Mat 363: Problem set # 2

Instructor: Henrique Bursztyn

Due Monday, Feb. 7 in class

1) We saw in class that if 0 is a regular value of a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$, then $f^{-1}(0) \subseteq \mathbb{R}^3$ is a smooth surface. Find an example of a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$ for which 0 is *not* a regular value but $f^{-1}(0)$ is still a smooth surface.

2) Let $a \neq 0$, and consider the space curves p(t) = (0, 0, t) and $q(t) = (a, t, 0), t \in \mathbb{R}$. Show that the straight line through p(t) and q(t) describes a subset of \mathbb{R}^3 given by y(x-a) + zx = 0. Is this a smooth surface?

3) Let R, r be positive real numbers with r < R. Consider the 2-torus T^2 defined by rotating the circle in the *xz*-plane with center (R, 0, 0) and radius *r* around the *z*-axis.

a) Show geometrically that a point (x, y, z) is in T^2 if and only if it satisfies

$$z^{2} + (R - \sqrt{x^{2} + y^{2}})^{2} = r^{2}.$$

b) Consider the function $f : \mathbb{R}^3 \to \mathbb{R}$,

$$f(x, y, z) = (x^{2} + y^{2} + z^{2} + R^{2} - r^{2})^{2} - 4R^{2}(x^{2} + y^{2}).$$

Conclude from part a) that $T^2 = f^{-1}(0)$.

c) Prove that T^2 is a smooth surface by showing that 0 is a regular value for the function f in part b).

4) Consider the unit sphere $S^2 = \{(x, y, z) | x^2 + y^2 + z^2 = 1\}$. One way to define an atlas for S^2 is to use the *stereographic projection* $g : \mathbb{R}^3 \setminus \{(0, 0, 1)\} \to \mathbb{R}^2$, where g sends a point $p \in \mathbb{R}^3 \setminus \{(0, 0, 1)\}$ to the point of intersection of the xy-plane with the straight line through p and (0, 0, 1). Let π be the restriction of g to $S^2 \setminus \{(0, 0, 1)\}$.

- a) Prove that $\pi(x, y, z) = \frac{(x,y)}{1-z}$
- b) Prove that π is invertible and find an expression for the surface patch $\sigma = \pi^{-1}$: $\mathbb{R}^2 \to S^2 \setminus \{(0,0,1)\}.$

Bonus problem: Prove that $S \subseteq \mathbb{R}^3$ is a smooth surface if and only if each point $p \in S$ has an open neighborhood V so that $S \cap V$ is the graph of a function of the form z = h(x, y) or y = g(x, z) or x = f(y, z).