Mat 363: Problem set \# 5

Instructor: Henrique Bursztyn

Due Wednesday, April 6

1) Consider a surface patch $\sigma: U \rightarrow \mathbb{R}^{3}$, and let γ be a smooth curve in $S=\sigma(U)$, $\gamma(t)=\sigma\left(u_{1}(t), u_{2}(t)\right.$) (we write $\left(u_{1}, u_{2}\right)$ for the coordinates in U). Let $\Gamma_{i j}^{k}$ denote the associated Christoffel symbols.
a) Let Y be a smooth vector field along γ (i.e., $Y(t)=T_{\gamma(t)} S$ for all t), $Y(t)=$ $\alpha_{1}(t) \sigma_{u_{1}}+\alpha_{2}(t) \sigma_{u_{2}}$. Prove that the covariant derivative of Y (recall the definition in Problem set \#4) is given in coordinates by

$$
\frac{D Y}{d t}=\sum_{k=1}^{2}\left(\alpha_{k}^{\prime}+\sum_{i, j=1}^{2} \alpha_{j} u_{i}^{\prime} \Gamma_{i j}^{k}\right) \sigma_{u_{k}}
$$

b) Prove that γ is a geodesic if and only if it satisfies the following equations:

$$
u_{k}^{\prime \prime}+\sum_{i, j=1}^{2} \Gamma_{i j}^{k} u_{i}^{\prime} u_{j}^{\prime}=0, \quad k=1,2 .
$$

(These equations are equivalent to the geodesic equations that we saw in class in terms of the first fundamental form.)
2) Use the local Gauss-Bonnet theorem to show that if a surface patch has gaussian curvature $K \leq 0$, then it cannot have simple closed geodesics. Why doesn't this apply to the parallels of a circular cylinder? Explain. (Recall that a cylinder is cointained in a single surface patch defined on an annulus.)
3) Let S be the ellipsoid defined by $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1, a, b, c>0$, let K denote its gaussian curvature. Show that $\iint_{S} K d A=4 \pi$. Would this result be the same if $S=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{4}=1\right\}$? Explain.
4) Let $\sigma: U \rightarrow \mathbb{R}^{3}$ be a surface patch. Suppose that ξ, ξ^{\prime} are two nowhere vanishing vector fields on $S=\sigma(U)$, and let θ be the angle between them. Let $\gamma(s)$ be a unit-speed, positively-oriented closed simple curve in S with period T.
a) Prove that, along $\gamma, \theta^{\prime}(s)=-f^{\prime} / \sqrt{1-f^{2}}$, where $f=\cos (\theta)$.
b) Use Green's theorem to prove that $\int_{0}^{T} \theta^{\prime}(s) d s=0$, and use this result to show that the definition of the index of a stationary point of a vector field is independent of the "reference vector".
c) Consider in \mathbb{R}^{2} the vector field $V(x, y)=\left(\lambda_{1} x, \lambda_{2} y\right)$, where $\lambda_{1}, \lambda_{2} \neq 0$. Prove that the index of $p=(0,0)$ is 1 if λ_{1} and λ_{2} have the same sign, and -1 otherwise.
d) Can the index of a vector field at a stationary point be 0 ? If so, give an example.

Bonus problem: Let γ be a smooth simple closed curve on S^{2}, and let V be a vector field on S^{2} never tangent to γ. Prove that each of the two regions determined by γ must contain at least one zero of V, and show (a picture will do it!) that, nonetheless, one can find a vector field on S^{2} with only one zero.

