Math 110: Final Exam

August 16, 2001

Name:

Instructions: This is a closed book exam, and you will have 2 hours. Please write your name on every page you use. Calculators are not allowed! Make sure to show your work clearly. The exam is worth 80 points. Good luck!

Problem 1 (14 pts): Determine whether the following statements are **true** or **false**, giving a short (one sentence) justification for your answers. Make sure to write your answers clearly, otherwise it will not be graded.

In the following, V will denote a finite dimensional vector space.

- a) The vector space $M_{2\times 2}(\mathbb{C})$ (over \mathbb{R}) is isomorphic to \mathbb{R}^8 . Answer:
- b) Let W_1 and W_2 be subspaces of V. If $V = W_1 + W_2$, then $\dim(V) = \dim(W_1) + \dim(W_2)$.

Answer:

- c) If $A \in M_{n \times n}(\mathbb{C})$, then $\det(cA) = c \det(A), c \in \mathbb{C}$. Answer:
- d) If A, B are self-adjoint n × n matrices, then AB is also self-adjoint.
 Answer:
- e) For any inner product on $V, V^{\perp} = \{0\}$. Answer:
- f) If $T: V \longrightarrow V$ is a normal operator, then so is $T \mu Id$, where μ is a scalar. Answer:
- g) Let $T: V \longrightarrow V$ be a linear operator. If T is diagonalizable, then V has an orthonormal basis consisting of eigenvectors of T.

Answer:

Problem 2 (16 pts): Provide examples of the following, justifying your answer.

- a) A linear transformation $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ such that $\mathbb{R}^3 = N(T) \oplus R(T)$
- b) A linear transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ such that N(T) = R(T).
- c) Four non-similar matrices with characteristic polynomial $p(t) = (1-t)^2(2-t)^2$.
- d) A matrix $A \in M_{n \times n}$ with eigenvalues $\lambda_1 = 1$, $\lambda_2 = 3$ and corresponding eigenvectors $v_1 = (1, 0)$ and $v_2 = (1, 2)$.

Problem 3 (10 pts):

Let $\beta = \{1, 2 + x\}$ and $\gamma = \{x, 1 + x\}$ be bases for $P_1(\mathbb{R})$. Let $T : P_1(\mathbb{R}) \longrightarrow P_1(\mathbb{R})$ be a linear transformation such that $[T]_{\beta}^{\gamma} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$. Find T(1), T(x) and T(p(x)) for an arbitrary p(x) = a + bx. **Problem 4 (8 pts):**

- a) Prove that if $A, B \in M_{n \times n}(\mathbb{C})$ are similar matrices, then $\operatorname{tr}(A) = \operatorname{tr}(B)$.
- b) Let $A \in M_{n \times n}(\mathbb{C})$, and suppose $\lambda_1, \ldots, \lambda_k$ are its distincts eigenvalues, with multiplicities m_1, \ldots, m_k . Prove that $\operatorname{tr}(A) = m_1 \lambda_1 + \ldots + m_k \lambda_k$. *Hint: Use part a*)

Problem 5 (7 pts): Suppose V is a finite dimensional vector space, and let $T: V \longrightarrow V$ be a linear operator. Suppose $T^p = 0$, and assume that there exists $x \in V$ satisfying $T^{p-1}x \neq 0$. Prove that the subspace $W = \text{span}(\{x, Tx, \ldots, T^{p-1}x\})$ has dimension p. *Hint: Show that* $\{x, Tx, \ldots, T^{p-1}x\}$ *is a basis for* W.

Problem 6 (7 pts): Let V be a finite dimensional inner product space. Let $T: V \longrightarrow V$ be a linear operator. Prove that $N(T) = R(T^*)^{\perp}$. **Problem 7 (10 pts):**

Find the Jordan form and Jordan basis of $A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{pmatrix}$ (check your answer!).

Problem 8 (8 pts): Let

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}.$$

Find an orthogonal matrix P and a diagonal matrix D such that $P^tAP = D$. Find the spectral decomposition of A.