

p-adic asymptotic distribution of CM points

Sebastián Herrero (joint with Ricardo Menares and Juan Rivera-Letelier)

Geometry, Arithmetic and Differential Equations of Periods

Notation

Given an algebraically closed field K, define

```
\operatorname{Ell}(K) = \{ \text{elliptic curve over } K \} / \operatorname{isomorphism.}
```

The j-invariant gives a bijection

 $j: \operatorname{Ell}(K) \to K.$

In this talk $K = \overline{\mathbb{Q}}, \mathbb{C}, \mathbb{C}_p$ or $\overline{\mathbb{F}}_p$ (p prime).

Remark: We can endow Ell(K) with the topology of K.

CM points

A **CM point** in $Ell(\overline{\mathbb{Q}})$ is a point representing an elliptic curve *E* with complex multiplication, i.e. with

$$\operatorname{End}(E) = \mathbb{Z}\left[\frac{D+\sqrt{D}}{2}\right]$$

for some integer D < 0. We call D the **discriminant** of the CM point and define

$$\Lambda_D = \{ \mathsf{CM point of discriminant } D \}.$$

Theorem (CM Theory)

 Λ_D is finite of cardinality h(D) (class number).

For simplicity let us assume D fundamental, i.e. $\mathbb{Z} \left| \frac{D+\sqrt{D}}{2} \right| = \mathcal{O}_{\mathbb{Q}(\sqrt{D})}$.

Size of $\#\Lambda_D = h(D)$

Theorem (Heilbronn, 1934)

 $h(D) \rightarrow \infty$ when $D \rightarrow -\infty$.

Hans Heilbronn (1908-1975)

Theorem (Siegel, 1935)

 $\log(h(D)) \sim \log(\sqrt{|D|})$ when $D \to -\infty$.

Carl Ludwig Siegel (1896-1981)

Main question

Question:

How are CM points distributed on $\operatorname{Ell}(\overline{\mathbb{Q}})$ when $D \to -\infty$? **Remark:** We can consider

 $\operatorname{Ell}(\overline{\mathbb{Q}}) \hookrightarrow \operatorname{Ell}(\mathbb{C})$

or

 $\operatorname{Ell}(\overline{\mathbb{Q}}) \hookrightarrow \operatorname{Ell}(\mathbb{C}_p)$

for p prime.

Asymptotic distribution of points

Given:

- a topological space X,
- a sequence $(A_n)_{n \in \mathbb{N}}$ of non-empty finite subsets of X,
- a Borel probability measure μ on X, we write

$$\frac{1}{\# A_n} \sum_{x \in A_n} \delta_x \to \mu \quad \text{weakly},$$

if for every f in $C_0(X)$ we have

$$\frac{1}{\#A_n}\sum_{x\in A_n}f(x)\to\int f\,d\mu.$$

In this case, the asymptotic distribution of $(A_n)_{n \in \mathbb{N}}$ is *ruled* by μ .

A baby example

- $S^1 = \{z \in \mathbb{C} : |z| = 1\}$
- $A_n = \{e^{2\pi i k/n} : k = 0, 1, \dots, n-1\}$
- $\mu_{S^1} =$ Haar measure on S^1 In this case

Figure: A₃₀

Another example

•
$$S^1 = \{z \in \mathbb{C} : |z| = 1\}$$

• $B_n = \{e^{2\pi i k/n} : k = 0, 1, \dots, n-1, g.c.d.(k, n) = 1\}$

• μ_{S^1} = Haar measure on S^1 In this case (again)

$$rac{1}{\phi(n)}\sum_{x\in B_n}\delta_x
ightarrow \mu_{\mathcal{S}^1}$$
 weakly.

Figure: B₃₀

Distribution of CM points over $\ensuremath{\mathbb{C}}$

Consider $\operatorname{Ell}(\overline{\mathbb{Q}}) \hookrightarrow \operatorname{Ell}(\mathbb{C})$.

Theorem (Uniformization theory of elliptic curves over \mathbb{C})

1 If E is an elliptic curve over \mathbb{C} , then there is a w in

 $\mathbb{H} = \{z \in \mathbb{C} : \mathrm{Im}(z) > 0\}$

such that $E(\mathbb{C}) \simeq \mathbb{C}/(\mathbb{Z} + w\mathbb{Z})$, and conversely. **2** $\mathbb{C}/(\mathbb{Z} + w\mathbb{Z}) \simeq \mathbb{C}/(\mathbb{Z} + w'\mathbb{Z}) \Leftrightarrow w' = \frac{aw+b}{cw+d}$ for some $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $\mathrm{SL}_2(\mathbb{Z})$.

Hence $\operatorname{Ell}(\mathbb{C}) = \operatorname{SL}_2(\mathbb{Z}) \setminus \mathbb{H}$. In $\operatorname{SL}_2(\mathbb{Z}) \setminus \mathbb{H}$ we have the hyperbolic measure $\frac{3}{\pi} \frac{dxdy}{v^2}$

Distribution of CM points over $\ensuremath{\mathbb{C}}$

 $\mathsf{Recall}\ \mathrm{Ell}(\overline{\mathbb{Q}}) \hookrightarrow \mathrm{Ell}(\mathbb{C}) = \mathrm{SL}_2(\mathbb{Z}) \backslash \mathbb{H}.$

Theorem (Linnik, 1968)

$$rac{1}{h(D)}\sum_{E\in\Lambda_D}\delta_E
ightarrowrac{3}{\pi}rac{d\mathsf{x}d\mathsf{y}}{\mathsf{y}^2}$$
 weakly,

provided
$$D \to -\infty$$
 and $\left(\frac{D}{p}\right) = 1$, for some fixed odd prime p.

Yuri Linnik (1915-1972)

Theorem (Duke, 1988)

$$rac{1}{h(D)}\sum_{E\in \Delta_D}\delta_E o rac{3}{\pi}rac{dxdy}{y^2}$$
 weakly,

provided $D \rightarrow -\infty$.

William Duke

Distribution of CM points over \mathbb{C}_p

Consider $\operatorname{Ell}(\overline{\mathbb{Q}}) \hookrightarrow \operatorname{Ell}(\mathbb{C}_p)$.

Given E in Λ_D let \widetilde{E} in $\operatorname{Ell}(\overline{\mathbb{F}}_p)$ denote its **reduction**. We have two cases:

(*i*) **Ordinary** reduction:

$$\mathrm{rk}_{\mathbb{Z}}(\mathrm{End}(\widetilde{E}))=2\Leftrightarrow\left(rac{D}{p}
ight)=1\Leftrightarrow\mathbb{Q}_{p}(\sqrt{D})=\mathbb{Q}_{p}.$$

(*ii*) **Supersingular** reduction:

$$\operatorname{rk}_{\mathbb{Z}}(\operatorname{End}(\widetilde{E})) = 4 \Leftrightarrow \left(\frac{D}{p}\right) \neq 1 \Leftrightarrow [\mathbb{Q}_p(\sqrt{D}) : \mathbb{Q}_p] = 2.$$

The ordinary reduction case We have $j : \operatorname{Ell}(\mathbb{C}_p) \simeq \mathbb{C}_p$ and $\mathbb{C}_p \hookrightarrow \mathbb{A}^1_{\operatorname{Berk}}$.

 $\mathbb{A}^1_{\text{Berk}}$ is a locally compact and arc-connected topological space (Berkovich topology) with \mathbb{C}_p as a dense subspace.

 \mathbb{A}^1_{Berk} is also an \mathbb{R} -tree, hence partially ordered, and there is a unique point ζ in \mathbb{A}^1_{Berk} such that

$$\zeta = \max \overline{\{z \in \mathbb{C}_p : |z|_p \le 1\}}.$$

The ordinary reduction case

Theorem (H–Menares–Rivera-Letelier, 2020)

$$\frac{1}{h(D)} \sum_{E \in \Lambda_D} \delta_E \to \delta_{\zeta} \quad weakly,$$
provided $D \to -\infty$ with $\left(\frac{D}{p}\right) = 1.$

The supersingular reduction case

In this case $\mathbb{Q}_p(\sqrt{D})$ is a quadratic extension of \mathbb{Q}_p . **Facts:** There are 3 (resp. 7) quadratic extensions of \mathbb{Q}_p if $p \ge 3$ (resp. p = 2). Every quadratic extension \mathcal{K} of \mathbb{Q}_p has a *p*-adic discriminant

 $\mathfrak{D}_{\mathcal{K}} \in \mathbb{Z}_p/(\mathbb{Z}_p^{\times})^2.$

Example: When p = 3

$$\begin{array}{c|c} \mathcal{K} & \mathfrak{D}_{\mathcal{K}} \\ \hline \mathbb{Q}_3(\sqrt{2}) & 2(\mathbb{Z}_3^{\times})^2 \\ \hline \mathbb{Q}_3(\sqrt{3}) & 3(\mathbb{Z}_3^{\times})^2 \\ \hline \mathbb{Q}_3(\sqrt{6}) & 6(\mathbb{Z}_3^{\times})^2. \end{array}$$

We have

$$\mathbb{Q}_p(\sqrt{D}) = \mathcal{K} \Leftrightarrow D \in \mathfrak{D}_{\mathcal{K}}.$$

Hence *p*-adic discriminants give a partition of the set of discriminants D < 0 with $\left(\frac{D}{p}\right) \neq 1$.

S. Herrero

Formal CM points

Given an elliptic curve E defined by a Weierstrass equation with coefficients in $\mathcal{O}_{\mathbb{C}_p}$, denote by \widehat{E} its *formal group*.

$$\widehat{E} = \widehat{E}(X,Y) = \sum_{i,j \geq 0} c_{i,j} X^i Y^j \in \mathcal{O}_{\mathbb{C}_p}[[X,Y]].$$

We define

$$\operatorname{End}_{\operatorname{FG}}(\widehat{E}) := \{ \phi \in \mathcal{O}_{\mathbb{C}_p}[[X]] : \widehat{E}(\phi(X), \phi(Y)) = \phi(\widehat{E}(X, Y)) \}.$$

A formal CM point is a point E in $\operatorname{Ell}(\mathbb{C}_p)$ with $\operatorname{rk}_{\mathbb{Z}_p}(\operatorname{End}_{\operatorname{FG}}(\widehat{E})) = 2$. Given the *p*-adic discriminant \mathfrak{D} of a quad. extension \mathcal{K} of \mathbb{Q}_p define

$$\Lambda_{\mathfrak{D}} = \{ E \in \operatorname{Ell}(\mathbb{C}_{\rho}) \text{ with } \operatorname{End}_{\operatorname{FG}}(\widehat{E}) \simeq \mathcal{O}_{\mathcal{K}} \} \subset \operatorname{Ell}(\mathbb{C}_{\rho}).$$

We have

$$\Lambda_D \subset \Lambda_{\mathfrak{D}} \Leftrightarrow D \in \mathfrak{D}.$$

S. Herrero

p-adic distribution of CM points

The supersingular reduction case

Theorem (H–Menares–Rivera-Letelier, 2021)

For a p-adic discriminant \mathfrak{D} the set $\Lambda_{\mathfrak{D}}$ is compact and there exists a (unique) Borel probability measure $\nu_{\mathfrak{D}}$ with support $\Lambda_{\mathfrak{D}}$ such that

$$rac{1}{h(D)}\sum_{E\in\Lambda_D}\delta_E o
u_{\mathfrak{D}}$$
 weakly,

provided $D \to -\infty$ with $D \in \mathfrak{D}$.

There are 3 (resp. 7) limit measures in this case if $p \ge 3$ (resp. p = 2).

Example: the unramified case

Assume D < 0 with $\left(\frac{D}{p}\right) = -1$. Then $\mathbb{Q}_p(\sqrt{D})$ is the unique quadratic unramified extension \mathbb{Q}_{p^2} of \mathbb{Q}_p . Let \mathfrak{D}^{unr} be its *p*-adic discriminant.

Example: When p = 3

Example: the unramified case

- Choose *e* in $\operatorname{Ell}(\overline{\mathbb{F}}_p)$ supersingular ($\sim 1 + \lfloor \frac{p}{12} \rfloor$ possibilities).
- $\mathbf{Y}_e = \text{Deformation space of } e$ (we have $\mathbf{Y}_e \simeq \mathfrak{m}_{\mathbb{C}_p}$).
- $\mathbf{X}_e = \text{Deformation space of } \widehat{e}$ (we have $\mathbf{X}_e \simeq \mathfrak{m}_{\mathbb{C}_p}$).
- In X_e the point 0 corresponds to a formal group \mathcal{F} with $\operatorname{End}_{\operatorname{FG}}(\mathcal{F}) = \mathcal{O}_{\mathbb{Q}_{p^2}}.$
- Aut(e) is finite subgroup of $Aut_{FG}(\hat{e})$.
- $\operatorname{Aut}_{FG}(\widehat{e})$ is a compact group acting on X_e .
- $\mathbf{X}_e \to \operatorname{Aut}(e) \setminus \mathbf{X}_e \simeq \mathbf{Y}_e$.
- $\Lambda_{\mathfrak{D}^{unr}} \cap \mathbf{Y}_e$ is the image of $\operatorname{Aut}_{\operatorname{FG}}(\widehat{e}) \cdot 0$ under $\mathbf{X}_e \to \mathbf{Y}_e$.
- $\nu_{\mathfrak{D}^{unr}}|_{\mathbf{Y}_e}$ is the push-forward of the Haar measure on $\operatorname{Aut}_{\mathrm{FG}}(\widehat{e})$.

A comparison

On the one hand (non-Archimedean asymptotic distribution):

• $\operatorname{Aut}_{FG}(\hat{e}) = \mathbf{R}_{e}^{\times}$ where \mathbf{R}_{e} is the maximal order of the unique division quaternion algebra over \mathbb{Q}_{p} .

- \mathbf{R}_{e}^{1} = Subgroup of elements g in \mathbf{R}_{e}^{\times} with $\operatorname{nr}(g) = 1$.
- $\Lambda_{\mathfrak{D}^{unr}} \cap \mathbf{Y}_e$ is also the image of $\mathbf{R}_e^1 \cdot \mathbf{0}$ under $\mathbf{X}_e \to \mathbf{Y}_e$.
- $\nu_{\mathfrak{D}^{unr}}|_{\mathbf{Y}_e}$ is also the push-forward of the Haar measure on \mathbf{R}_e^1 .

On the other hand (Archimedean asymptotic distribution):

- $M_2(\mathbb{R})$ is a quaternion algebra over \mathbb{R} .
- $\operatorname{SL}_2(\mathbb{R})$ is the subgroup of $M_2(\mathbb{R})^{\times}$ of elements g with $\operatorname{nr}(g) = \det(g) = 1$.
- $\operatorname{Ell}(\mathbb{C})$ is the image of $\operatorname{SL}_2(\mathbb{R}) \cdot i = \mathbb{H}$ under $\mathbb{H} \to \operatorname{Ell}(\mathbb{C})$.
- The hyperbolic measure is the push-forward of the Haar measure on ${\rm SL}_2(\mathbb{R}).$

Thank you for your attention!