Mat 301: Final Worksheet

1) Prove that $G L(n, \mathbb{R}) / S L(n, \mathbb{R}) \approx \mathbb{R}^{*}$.
2) Let $G=\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$, and consider the subgroup $K=\{(0,0),(2,0),(0,2),(2,2)\}$. Write G / K as an internal direct product.
3) Is there a homomorphism from $U(5)$ onto $U(10)$? If so, how many?
4) Find a noncyclic subgroup of order 4 in $\mathbb{Z}_{4} \oplus \mathbb{Z}_{10}$.
5) Write $\mathbb{Z}_{20} \oplus \mathbb{Z}_{30} \oplus \mathbb{Z}_{40} \oplus \mathbb{Z}_{50} \oplus \mathbb{Z}_{100}$ as a product of the form $\mathbb{Z}_{m_{1}} \oplus \mathbb{Z}_{m_{2}} \oplus \ldots \oplus \mathbb{Z}_{m_{k}}$ where m_{i} divides m_{i-1}.
6) Are there more abelian groups of order 120 than abelian groups of order 54 (up to isomorphism)? Explain.
7) Prove that if K and H are normal subgrups of G, then $K \cap H$ is a normal subgrup of G.
8) Let K be a normal subgroup of G. If K is cyclic, prove that every subgroup of K is also normal in G. (Is this still true if K is not cyclic?)
9) Consider the permutations $\alpha=(34)(15)(2)(6), \beta=(25)(13)(4)(6)$ in S_{6}. Show that they are conjugate to one another (i.e., find $\sigma \in S_{6}$ so that $\alpha=\sigma \beta \sigma^{-1}$. Show that there are no normal subgroups of order 2 in S_{6}.
10) Prove that $|\operatorname{Inn}(G)|=1$ if and only if G is abelian.
11) Let G be a finite group, and assume that there is a homomorphism from G onto \mathbb{Z}_{10}. Prove that G has normal subgroups of index 2 and 5 .
12) Prove that \mathbb{Z}_{n} has an even number of generators if $n>2$.
13) Let G be a group of order 5 , and suppose that $\phi: \mathbb{Z}_{30} \rightarrow G$ is a homomorphism which is onto. What is the kernel of ϕ ? Explain.
14) Find a group of infinite order containing exactly three elements of order 2. Can this group be cyclic?
15) Let $G=S_{3}, H=\langle(123)\rangle$ and $K=\langle(12)\rangle$. Check that $G=H K$ and $H \cap K=\{(1)\}$. Is G isomorphic to $H \oplus K$? Explain.
16) Suppose $|G|=168$ and G has more than six elements of order 7 . How many subgroups of order 7 does G have?
17) Prove that $U(16) /\langle 7\rangle$ is cyclic.
18) Show that \mathbb{Q} / \mathbb{Z} (under addition) is a group of infinite order in which all the elements have finite order.
19) Show that a group of order 99 has a normal subgroup of order 11.
20) Show that all proper subgroups of S_{3} are cyclic.
