Math 110: Midterm I

July 12, 2001

Name:

Instructions: This is a closed book exam, and you will have 55 minutes. Please write your name on every page you use. Calculators are not allowed! Make sure to show your work clearly. The exam is worth 40 points.

Good luck!

Problem 1 (12 pts): Determine whether the following statements are true or false (write your answer clearly, otherwise it will not be graded). If the statement is false, provide a counter example.
a) Let V be a vector space, and let W_{1}, W_{2}, U be subspaces of V. If

$$
W_{1} \oplus U=W_{2} \oplus U
$$

then $W_{1}=W_{2}$.
Answer:
b) If $S=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq V$ generates the vector space V, then any other set generating V has at least n elements.

Answer:
c) If β is a basis of a vector space V, then any subset of β is linearly independent.

Answer:

d) The real vector spaces $P_{3}(\mathbb{R}), M_{2 \times 2}(\mathbb{R})$ and \mathbb{C}^{2} have the same dimension.

Answer:
e) If V is a finite dimensional vector space and $T: V \longrightarrow V$ is a linear transformation, then T is injective if and only if T is surjective.
Answer:
f) Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a linear transformation. Then $\mathbb{R}^{2}=N(T) \oplus R(T)$.

Answer:

Problem 2 (8 pts): Consider the linear tranformation $T: P_{3}(\mathbb{R}) \longrightarrow \mathbb{R}^{2}$ given by

$$
T(p)=\left(p^{\prime \prime}(0), p^{\prime}(0)\right)
$$

Find bases for $N(T)$ and $R(T)$, compute the nullity and rank of T, and determine whether T is one-to-one or onto.

Problem 3 (8 pts): Let $\beta=\{(1,0),(1,1)\}$ and $\gamma=\{(0,1),(-1,1)\}$ be bases of \mathbb{R}^{2}, and let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a linear tranformation such that

$$
[T]_{\beta}^{\gamma}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

What is $T(1,0)$? What is $T(0,1)$? What is $T(x, y)$ in general?
Problem 4 (8 pts): Let V_{1} and V_{2} be finite dimensional vector spaces, and suppose $T: V_{1} \longrightarrow V_{2}$ is a one-to-one linear transformation. Let $W_{1} \subseteq V_{1}$ be a subspace.
a) Prove that $T\left(W_{1}\right) \subseteq V_{2}$ is a subspace of V_{2}.
b) Prove that $\operatorname{dim}\left(T\left(W_{1}\right)\right)=\operatorname{dim}\left(W_{1}\right)$.

Problem 5 (4 pts): Let V be a finite dimensional vector space, and let $W_{1}, W_{2} \subseteq V$ be subspaces. Prove that

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

(This result implies, in particular, that $\left.\operatorname{dim}\left(W_{1} \oplus W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)\right)$.
Hint: Start with a basis for $W_{1} \cap W_{2}$. Then extend it to bases of W_{1} and W_{2}, and find a basis for $W_{1}+W_{2}$.

