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In this note we discuss the semiclassical geometry associated to deformation quantization
of vector bundles over Poisson manifolds. We compare the objects obtained as “first-order
approximations” to deformed vector bundles with the existent notion of Poisson vector bun-
dles, showing that they agree up to a certain flatness condition. We show how these ideas
can be used in the study of Morita equivalence of star products on Poisson manifolds.

§1. Introduction

Poisson modules over Poisson algebras were first considered in connection with
the study of quantum groups 23), and have been recently used to define Poisson
K-theory and new invariants of Poisson manifolds 17).

Poisson geometry is closely related to noncommutative algebras 9). In fact, Pois-
son structures on a manifold M arise as “first-order approximations” to noncommu-
tative algebras defined by deforming 15) the commutative algebra C∞(M), a process
known as deformation quantization 2). This motivates the idea that the “Poisson cat-
egory” should occupy an intermediate place between ordinary differential geometry
and noncommutative geometry 10).

A classical result by Serre and Swan 28) asserts that vector bundles over a man-
ifold M correspond to finitely generated projective modules over C∞(M). Analo-
gously, we consider “quantum vector bundles” to be (finitely generated projective)
modules over star-product algebras (C∞(M)[[λ]], ?). It turns out 6) that these ob-
jects always arise from classical vector bundles E → M by means of deformation
quantization of the module structure of Γ∞(E) over C∞(M) with respect to ?.

Just as deformations of associative algebra structures give rise to Poisson struc-
tures in their semiclassical limit, “first-order approximations” to deformed vector
bundles define a geometric structure on the corresponding classical vector bundles:
contravariant connections 14), 29). This was shown for line bundles in 4), and, in this
note, we will extend this discussion to higher dimensional vector bundles. Unlike the
case of deformations of algebras, this “semiclassical” structure on vector bundles is
not canonically defined. As we will see, for a star product ? on M , any contravariant
connection on a vector bundle E →M can be obtained as the semiclassical limit of
a deformation of E with respect to ?.
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As an application of the previous considerations, we recall 4) how line bundles
with contravariant connections arise as “first-order approximations” to Morita equiv-
alent star products on Poisson manifolds. The notion of Morita equivalence 1), 21),
besides its importance in many areas of mathematics, has been recently shown to
be related to physical duality 25), 26), playing an important role in applications of
noncommutative geometry to string theory 11).

As shown in 4), one can phrase the problem of classifying Morita equivalent
star products on a Poisson manifold (M,π) in terms of a canonical action Φ of the
Picard group Pic(M) ∼= H2(M,Z) on the moduli space of equivalence classes of star
products on M . The action Φ is defined by deformation quantization of line bundles
over M . We will recall how the curvature of the contravariant connections arising
in the semiclassical limit of line bundle deformations can be used to describe the
semiclassical limit of Φ in terms of Kontsevich’s classification 20) of star products.

The paper is organized as follows. In Section 2 we recall the notions of Poisson
vector bundles and contravariant connections. In Section 3 we define star prod-
ucts and deformation quantization of vector bundles. The semiclassical geometry
of deformed vector bundles is discussed in Section 4, where we present the main
results of this note: we show how contravariant connections arise in the semiclassical
limit of vector bundle deformations and compare this semiclassical object with the
notion of Poisson vector bundle. We consider deformed line bundles in Section 5,
where we describe how their semiclassical geometry provides information about the
characterization of Morita equivalent star products on Poisson manifolds.

§2. Poisson vector bundles and contravariant connections

Let A be a commutative and unital algebra over a field k of characteristic zero.
Definition 2.1 A Poisson bracket on A is a Lie algebra bracket {·, ·} satisfying the
Leibniz rule

{A1, A2A3} = {A1, A2}A3 +A2{A1, A3}, A1, A2 ∈ A.

The pair (A, {·, ·}) is called a Poisson algebra.
Let E be a vector space over k. One can define modules in the Poisson category

through Poisson extensions of Poisson algebras:
Definition 2.2 A Poisson module structure on E is the structure of a Poisson al-
gebra on E ⊕ A, extending the bracket on A and so that E .E = {E , E} = 0.

A simple computation shows that a Poisson module structure on E is equivalent
to a module structure on E over A together with a bracket { , } : E × A −→ E
satisfying

{s, {A1, A2}} = {{s,A1}, A2} − {{s,A2}, A1}, (1)
{sA1, A2} = {s,A2}A1 + s{A1, A2}, (2)
{s,A1A2} = {s,A1}A2 + {s,A2}A1, (3)

for all A1, A2 ∈ A and s ∈ E . We call (E , { , }) a Poisson module over A.
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Let (M,π) be a Poisson manifold, where π ∈ χ2(M) is the Poisson tensor. Let
C∞(M) be the algebra of smooth complex-valued functions on M , and let

{f, g} := π(df, dg), f, g ∈ C∞(M) (4)

be the Poisson bracket. The Poisson tensor π defines a bundle map

π̃ : Ω1(M) −→ χ(M), α 7→ π(·, α), (5)

and the vector field Xf := π̃(df) is called the hamiltonian vector field of f . We use
π̃ to define a Lie algebra bracket on Ω1(M):

[α, β] := −Lπ̃(α)β + Lπ̃(β)α− d(π(α, β)), (6)

so that −π̃ is a Lie algebra homomorphism making T ∗M into a Lie algebroid 9).
Let E → M be a complex m-dimensional vector bundle, and let Γ∞(E) be

the space of smooth sections of E, regarded as a right finitely generated projective
module over C∞(M).
Definition 2.3 A Poisson vector bundle structure on E →M is a Poisson module
structure on Γ∞(E).
Example 2.4 Suppose ∇ is a flat connection on E. Then {s, f} := ∇Xf

s makes E
into a Poisson vector bundle over M .

In order to formulate the notion of a Poisson vector bundle in terms of connec-
tions, we need the following definition 14), 29).
Definition 2.5 A contravariant connection on a vector bundle E → M is a C-
bilinear map D : Γ∞(E)×Ω1(M) −→ Γ∞(E) satisfying

Dfαs = fDαs, (7)
Dα(fs) = fDαs+ α(Xf )s, (8)

for α ∈ Ω1(M), f ∈ C∞(M), and s ∈ Γ∞(E).
Example 2.6 Any ordinary connection ∇ on E →M defines a contravariant con-
nection by Ddfs := ∇Xf

s, for s ∈ Γ∞(E), f ∈ C∞(M). If π is nondegenerate
(symplectic), any contravariant connection on E arises in this way.
Definition 2.7 The curvature of a contravariant connection D is the map ΘD :
Ω1(M)×Ω1(M) −→ End(Γ∞(E)) given by

ΘD(α, β)s = DαDβs−DβDαs+D[α,β]s, (9)

where [ , ] is the bracket (6).
Let (Γ∞(E), { , }) be a Poisson vector bundle. Note that (3) implies that {s, f}

at a point x ∈M depends only on df(x). The formula

Ddfs := {s, f}

defines a contravariant connection on E, and (1) is equivalent to D being flat. As a
result, we have
Proposition 2.8 A Poisson vector bundle structure on E → M is equivalent to a
flat contravariant connection on E.

We will see in Section 4 that this flatness condition is not satisfied by the in-
finitesimal part of formal deformations of vector bundles in general.
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§3. Deformation quantization

In this section we recall the definitions of formal deformations of algebras and
modules.

3.1. Star products

Let A be a k-algebra. We recall the definition of a formal deformation of A 15):
Definition 3.1 A formal deformation of A is an associative k[[λ]]-bilinear multipli-
cation ? on A[[λ]] of the form

A ? A′ =
∞∑

r=0

Cr(A,A′)λr, A,A′ ∈ A, (10)

where the maps Cr : A×A −→ A are k-bilinear, and C0 is the original product on
A. (We extend ? to A[[λ]] using λ-linearity.)

A formal deformation of A will be denoted by A = (A[[λ]], ?); two formal
deformations of A, A1 = (A[[λ]], ?1) and A2 = (A[[λ]], ?2), are equivalent if there
exist k-linear maps Tr : A −→ A, r ≥ 1, so that T = id +

∑∞
r=1 Trλ

r : A1 −→ A2

satisfies
A ?1 A

′ = T−1(T (A) ?2 T (A′)), ∀A,A′ ∈ A[[λ]]. (11)

Such a T is called an equivalence transformation, and we denote the equivalence
class of a deformation ? by [?]. If A is unital, then so is any formal deformation A;
moreover, any formal deformation of A is equivalent to one for which the unit is the
same as the one for A 16).

For a formal deformation (10) of A, a simple computation using associativity of
? shows that

{A1, A2} := C1(A1, A2)− C1(A2, A1) =
1
λ

(A1 ? A2 −A2 ? A1) mod λ (12)

is a Poisson bracket on A, and if two formal deformations are equivalent, then they
determine the same Poisson bracket through (12).

Let A = C∞(M). We recall the definition of a star product 2) on M .
Definition 3.2 A formal deformation ? =

∑∞
r=0Crλ

r of A is called a star product
if each Cr is a bidifferential operator.

The set of equivalence classes of star products on M is denoted by Def(M), and,
if π is a Poisson structure on M , we let

Def(M,π) := {[?] ∈ Def(M) | f ? g − g ? f = λπ(df, dg) mod λ2}. (13)

3.2. Deformation quantization of vector bundles

This section recalls some results on deformations of vector bundles over Poisson
manifolds 6). The reader is referred to 31) for physical applications.

Let E → M be a complex m-dimensional vector bundle, and let ? be a star
product on M . Motivated by Serre-Swan’s theorem, we consider the following defi-
nition.
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Definition 3.3 A deformation quantization of E →M with respect to ? is a C[[λ]]-
bilinear map • : Γ∞(E)[[λ]] × C∞(M)[[λ]] −→ Γ∞(E)[[λ]] satisfying s • (f ? g) =
(s • f) • g and such that

s • f =
∞∑

r=0

λrRr(s, f),

where each Rr : Γ∞(E) × C∞(M) −→ Γ∞(E) is bidifferential and R0(f, g) = sf
(multiplication of sections by functions).

Thus (Γ∞(E), •) is a right module over A = (C∞(M)[[λ]], ?) deforming the
right C∞(M)-module Γ∞(E).

Two vector bundle deformations •, •′ are equivalent if there exist differential
operators Tr : Γ∞(E) −→ Γ∞(E) so that T = id +

∑∞
r=1 λ

rTr satisfies

T (s •′ f) = T (s) • f, s ∈ Γ∞(E), f ∈ C∞(M).

The following result was proven in 6).
Proposition 3.4 Let E →M be a complex m-dimensional vector bundle, and let ?
be a star product on M . Then there exists a deformation • of E with respect to ?,
which is unique up to equivalence.

One can check that the right module (Γ∞(E)[[λ]], •) is finitely generated and
projective over (C∞(M)[[λ]], ?), and any finitely generated projective module over
(C∞(M)[[λ]], ?) arises as a deformation quantization of a classical vector bundle.
This motivates the interpretation of these deformed modules as quantum vector
bundles in the framework of deformation quantization. Deformed vector bundles
can be also described locally through deformed trivialization maps and transition
matrices 5).

Let E = Γ∞(E), regarded as a right module over C∞(M). Let • be a defor-
mation quantization of E with respect to a star product ?, and consider the right
A-module E = (E [[λ]], •), where A = (C∞(M)[[λ]], ?). It is simple to check that
End(E)∼= Γ∞(End(E)), where End(E) is the bundle of endomorphisms of E. In the
deformed picture, we have End(E) ∼=Γ∞(End(E))[[λ]] as C[[λ]]-modules, and any
explicit identification

Γ∞(End(E))[[λ]] ∼−→ End(E) (14)

induces a formal associative deformation ?′ of the algebra Γ∞(End(E)); as observed
in 6), this identification can be chosen so that ?′ is given by bidifferential cochains.

As discussed in 4), due to Proposition 3.4, this procedure gives rise to a well-
defined map

ΦE : Def(M) −→ Def(Γ∞(End(E))), [?] 7→ [?′], (15)

where Def(Γ∞(End(E))) denotes the moduli space of equivalence classes of formal
differential deformations of Γ∞(End(E)). We recall 6)

Proposition 3.5 ΦE is a bijection.

§4. Semiclassical geometry of deformed vector bundles

In this section we extend the discussion in 4) to higher dimensional vector bun-
dles.
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Let A= C∞(M), and let ? =
∑∞

r=0 λ
rCr be a star product on M . As observed

in (12), the skew-symmetric part of C1 defines a Poisson bracket { , } on A. Thus
the “first-order approximation” to the deformed algebra A = (A[[λ]], ?) defines a
geometric structure on M , namely a Poisson tensor.

If E → M is a vector bundle, then, by Proposition 3.4, we can deform the
module structure of Γ∞(E) over C∞(M) with respect to the star product ?, defining
a (finitely generated projective) right module E = (Γ∞(E)[[λ]], •) over A. As in the
case of formal deformations of algebras, we consider the “first-order approximation”
to the module deformation • =

∑∞
r=0 λ

rRr,

R1 : Γ∞(E)× C∞(M) −→ Γ∞(E). (16)

We will discuss here a way to “skew symmetrize” R1 and the geometric meaning of
the resulting object.

As observed in the previous section, we can fix a C[[λ]]-module isomorphism
(14), and define a formal deformation ?′ =

∑∞
r=0 λ

rC ′r of Γ∞(End(E)). Since
(Γ∞(End(E))[[λ]], ?′) ∼= End(E), there is a left module structure on Γ∞(E)[[λ]]
over (Γ∞(End(E))[[λ]], ?′),

•′ : Γ∞(End(E))[[λ]]× Γ∞(E)[[λ]] −→ Γ∞(E)[[λ]], (17)

•′ =
∑∞

r=0 λ
rR′r, where Rr : Γ∞(End(E)) × Γ∞(E) −→ Γ∞(E) are C-bilinear

(and can be chosen to be bidifferential operators), and R′0(L, s)(x) = L(x)s(x),
for x ∈ M . Note that the deformed module structures •′ and • make Γ∞(E)[[λ]]
into a bimodule over (Γ∞(End(E))[[λ]], ?′) and (C∞(M)[[λ]], ?). This implies the
compatibility equations

(L ?′ U) •′ s = L •′ (U •′ s), (18)
s • (f ? g) = (s • f) • g, (19)

(L •′ s) • f = L •′ (s • f), (20)

for f, g ∈ C∞(M), L,U ∈ Γ∞(End(E)), s ∈ Γ∞(E).
Let Z denote the center of Γ∞(End(E)). We note that

{L,U}′ = C ′1(L,U)− C ′1(U,L), L, U ∈ Γ∞(End(E)),

defines a Poisson bracket when restricted to Z 23), in such a way that the natural
algebra isomorphism

i : C∞(M) −→ Z, (21)

preserves Poisson brackets 4). Hence, with this identification, we can always assume
that C ′1|Z = C1

∗). Moreover, we can consider

R′1|Z : C∞(M)× Γ∞(E) −→ Γ∞(E),
∗) Although C′

1|Z is a Poisson bracket, it seems a hard question as to when ?′ defines a defor-

mation of Z.
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and define a “skew symmetric” version of R1:

R = R1 −R′1|Z : Γ∞(E)× C∞(M) −→ Γ∞(E), (22)

R(s, f) = R1(s, f)−R′1(f, s), for f ∈ C∞(M) ∼= Z, s ∈ Γ∞(E).
Proposition 4.1 Suppose that ?′ is such that C ′1|Z = C1. Then R, defined in (22),
is a contravariant connection on E.
Proof: We must check that R satisfies the Leibniz rules (2) and (3). This follows
from the compatibility equations (18), (19),(20) in order λ, as in 4). �

Since our construction of R involves non-canonical choices, it is natural to ask
which contravariant connections on E arise as the semiclassical limit of deformations
of E with respect to a star product ?.

Suppose that we change ?′ by an equivalent formal deformation ?′′ =
∑∞

r=0 λ
rC ′′r ,

with C ′′1 |Z = C ′1|Z . Let T = id +
∑∞

r=1 λ
rTr be an equivalence transformation,

L ?′′ U = T−1(T (L) ? T (U)), L, U ∈ Γ∞(End(E)). (23)

Defining L •′′ s = T (L) •′ s =
∑∞

r=0 λ
rR′′r (L, s), it follows that

R′′1(L, s) = R′1(L, s) + T1(L)s,

and the contravariant connection R′ = R1 −R′′1 |Z satisfies

R(s, f)−R′(s, f) = T1(f)s. (24)

Theorem 4.2 Let ? be a star product on M and • a deformation of E → M with
respect to ?. Let D be a contravariant connection on E. Then we can choose ?′,
[?′] = ΦE([?]), so that C ′1|Z = C1 and R = D.

Proof: Note that any two contravariant connections on E →M must differ by
a linear map X : Ω1(M) −→ Γ∞(End(E)), or, equivalently, by a linear map

X1 : C∞(M) −→ Γ∞(End(E))

satisfying X1(fg) = fX1(g)+X1(f)g (the definitions are related by X(df) = X1(f)).
For any such X1, we can find T1 : Γ∞(End(E)) −→ Γ∞(End(E)) with T1|Z = X1.
Choose ?′, and let T = id+λT1. Let ?′′ be defined as in (23). A simple computation
shows that the condition T1(fg) = fT1(g) + T1(f)g, for f, g ∈ Z, implies that
C ′′1 |Z = C ′1|Z . Hence, by (24), the corresponding contravariant connections satisfy

R(s, f)−R′(s, f) = T1(f)s = X1(f)s.

Since X1 is arbitrary, this concludes the proof. �

Thus the bracket { , } = R arising as a first-order approximation to a formal
deformation of a module over a Poisson algebra fails to satisfy (1) in general, and
the extension of { , } to E ⊕ A defines just an almost Poisson algebra.
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§5. Application: Morita equivalence of star products

The reader is referred to 4) for details on results in this section.

5.1. Picard groups acting on star products

Let L→M be a complex line bundle over a manifold M . In this case, we have
an identification

C∞(M) ∼−→ Γ∞(End(L)),

and therefore, by Proposition 3.5, each line bundle L gives rise to an automorphism
of Def(M),

ΦL : Def(M) −→ Def(M). (25)

The map ΦL depends only on the isomorphism class of L in Pic(M) ∼= H2(M,Z),
and, as mentioned in the previous section, star products related by Φ correspond to
the same Poisson bracket on M 4).
Proposition 5.1 Let (M,π) be a Poisson manifold. The map

Φ : Pic(M)×Def(M,π) −→ Def(M,π), ([L], [?]) 7→ [?′] = ΦL([?])

defines an action of Pic(M) on Def(M,π).
This action is related to an important equivalence relation between star products

4):
Proposition 5.2 Let ? and ?′ be star products on M . The algebras (C∞(M)[[λ]], ?)
and (C∞(M)[[λ]], ?′) are Morita equivalent if and only if there exists a Poisson dif-
feomorphism ψ : M −→M such that [?] and [ψ∗(?′)] lie in the same orbit of Φ∗)

Recall that two unital algebras are Morita equivalent if they have equivalent cat-
egories of left modules 21), 1). Thus the action Φ relates star products with equivalent
representation theories.

5.2. Poisson cohomology and Poisson-Chern classes

Let us recall a few facts about Poisson cohomology and characteristic classes of
line bundles over Poisson manifolds.

If M is manifold and π ∈ χ2(M) is a Poisson tensor, then we can define a
differential

dπ : χk(M) −→ χk+1(M), dπ = [π, ·],
where [ , ] is the Schouten-Nijenhuis bracket 30). The cohomology groups of the com-
plex (χ•(M), dπ) are the Poisson cohomology groups of (M,π), and they are denoted
by Hk

π(M).
The map π̃ in (5) induces a map π∗ : Ω•(M) −→ χ•(M) intertwining differen-

tials, and hence gives rise to a homomorphism in cohomology

π∗ : Hk
dR(M) −→ Hk

π(M),

which is an isomorphism when π is symplectic. We define integral (resp. real)
Poisson cohomology as the image of integral (resp. real) de Rham cohomology on
M under π∗.

∗) ?′′ = ψ∗(?′) is defined by f ?′′ g = (ψ∗)−1(ψ∗(f) ?′ ψ∗(g)), ψ∗(f) = f ◦ ψ.
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Let L → M be a complex line bundle over the Poisson manifold (M,π), and
let D be a contravariant connection on L. The curvature of D, ΘD, defines a dπ-
closed bivector on M , and its Poisson cohomology class is independent of the choice
of contravariant connection 29). We call the class cπ1 (L) = i

2π [ΘD]π ∈ H2
π(M) the

Poisson-Chern class of L. A simple computation shows that cπ1 (L) = π∗(c1(L)),
where c1(L) is the Chern class of L.

5.3. First-order approximation to Morita equivalent star products

We will now show how the semiclassical geometry of line bundle deformations
over a Poisson manifold (M,π0) can be used to describe the semiclassical limit of
the action Φ in terms of Kontsevich’s parametrization of equivalence classes of star
products.

For a Poisson manifold (M,π0), Kontsevich showed 20) that there is a bijection
between equivalence classes of star products and equivalence classes of formal Poisson
structures on M . We denote this correspondence by

c : Def(M,π0) −→ {πλ = π0 + λπ1 + . . . ∈ χ2(M)[[λ]], [πλ, πλ] = 0}/F, (26)

where F is the group {exp(
∑∞

r=1Drλ
r), Dr ∈ Der(C∞(M))}, acting on formal Pois-

son structures by

T (πλ) = π′λ if and only if π′λ(df, dg) = T−1πλ(d(T (f)), d(T (g))),

for T ∈ F . We denote the equivalence class of πλ by [πλ].
This correspondence is a result of a more general fact 20): there exists an L∞-

quasi-isomorphism U from the graded Lie algebra of multivectors fields on M (with
zero differential and Schouten bracket), g1, into the graded Lie algebra of multidiffer-
ential operators on M (with Hochschild differential and Gerstenhaber bracket), g2.
Given such a U , for every formal Poisson structure πλ we can define a star product
?πλ

by

f ?πλ
g := fg +

∞∑
r=1

λr

r!
Ur(πλ ∧ . . . ∧ πλ︸ ︷︷ ︸

r

)(f ⊗ g), (27)

where Ur :
∧r g1 −→ g2 are the Taylor coefficients of U . Moreover, Kontsevich

showed that one can choose U1 : g1 −→ g2 to be the natural embedding of multivector
fields into multidifferential operators.

Let ? =
∑∞

r=0 λ
rCr and ?′ =

∑∞
r=0 λ

rC ′r be arbitrary star products on (M,π0),
with C1 = C ′1 = 1

2{ , }. The map

(df, dg) 7→ (C2 − C ′2)(f, g)− (C2 − C ′2)(g, f)

defines a dπ-closed bivector field τ ∈ χ2(M) 3) whose class [τ ]π ∈ H2
π(M) depends

only on the equivalence classes [?], [?′] 4). (The cohomology class of τ measures the
obstruction for ? and ?′ being equivalent modulo λ3.)

If πλ = π0 + λπ1 + . . . is a formal Poisson structure on M , the integrability
equation [πλ, πλ] = 0 immediately implies that dπ0π1 = 0. We observe
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Lemma 5.3 If πλ = π0 + λπ1 + . . . and π′λ = π0 + λπ′1 + . . . are equivalent formal
Poisson structures, then [π1]π = [π′1]π.

Suppose ? and ?′ are star products with c(?) = [π0 + λπ1 + . . .] and c(?′) =
[π0 + λπ′1 + . . .]. A simple computation using (27) shows 4)

Lemma 5.4 [τ ]π = [π1]π − [π′1]π.
Let L → M be a complex line bundle. Let ? =

∑∞
r=0 λ

rCr be a star product
on M , and choose ?′ =

∑∞
r=0 λ

rC ′r so that [?′] = ΦL([?]) and C1 = C ′1 = 1
2{ , }.

Let • =
∑∞

r=0 λ
rRr be a deformation quantization of L with respect to ?, and •′ =∑∞

r=0 λ
rR′r be a deformed left module structure on Γ∞(L) over (C∞(M)[[λ]], ?′). A

long but simple computation using (18), (19), (20) in order λ2 shows 4)

Lemma 5.5 The bivector τ corresponding to ? and ?′ satisfies τ = ΘR, where ΘR

is the curvature of the contravariant connection R = R1 −R′1.
For a formal Poisson structure πλ = π0 +λπ1 + . . ., with the identification given

in (26), we define the semiclassical limit map

S : Def(M,π0) −→ H2
π(M), S([πλ]) = [π1]π.

The following result follows from Lemmas 5.4 and 5.5.
Theorem 5.6 The following diagram commutes:

Def(M,π0)
ΦL−−−→ Def(M,π0)

S

y yS

H2
π(M) Φ̂L−−−→ H2

π(M),

where Φ̂L([α]) = [α]− 2π
i cπ

1 (L) = [α]− 2π
i π

∗
0c1(L).

This result shows that, in the semiclassical limit, the action of Φ “twists” star
products by Poisson-Chern classes. As a consequence, for a star product ? on (M,π0),
each element in H2

π(M,Z)= π∗0H
2
dR(M,Z) corresponds to a different equivalence class

of star products Morita equivalent to ?.
A full description of Φ can be given when π0 is symplectic 5): If (M,ω) is a

symplectic manifold, the set of equivalence classes of star products on M is described
in terms of the second de Rham cohomology of M 3), 12), 13), 22), 32) through a bijection

c : Def(M,ω) −→ ([ω]/iλ) +H2
dR(M)[[λ]]. (28)

The class c(?) is called the (Fedosov-Deligne’s) characteristic class of ?. In this case,
we have

ΦL([ωλ]) = [ωλ] + 2πic1(L), (29)

where [ωλ] = ([ω]/iλ) +
∑∞

r=1 λ
r[ωr]. The approach taken in 5) to prove this result is

based on the Čech-cohomological description of relative classes developed in 18) and
on a local description of deformed vector bundles (see 19) for related ideas).

Thus two star products on a symplectic manifold are Φ-related if and only if their
relative class is 2πi-integral. As discussed in 5), this integrality condition is related
to Dirac’s quantization condition for magnetic charges. This result also provides a
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characterization of strong Morita equivalent 8), 7) hermitian star products, and can
be used to produce induced ∗-representations of star products as in the theory of
C∗-algebras 24).

5.4. Final remarks

Let (M,ω) be a symplectic manifold. We recall that there is a correspondence
between ([ω]/iλ) +H2

dR(M)[[λ]] and equivalence classes of formal Poisson structures
deforming the bracket given by ω (by “inversion” of formal symplectic forms). With
this identification, (29) shows that Φ acts on formal Poisson brackets by “gauge
transformations” in the sense of 27). A similar picture seems to hold for general
Poisson structures under the identification (26). It would be interesting to investi-
gate whether or when gauge equivalent Poisson structures have Morita equivalent
symplectic groupoids 34), as a way to link the notions of Morita equivalence for star
products and Poisson structures 33).
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