{a},-1\right)=\sqrt{(x)}-m\left(P\left(z_{1}, z_{2}\right)\right) \quad$ Further steps and directions

François Brunault

- Resolve the ambiguity $\operatorname{Im}\left(H_{\mathrm{dR}}^{n-2}\left(V_{0}^{\text {sing }}\right) \rightarrow H_{\mathrm{dR}}^{n-1}(X, D)\right)$ for $\widetilde{\eta}$.
- Write $m(P)$ as a period for $(\bar{X} \backslash A, B \backslash(A \cap B))$, with \bar{X} smooth projective. Relate this to $\mathfrak{X}\left(\Delta_{P}\right)$ (toric variety) and to (successive) temperedness.
- Compare with the weight filtration on $H^{n-1}\left(V_{0}\right)$.
- Compare with the degeneration $P \cdot P^{*}=t$ for $t \rightarrow 0$. To do so, study $P \cdot P^{*}-t \in \mathbb{C}((t))\left[z_{n}^{ \pm 1}\right]$, maybe via tropical homology.
- Make γ_{P} more canonical, following (perhaps) Baser \& Deninger (1999).
- Study the families L_{n} (1-exact if $\left.n \neq 3\right)$ and $z_{0} S_{n}^{-}+S_{n}^{+}((n-1)$-exact).
- "Compute" $m\left(L_{4}\right)$ and $m\left(L_{5}\right)$ up to \mathbb{Q}^{\times}, and assuming Beilinson's conj.
- Study the co-exactness filtration on \mathscr{M}_{∞}.
- Write $m(P)$ as a motivic period, following Brown (2017) Maybe it's a single valued period, as in Brown \& Dupont (2021).
- Study this in fibrations, as in Doran \& Kerr (2011).
- Compute $\operatorname{trdeg}\left(\mathbb{Q}\left(\pi, m\left(P_{1}\right), \ldots, m\left(P_{r}\right)\right) / \mathbb{Q}\right)$, assuming the period conj.

Thank you very much for your attention!

Está preparando seu espírito e sua vontade, porque existe uma grande verdade neste planeta: seja você quem for ou o que faça, quando quer com vontade alguma coisa, é porque esse desejo nasceu na alma do Universo.

Paulo Coelho de Souza, O Alquimista
P.S: Did you get curious about Mahler measures? Check out the book: Many Variations of Mahler Measures: A Lasting Symphony
by Brunault and Zudilin (2020).

[^0]: ${ }^{1}$ Unité des mathématiques pures et appliquées, École normale supérieure de Lyon

