Mat 363: Problem set \# 1

Instructor: Henrique Bursztyn

Due Friday, Jan. 21 in class

1) Consider the astroid $\gamma(t)=\left(\cos ^{3}(t), \sin ^{3}(t)\right)$.
a) Show that $\|\dot{\gamma}(t)\|=\frac{3}{2}|\sin (2 t)|$.
b) Show that the arclength function is given by $s(t)=\frac{3}{2} \sin ^{2}(t)$, for $t \in[0, \pi / 2]$. Find the total length of the curve when t goes from 0 to 2π.
c) Find the expression for $\tilde{\gamma}(s)$, the arclength reparametrization of $\gamma(t), 0<t<\pi / 2$.
2) Find the signed curvature κ_{s} and the equation of the evolute for the following curves:
a) the catenary $\gamma(t)=(t, \cosh (t))$.
b) the ellipse $\gamma(t)=(a \cos (t), b \sin (t))$.
3) As discussed in class, for a curve $\gamma(s)$ in \mathbb{R}^{n} parametrized by arclength, its curvature is defined by $\left\|\gamma^{\prime \prime}(s)\right\|$. For an arbitrary regular curve $\gamma:(a, b) \rightarrow \mathbb{R}^{n}, n \geq 2$, prove that its curvature can be computed by

$$
\begin{equation*}
\kappa(t)=\frac{\sqrt{\|\dot{\gamma}\|^{2}\|\ddot{\gamma}\|^{2}-\langle\dot{\gamma}, \ddot{\gamma}\rangle^{2}}}{\|\dot{\gamma}\|^{3}} \tag{1}
\end{equation*}
$$

Show also directly from (1) that this formula agrees with the one given in class for $n=3$.
4) Fix $X, Y \in \mathbb{R}^{n}$, let $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ be any smooth curve satisfying $\gamma(a)=X, \gamma(b)=Y$.
a) Let $w \in \mathbb{R}^{n}$ be any constant vector with $\|w\|=1$. Prove that

$$
\langle Y-X, w\rangle=\int_{a}^{b}\langle\dot{\gamma}(t), w\rangle d t \leq \int_{a}^{b}\|\dot{\gamma}(t)\| d t
$$

(Hint: for the first equality, use the fundamental theorem of calculus).
b) Use a) to prove that $\|Y-X\| \leq \int_{a}^{b}\|\dot{\gamma}(t)\| d t$. Conclude that the curve of shortest length joining two points in \mathbb{R}^{n} is the straight line joining them.

Bonus problem: Let $\gamma:(a, b) \rightarrow \mathbb{R}^{2}$ be a curve parametrized by arclength. Fix $s_{0} \in$ (a, b), and suppose that $\kappa\left(s_{0}\right) \neq 0$. Consider $h_{1}, h_{2}>0$ two small positive real numbers, and let $\Gamma\left(h_{1}, h_{2}\right)$ be the circle passing through the points $\gamma\left(s_{0}\right), \gamma\left(s_{0}-h_{1}\right)$ and $\gamma\left(s_{0}+h_{2}\right)$. Prove that the limit of $\Gamma\left(h_{1}, h_{2}\right)$ when h_{1}, h_{2} go to zero (what's the meaning of this limit and why does it exist?) is the osculating circle at s_{0}.

