Math 110: Final Exam

August 16, 2001

Name:

Instructions: This is a closed book exam, and you will have 2 hours. Please write your name on every page you use. Calculators are not allowed! Make sure to show your work clearly. The exam is worth 80 points.

Good luck!

Problem 1 (14 pts): Determine whether the following statements are true or false, giving a short (one sentence) justification for your answers. Make sure to write your answers clearly, otherwise it will not be graded.

In the following, V will denote a finite dimensional vector space.
a) The vector space $M_{2 \times 2}(\mathbb{C})$ (over \mathbb{R}) is isomorphic to \mathbb{R}^{8}.

Answer:
b) Let W_{1} and W_{2} be subspaces of V. If $V=W_{1}+W_{2}$, then $\operatorname{dim}(V)=\operatorname{dim}\left(W_{1}\right)+$ $\operatorname{dim}\left(W_{2}\right)$.

Answer:
c) If $A \in M_{n \times n}(\mathbb{C})$, then $\operatorname{det}(c A)=c \operatorname{det}(A), c \in \mathbb{C}$.

Answer:
d) If A, B are self-adjoint $n \times n$ matrices, then $A B$ is also self-adjoint.

Answer:
e) For any inner product on $V, V^{\perp}=\{0\}$.

Answer:
f) If $T: V \longrightarrow V$ is a normal operator, then so is $T-\mu \mathrm{Id}$, where μ is a scalar.

Answer:
g) Let $T: V \longrightarrow V$ be a linear operator. If T is diagonalizable, then V has an orthonormal basis consisting of eigenvectors of T.

Answer:

Problem 2 (16 pts): Provide examples of the following, justifying your answer.
a) A linear transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ such that $\mathbb{R}^{3}=N(T) \oplus R(T)$
b) A linear transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ such that $N(T)=R(T)$.
c) Four non-similar matrices with characteristic polynomial $p(t)=(1-t)^{2}(2-t)^{2}$.
d) A matrix $A \in M_{n \times n}$ with eigenvalues $\lambda_{1}=1, \lambda_{2}=3$ and corresponding eigenvectors $v_{1}=(1,0)$ and $v_{2}=(1,2)$.

Problem 3 (10 pts):

Let $\beta=\{1,2+x\}$ and $\gamma=\{x, 1+x\}$ be bases for $P_{1}(\mathbb{R})$. Let $T: P_{1}(\mathbb{R}) \longrightarrow P_{1}(\mathbb{R})$ be a linear transformation such that $[T]_{\beta}^{\gamma}=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$. Find $T(1), T(x)$ and $T(p(x))$ for an $\operatorname{arbitrary} p(x)=a+b x$.
Problem 4 (8 pts):
a) Prove that if $A, B \in M_{n \times n}(\mathbb{C})$ are similar matrices, then $\operatorname{tr}(A)=\operatorname{tr}(B)$.
b) Let $A \in M_{n \times n}(\mathbb{C})$, and suppose $\lambda_{1}, \ldots, \lambda_{k}$ are its distincts eigenvalues, with multiplicities m_{1}, \ldots, m_{k}. Prove that $\operatorname{tr}(A)=m_{1} \lambda_{1}+\ldots+m_{k} \lambda_{k}$.
Hint: Use part a)
Problem 5 (7 pts): Suppose V is a finite dimensional vector space, and let $T: V \longrightarrow V$ be a linear operator. Suppose $T^{p}=0$, and assume that there exists $x \in V$ satisfying $T^{p-1} x \neq 0$. Prove that the subspace $W=\operatorname{span}\left(\left\{x, T x, \ldots, T^{p-1} x\right\}\right)$ has dimension p.
Hint: Show that $\left\{x, T x, \ldots, T^{p-1} x\right\}$ is a basis for W.
Problem 6 (7 pts): Let V be a finite dimensional inner product space. Let $T: V \longrightarrow V$ be a linear operator. Prove that $N(T)=R\left(T^{*}\right)^{\perp}$.

Problem 7 (10 pts):

Find the Jordan form and Jordan basis of $A=\left(\begin{array}{ccc}2 & 1 & -1 \\ 0 & 2 & -2 \\ 0 & 0 & 1\end{array}\right)$ (check your answer!).
Problem 8 (8 pts): Let

$$
A=\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 3 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

Find an orthogonal matrix P and a diagonal matrix D such that $P^{t} A P=D$. Find the spectral decomposition of A.

