Mat 363: Problem set \# 4

Instructor: Henrique Bursztyn

Due Wednesday, March 23

1) Let S be the pseudosphere with parametrization $\sigma(u, v)=(f(u) \cos (v), f(u) \sin (v), g(u))$, where $f(u)=e^{u}$ and $g(u)=\sqrt{1-e^{2 u}}-\cosh ^{-1}\left(e^{-u}\right)$, for $-\infty<u<0$. Calculate the principal curvatures of S and show that all its points are hyperbolic.
2) Let S be a smooth oriented surface with unit normal vector field \mathbf{N}. We call a regular curve $C \subset S$ a line of curvature if for each $p \in C$ the tangent line of C is a principal direction at p.
a) Check that C is a line of curvature if and only if, for any parametrization $\gamma(t)$ of C, we have $\mathbf{N}^{\prime}(t)=\lambda(t) \gamma^{\prime}(t)$, where $\mathbf{N}(t)=\mathbf{N}(\gamma(t))$ and λ is some smooth function of t. (In this case, $-\lambda(t)$ is the principal curvature along $\gamma^{\prime}(t)$).
b) Prove that if S is a surface of revolution, then meridians and parallels are lines of curvature.
c) Show that a (nonrectilinear) geodesic is a line of curvature if and only if it is a plane curve, and give an example of a line of curvature which is a plane curve but not a geodesic.
3) Let S be a smooth oriented surface, fix $p \in S$ and $v \in T_{p} S(v \neq 0)$. Let $\kappa_{n}(\theta)$ be the normal curvature at p in the direction of a vector $w \in T_{p} S$ making an angle θ with v. Prove that the mean curvature of S at p is given by

$$
H(p)=\frac{1}{\pi} \int_{0}^{\pi} \kappa_{n}(\theta) d \theta
$$

4) Compute the Gaussian curvature $K(u, v)$ for the Moebius strip with parametrization

$$
\sigma(u, v)=((1+v \sin (u / 2)) \cos (u),(1+v \sin (u / 2)) \sin (u), v \cos (u / 2)) .
$$

5) We start with definitions: Let $\gamma(t)$ be a curve on a smooth surface S, and let Y be a smooth vector field along γ, i.e., $Y(t) \in T_{\gamma(t)} S$ for all t. The covariant derivative of Y is the vector field along γ defined by

$$
\frac{D Y}{d t}(t):=\Pi_{\gamma(t)} Y^{\prime}(t)
$$

where $\Pi_{p}: \mathbb{R}^{3} \rightarrow T_{p} S$ is the orthogonal projection along the direction normal to S. The vector field Y is called parallel if $D Y / d t=0$ for all t. (Check that this gives the expected answer if S is a plane.) Let now $\gamma(t)$ be a curve in S, let $p=\gamma\left(t_{0}\right) \in S$ and fix $w_{0} \in T_{p} S$. Using the theorem of existence and uniqueness of solutions of ODEs, one can show that there is a unique parallel vector field X along γ with $X\left(t_{0}\right)=w_{0}$. If $q=\gamma\left(t_{1}\right)$, then $w_{1}:=X\left(t_{1}\right)$ is called the parallel transport of w_{0} along γ to q. The questions start now:
a) Check that a curve $\gamma(t)$ in S is a geodesic iff $\gamma^{\prime}(t)$ is parallel along γ.
b) Let v and w be parallel fields along a curve γ in a smooth surface S. Prove that $\langle v(t), w(t)\rangle$ is constant (so parallel transport preserves length and angles).
c) Consider the unit sphere S^{2} with outward orientation $\mathbf{N}: S^{2} \rightarrow \mathbb{R}^{3}$. For each fixed $\phi \in[0,2 \pi)$, consider the curve $\gamma_{\phi}(t)=(\cos (\phi) \sin (t), \sin (\phi) \sin (t), \cos (t)), 0 \leq t \leq \pi$, joining the north pole $p=(0,0,1)$ to the south pole $q=(0,0,-1)$. Fix $w_{0}=$ $(1,0,0) \in T_{p} S^{2}$. Prove that the vector field $X_{\phi}(t)=(\cos (\phi)) \gamma_{\phi}^{\prime}(t)-(\sin (\phi)) \mathbf{N} \times \gamma_{\phi}^{\prime}(t)$ along γ_{ϕ} is parallel and use it to find the parallel transport of w_{0} along γ_{ϕ} to q for $\phi=0, \pi / 4, \pi / 2$. (Draw a picture.)

Bonus problem: Problem 5), part c), illustrates parallel transport along geodesics on the sphere. Let us now consider a parallel C in the unit sphere S^{2} of fixed colatitude θ (i.e, C is the trace of $(\cos (t) \sin (\theta), \sin (t) \sin (\theta), \cos (\theta)), 0 \leq t \leq 2 \pi)$. Let w_{0} be a unit vector tangent to C at some point p. Let $w_{1} \in T_{p} S^{2}$ be the parallel transport of w_{0} along C back to p after we go around C once. Prove that the (oriented) angle between w_{0} and w_{1} is $2 \pi(1-\cos \theta)$.
(Hint: You can try to do it directly or use the following argument: consider the cone which is tangent to the sphere at C; show that the parallel transport of w_{0} along C is the same if you consider C as a curve in the sphere or in the cone; now to do parallel transport in the cone, recall that the cone can be "unwrapped" isometrically onto a sector of the plane (see the previous problem set), and parallel transport in the plane is just the usual notion.)

