Title: Periods and Dwork's congruences

Consider the hypergeometric series F(t) := F(1/2, 1/2, 1|t). For any positive integer m we define $F_m(t)$ as the truncation at t^m , i.e we drop all terms in F(t) of degree $\geq m$. Let p be an odd prime and z_0 a p-adic integer $\neq 0, 1$. Then Dwork found that if $F_p(z_0)$ is a unit in \mathbb{Z}_p , the quotient $F_{p^s}(z_0)/F_{p^{s-1}}(z_0)$ converges p-adically to $(-1)^{(p-1)/2}$ times the zero of the ζ -function of the elliptic curve

$$y^2 \equiv x(x-1)(x-z_0) \pmod{p}$$

with p-adic valuation 1. There exist many far reaching generalizations. In two recent papers, Dwork-crystals I,II (arXiv:1903.11155, arXiv:1907.10390) Masha Vlasenko and I have developed an elementary framework which explains many of these phenomena. In this lectures I would like to present some of the ideas.

Frits Beukers