Mat 363: Problem set \# 2

Instructor: Henrique Bursztyn

Due Monday, Feb. 7 in class

1) We saw in class that if 0 is a regular value of a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, then $f^{-1}(0) \subseteq \mathbb{R}^{3}$ is a smooth surface. Find an example of a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ for which 0 is not a regular value but $f^{-1}(0)$ is still a smooth surface.
2) Let $a \neq 0$, and consider the space curves $p(t)=(0,0, t)$ and $q(t)=(a, t, 0), t \in$ \mathbb{R}. Show that the straight line through $p(t)$ and $q(t)$ describes a subset of \mathbb{R}^{3} given by $y(x-a)+z x=0$. Is this a smooth surface?
3) Let R, r be positive real numbers with $r<R$. Consider the 2-torus T^{2} defined by rotating the circle in the $x z$-plane with center $(R, 0,0)$ and radius r around the z-axis.
a) Show geometrically that a point (x, y, z) is in T^{2} if and only if it satisfies

$$
z^{2}+\left(R-\sqrt{x^{2}+y^{2}}\right)^{2}=r^{2} .
$$

b) Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$,

$$
f(x, y, z)=\left(x^{2}+y^{2}+z^{2}+R^{2}-r^{2}\right)^{2}-4 R^{2}\left(x^{2}+y^{2}\right) .
$$

Conclude from part a) that $T^{2}=f^{-1}(0)$.
c) Prove that T^{2} is a smooth surface by showing that 0 is a regular value for the function f in part b).
4) Consider the unit sphere $S^{2}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\}$. One way to define an atlas for S^{2} is to use the stereographic projection $g: \mathbb{R}^{3} \backslash\{(0,0,1)\} \rightarrow \mathbb{R}^{2}$, where g sends a point $p \in \mathbb{R}^{3} \backslash\{(0,0,1)\}$ to the point of intersection of the $x y$-plane with the straight line through p and $(0,0,1)$. Let π be the restriction of g to $S^{2} \backslash\{(0,0,1)\}$.
a) Prove that $\pi(x, y, z)=\frac{(x, y)}{1-z}$
b) Prove that π is invertible and find an expression for the surface patch $\sigma=\pi^{-1}$: $\mathbb{R}^{2} \rightarrow S^{2} \backslash\{(0,0,1)\}$.

Bonus problem: Prove that $S \subseteq \mathbb{R}^{3}$ is a smooth surface if and only if each point $p \in S$ has an open neighborhood V so that $S \cap V$ is the graph of a function of the form $z=h(x, y)$ or $y=g(x, z)$ or $x=f(y, z)$.

