Math 110: Midterm II

July 31, 2001

Name:

Instructions: This is a closed book exam, and you will have 60 minutes. Please write your name on every page you use. Calculators are not allowed! Make sure to show your work clearly. The exam is worth 40 points.

Good luck!

Problem 1 (14 pts): Determine whether the following statements are true or false, giving a short (one sentence) justification for your answer. Make sure to write your answer clearly, otherwise it will not be graded.

In the following, V will denote a finite dimensional vector space.
a) The vector spaces $M_{4 \times 7}(\mathbb{R})$ and \mathbb{R}^{11} are isomorphic.

Answer:

b) Let $T: V \longrightarrow V$ be a linear operator. Let $A=[T]_{\beta}$, where β is a basis for V. If A has linearly independent columns, then T is invertible.

Answer:

c) Let $T: V \longrightarrow V$ be a linear operator, and let β and β^{\prime} be bases for V. Suppose $Q=[\mathrm{Id}]_{\beta}^{\beta^{\prime}}$. Then $[T]_{\beta}=Q[T]_{\beta^{\prime}} Q^{-1}$.
Answer:
d) Let $A \in M_{n \times n}(\mathbb{C})$. If $A^{7}=0$, then A is not invertible.

Answer:
e) The matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is diagonalizable.

Answer:
f) Let W_{1} and W_{2} be subspaces of V. Then $\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp}+W_{2}^{\perp}$.

Answer:
g) Let T and U be linear operators on V. Suppose λ is an eigenvalue of T and μ is an eigenvalue of U. Then $\lambda+\mu$ is an eigenvalue of $T+U$.

Answer:

Problem $2(7 \mathrm{pts}):$ Let $T: P_{2}(\mathbb{R}) \longrightarrow P_{2}(\mathbb{R})$ be defined by $T(p(x))=p(x)+(1+x) p^{\prime}(x)$.
a) Find the eigenvalues of T.
b) Is T diagonalizable? If so, find a basis β for $P_{2}(\mathbb{R})$ so that $[T]_{\beta}$ is diagonal.
c) Is T invertible? (You should be able to answer it with no computations, just by using what you found in a).)

Problem 3 ($7 \mathbf{p t s}$): Let $V=\mathbb{R}^{3}$, and let W be the subspace spanned by $v_{1}=(1,1,0)$ and $v_{2}=(1,2,1)$. Define $\langle x, y\rangle=x_{1} y_{1}+2 x_{2} y_{2}+2 x_{3} y_{3}$, and consider the inner product space $\left(\mathbb{R}^{3},\langle\rangle,\right)$
a) Find an orthonormal basis for W^{\perp}.
b) Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be the linear transformation given by $T(x)=u$, where u is the orthogonal projection of x on W. Find the expression of T.
c) Is T diagonalizable? invertible? (You should be able to answer this question with no further computations.)

Problem 4 (7 pts):

a) Let $A \in M_{n \times n}(F)$ with characteristic polynomial $p(t)=\left(\lambda_{1}-t\right) \ldots\left(\lambda_{n}-t\right)$, where $\lambda_{1} \ldots \lambda_{n}$ are distinct. Prove that $\operatorname{det}(A)=\lambda_{1} \ldots \lambda_{n}$.
b) Find an example of two non-similar matrices with the same characteristic polynomial.

Problem 5 (5 pts): Let V be a finite dimensional vector space, and let $T: V \longrightarrow V$ and $U: V \longrightarrow V$ be linear operators. Suppose that $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and that each v_{i} is an eigenvector for both T and U. Prove that $T U=U T$.

