Mat 363: Problem set \# 3

Instructor: Henrique Bursztyn

Due Friday, March 4

1) Let S be the paraboloid $z=x^{2}+y^{2}$, and consider the surface patch $\sigma(r, \varphi)=$ $\left(r \cos (\varphi), r \sin (\varphi), r^{2}\right)$, for $r>0$ and $0<\varphi<2 \pi$.
a) Find E, F and G (coefficients of the first fundamental form) associated with σ.
b) Use that $d A=\sqrt{E G-F^{2}}$ to compute the area of the region of S defined by $z \leq h$ (for a fixed $h>0$).
2) Let S be the one-sheeted cone (minus the vertex) $z=\sqrt{x^{2}+y^{2}},(x, y) \neq(0,0)$. Let $U \subset \mathbb{R}^{2}=\{(u, v)\}$ be the open set given by $u>0$ and $0<v<\pi \sqrt{2}$. Consider the following two maps from U into $\mathbb{R}^{3}: \sigma(u, v)=\left(\frac{u}{\sqrt{2}} \cos (v \sqrt{2}), \frac{u}{\sqrt{2}} \sin (v \sqrt{2}), \frac{u}{\sqrt{2}}\right)$ and $\widetilde{\sigma}(u, v)=(u \cos (v), u \sin (v), 0)$.
a) Show that σ is a surface patch for S. How much of the cone does it cover? Compute the functions E, F and G in these coordinates.
b) Describe the image of $\widetilde{\sigma}$, and show that $\widetilde{E}=E, \widetilde{F}=F, \widetilde{G}=G$.
c) Write down an explicit isometry from $\sigma(U) \subset S$ onto an open subset of the $x y$-plane (and conclude that S is locally isometric to \mathbb{R}^{2}).
3) A diffeomorphism $f: S_{1} \rightarrow S_{2}$ is called area-preserving if for each region $R \subset S_{1}$, the areas of R and $f(R)$ are equal. Show that a conformal map is area-preserving if and only if it is an isometry. (In particular, any isometry is area-preserving.)
4) Consider the surface patch of the sphere $\sigma(\theta, \varphi)=(\cos (\varphi) \sin (\theta), \sin (\varphi) \sin (\theta), \cos (\theta))$. Find E, F and G, and then:
a) For $\epsilon>0$, find the area A of the region defined by $0 \leq \theta \leq \epsilon$, and the length l of the curve defined by $\theta=\epsilon$.
b) Check that l and A do not satisfy the isoparametric inequality, and (using problem 3)) conclude that the sphere is not locally isometric to a plane.

Bonus problem: Let S^{2} be the unit sphere. A loxodrome is a curve in S^{2} that intersects the meridians at a fixed angle. A loxodromic triangle is a triangle in S^{2} cut out by three loxodromes. Prove that if the triangle does not contain the poles $\pm(0,0,1)$ then the sum of its interior angles is π.
(Hint: the change of variables $u=\log \left(\tan \left(\frac{1}{2} \theta\right)\right), 0<\theta<\pi$, and $v=\varphi$ in the patch σ of problem 4) defines a new surface patch $\widetilde{\sigma}(u, v)$ of S^{2} known as the Mercator's projection (see book, p.p. 83); show that $\widetilde{\sigma}$ is conformal and that loxodromes correspond to straight lines in the $u v$-plane under $\widetilde{\sigma}$).

