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Strong and Covariant Morita equivalences

in Deformation Quantization

by Henrique Bursztyn and Stefan Waldmann

Abstract

This note presents an overview of various aspects of the representation
theory of star products, including different notions of module and Morita
equivalence, as well as classification results. Along the way, we highlight
many connections with the work of Nikolai Neumaier.

1 Introduction

A central theme in Nikolai Neumaier’s work was formal deformation quantization
[2] (see e.g. [41] for an introduction), a subject to which he gave many important
contributions; within deformation quantization, the study of representations of
star-product algebras was among his main topics of interest. This note presents an
overview of various aspects of the representation theory of star products, including
different notions of Morita equivalence as well as classification results, some of
which had the direct influence of Nikolai’s work.

Morita equivalence, in its original and most basic form, is an equivalence re-
lation among unital rings which identifies those with equivalent “representation
theories” (i.e., categories of left modules). The notion of Morita equivalence can be
transferred to many other situations: basically, it can be formulated whenever one
specifies a reasonable notion of representation of (or module over) a mathematical
object. This note presents some instances of this idea when the mathematical
object in question is a star-product algebra; as we will see, depending on the
properties of star products that one wants to take into account, different notions
of representation and Morita equivalence arise.

In order to find appropriate frameworks for star-product representations, it
is convenient to recall the physical motivation of star products as models for
observable algebras of quantum systems. Star products are formal associative
deformations, in the sense of Gerstenhaber [18], of the commutative algebra of
smooth, complex-valued functions C∞(M) on a Poisson manifold (M,π), thought
of as the classical phase space. A star product ? makes the space of formal power
series C∞(M)[[~]] (here ~ is viewed as a formal parameter) into a unital, associa-
tive algebra over the ring C[[~]]; a key requirement is that star products deform
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the pointwise product of functions “in the direction” of the given Poisson struc-
ture π, meaning that the ?-commutator on C∞(M)[[~]] agrees (up to a constant),
in first order, with the Poisson bracket on M .

The role of star-product algebras as observable algebras indicates that one
should consider not only their ring structures, but also additional properties. In
fact, a desirable scenario would be to use formal deformation quantization to
eventually obtain C∗-algebras represented on Hilbert spaces. But this aim is hard
to achieve: there are many technical difficulties in handling convergence issues for
formal power series and finding C∗-norms for suitable classes of functions, although
this can be done in specific examples. An alternative approach is to proceed
within the framework of formal power series, observing that some properties of
C∗-algebras and their representations carry over to the purely algebraic formal
setting. Indeed, there are two important “C∗-like” features that one may consider
for star products: first, by considering Hermitian star products, i.e. star products
compatible with complex conjugation of functions (we assume the parameter ~ to
be real),

f ? g = g ? f, f, g ∈ C∞(M)[[~]],

one endows star-product algebras with ∗-involutions; second, one may take into ac-
count notions of positivity (e.g. for algebra elements and linear functionals) result-
ing from the natural order structure on the ring R[[~]] (a formal series

∑∞
r=0 ~rar

is declared to be positive if its first nonzero term is positive). These additional
features of star products lead to notions of representations parallel to those for
C∗-algebras [38, 39], and to an algebraic version of the concept of strong Morita
equivalence [13]. On top of that, one may consider star products carrying symme-
tries, given by actions of a Hopf algebra H, and representations which are com-
patible with these symmetries. This leads to the notion of H-covariant Morita
equivalence, studied by Nikolai in one of his last publications [21].

This note is organized as follows. Section 2 is divided in two parts: first,
we review the usual classification of star products and their characteristic classes
(highlighting Nikolai’s contributions in this context) and, afterwards, we discuss
the classification of star products with respect to ring-theoretic Morita equiva-
lence. In Section 3 we consider algebras with additional properties and present
various ways in which one can enhance the notions of (bi-)module and represen-
tation, by taking into account positivity and the presence of symmetries; these
new (bi-)modules lead to refined notions of Morita equivalence, such as strong and
covariant Morita equivalences, treated in Section 4. Here we emphasize the bicat-
egorical approach to Morita equivalence: we describe different versions of Morita
equivalence as isomorphisms in appropriate bicategories of bimodules with extra
structure, which are composed via suitable tensor products. In the last Section 5,
we revisit the Morita classification of star products for strong and covariant Morita
equivalences, recalling Nikolai’s work on the latter.
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2 Ring-theoretic classifications of star products

2.1 Equivalences of star products and characteristic classes

We start by recalling the classical notion of equivalence for star products. We say
that two star products ? and ?′ on a Poisson manifold M are equivalent if there is a
formal series T = id +

∑∞
r=1 ~rTr of differential operators Tr : C∞(M) −→ C∞(M)

such that

(2.1) f ?′ g = T−1(Tf ? Tg) and T1 = 1,

for all f, g ∈ C∞(M)[[~]]. We refer to T as an equivalence transformation. In
particular, ? and ?′ define isomorphic C[[~]]-algebra structures on C∞(M)[[~]].

Analogously, we call ? and ?′ diffeomorphic if there is a Poisson diffeomorphism
Φ: M −→M with

(2.2) f ?′ g = Φ∗(Φ
∗f ? Φ∗g),

for all f, g ∈ C∞(M)[[~]]. Note that the fact that Φ preserves the Poisson structure
is necessary if ? and ?′ quantize the same Poisson bracket in first order. One may
now verify that two star-product algebras (C∞(M)[[~]], ?) and (C∞(M)[[~]], ?′)
are isomorphic as algebras over C[[~]] if and only if there is a Poisson diffeo-
morphism Φ and an equivalence transformation T such that, for all functions
f, g ∈ C∞(M)[[~]], one has

(2.3) f ?′ g = T−1Φ∗(Φ
∗Tf ? Φ∗Tg).

The set of all star products on M is denoted by Def(M), while Def(M,π1)
denotes the set of star products for a fixed first-order Poisson bracket π1 ∈
Γ∞(Λ2TM). The equivalence transformations form a group under composition
which acts on Def(M) and leaves Def(M,π1) invariant. Hence we can form the
orbit spaces for this group action, which we denote by Def(M) and Def(M,π1),
respectively. In other words, Def(M,π1) is the set of classes of star products (up
to equivalence) quantizing π1.

For the classification of star products up to equivalence we rely on Kontsevich’s
formality theorem [25] and on the globalization of the formality map in [16]. In
order to formulate the classification, recall that a formal Poisson tensor is a
formal series π = ~π1 + ~2π2 + · · · ∈ ~Γ∞(Λ2TM)[[~]] with Jπ, πK = 0, where we
extend the Schouten bracket J·, ·K ~-linearly. We denote the set of formal Poisson
tensors on M by FPoisson(M), and the subset of formal Poisson tensors with
fixed first-order term π1 by FPoisson(M,π1).

A formal vector field is a formal series X = ~X1 + ~2X2 + · · · ~Γ∞(TM)[[~]].
Since by definition a formal vector field starts in order ~, we can exponentiate its
Lie derivative to get a well-defined operator

(2.4) exp (LX) : Γ∞(Λ•TM)[[~]] −→ Γ∞(Λ•TM)[[~]],
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preserving tensor degrees. Analogously, we can act on formal series of other kinds
of tensor fields on M . By the Baker-Campbell-Hausdorff series one sees that the
composition of exp(LX) and exp(LY ), for two formal vector fields X and Y , is
again of the form exp(LZ) for a formal vector field Z = BCH(X, Y ). Noticing that
exp(L−X) is the inverse of exp(LX), we see that the operators (2.4) form a group,
called the formal diffeomorphism group of M and denoted by FDiffeo(M). If π is a
formal Poisson tensor, then π′ = exp(LX)(π) is still a formal Poisson tensor with
the same first order term: π′1 = π1. Thus we get an action of FDiffeo(M) on the
set of formal Poisson tensors which leaves FPoisson(M,π1) invariant. The orbit
spaces of this group action are the equivalence classes of formal Poisson tensors
up to formal diffeomorphisms, denoted by FPoisson(M) and FPoisson(M,π1).

Kontsevich’s formality theorem gives (among many other things) a construc-
tion of a star product ?π out of a given formal Poisson tensor π, once a global
formality on M is chosen. The map π 7→ ?π is such that, first, ?π quantizes π1 as
desired and, second, it induces a bijection

(2.5) FPoisson(M,π1) 3 [π] 7→ [?π] ∈ Def(M,π1)

between the formal Poisson tensors deforming π1, up to formal diffeomorphisms,
and the formal star products quantizing π1, up to equivalence. In other words,
classes of star products in Def(M,π1) are classified by elements in FPoisson(M,π1).
Also, using e.g. the globalized formality from [16], one can show that, for a Pois-
son diffeomorphism Φ, the star product Φ∗(?π) obtained from ?π as in (2.2) is
equivalent to ?Φ∗π, though generally not equal; so (2.5) has a natural equivariance
property relative to Poisson diffeomorphisms.

In the symplectic setting the above classification (2.5) can be made more con-
crete. In fact, the classification of star products on symplectic manifolds (M,ω)
is prior to Kontsevich’s work and can be phrased as follows: via the Fedosov con-
struction [17] of symplectic star products one can associate to every formal series
of closed two-forms Ω = ~Ω1 + ~2Ω2 + · · · ∈ ~Γ∞(Λ2T ∗M) a star product ?Ω such
that any two ?Ω and ?Ω′ are equivalent if and only if Ω and Ω′ are cohomologous.
Moreover, an inductive construction shows that for every star product ? on (M,ω)
there is an Ω such that ? is equivalent to the Fedosov star product ?Ω. This leads
to the classification of symplectic star products by their Fedosov classes,

(2.6) Def(M,ω) 3 [?] 7→ F (?) = [Ω] ∈ ~H2
dR(M,C)[[~]],

where Ω is a formal series of closed two-forms such that [?] = [?Ω]. This point of
view was developed by various authors, see [6, 30, 42].

Alternatively, one has an intrinsic classification not relying on the Fedosov
construction but rather on a Cech cohomological argument: there is an intrinsic
characteristic class

(2.7) c(?) ∈ [ω]

i~
+ Ȟ2(M,C)[[~]]
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such that ? and ?′ are equivalent if and only if c(?) = c(?′), and any formal series in

the affine space [ω]
i~ +Ȟ2(M,C)[[~]] arises as a characteristic class. Here the choice of

[ω]
i~ as the origin for the affine space is conventional. Remarkably, the construction
of c(?) does not rely on any particular construction of star products but only on
elementary facts about the Weyl star product on R2n and a Cech cohomological
patching on Darboux charts of (M,ω), see [15, 20] for this approach.

It is now a theorem of Nikolai that the two classes coincide after a trivial
rescaling [33]: with the identification Ȟ2(M,C) = H2

dR(M,C), one gets

(2.8) c(?) =
[ω] + F (?)

i~
.

Since symplectic manifolds are particular cases of Poisson manifolds, the clas-
sification of star products via Kontsevich’s formality (2.5) should also match the
classification via (2.7). This was verified in [14], where it was shown that Kont-
sevich’s class [π] of ? is just the “inverse” of c(?). This makes sense as any
representative of the formal series c(?) agrees, in lowest order, with the symplec-
tic two-form ω; the fact that ω can be inverted to a Poisson tensor π1 = ω−1

guarantees that the formal series can be inverted to a formal Poisson tensor.

2.2 Ring-theoretic Morita classification

We now consider a different classification problem in formal deformation quantiza-
tion: viewing star products as unital C[[~]]-algebras, we discuss their classification
up to (ring-theoretic) Morita equivalence. In subsequent sections we will present
different ways in which Morita equivalence can be enhanced, and then revisit the
classification of star products accordingly.

Let us briefly recall the notion of Morita equivalence [29] in its original form
(see e.g. [26] for a textbook). Two unital algebras (over a fixed commutative,
unital ground ring)A and B are Morita equivalent if there exists a (B,A)-bimodule

BEA which is “invertible” in the following sense: there is an (A,B)-bimodule AFB
for which there are bimodule isomorphisms

AFB⊗B BEA ∼= AAA, BEA⊗A AFB ∼= BBB .

Such a bimodule BEA is referred to as an equivalence bimodule. As we will revisit
Morita equivalence later in the paper, in more detail and from a broader perspec-
tive, we now only mention a few of its basic properties. First, as an equivalence
relation among unital algebras, Morita equivalence is a nontrivial extension of
the usual notion of algebra isomorphism: indeed, an isomorphism Φ: B −→ A
gives rise to an equivalence bimodule which is simply A as a right A-module,
and where B acts on the left via Φ. Also, denoting by Mod(A) the category of
left A-modules, any equivalence bimodule BEA induces an equivalence of cate-
gories Mod(A) −→ Mod(B) via the tensor product ⊗A, and this is the sense in
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which A and B have equivalent “representation theories”. We finally remark that
Morita’s theorem provides a complete characterization of equivalence bimodules;
in particular, it shows that they are finitely generated and projective over each
algebra.

Example 2.1. We briefly discuss the equivalence bimodules BEA for which A =
C∞(M) is the commutative algebra of complex-valued, smooth functions on a
manifold M . It follows from the smooth version of Serre-Swan’s theorem that,
since any such equivalence bimodule is finitely generated and projective as a right
A-module, it must be given by the sections of a vector bundle E −→ M , on
which C∞(M) acts by pointwise multiplication; the algebra acting on the left is
then necessarily isomorphic to Γ∞(End(E)). In fact, any nonzero vector bundle
defines an equivalence bimodule in this way. An auto-equivalence bimodule of
C∞(M) must be given by a line bundle L −→M , since this is the only case where
C∞(M) ∼= Γ∞(End(L)).

Going back to star products, the classification problem amounts to determining
the conditions on the characteristic classes, as in (2.5) and (2.7), such that the
corresponding star-product algebras are Morita equivalent. The easier part of
the classification accounts for isomorphic star products: according to (2.3), if
we mod out the equivalence transformations, we are still left with an action of
Poisson diffeomorphisms on characteristic classes of star products whose orbits
identify isomorphic ones. The more interesting part of the Morita classification
comes from nontrivial equivalence bimodules. One may check that an equivalence
bimodule for ? and ?′ has a classical limit which remains an equivalence bimodule
for the undeformed products. As seen in Example 2.1, such bimodules must be
given by sections of line bundles. Hence the problem of Morita classification
reduces to the question of which line bundles L −→ M can be deformed into
equivalence bimodules for star products. It turns out that one can always deform
the sections Γ∞(L)[[~]] into a right ?-module in a unique way, up to equivalence
[11]. This relies on the fact that the classical module is projective. Moreover,
the endomorphisms C∞(M) ∼= Γ∞(End(L)) inherit a deformation ?′ from this
procedure, in such a way that we get a deformed bimodule. The new star product
?′ quantizes the same Poisson bracket π1 on M , see [11, 10]. The question is then
how to compute the class of ?′ in terms of the class of ? and the line bundle L.

We first mention the Morita classification for symplectic star products [12]:

Theorem 2.2 (Morita classification, symplectic case). Two star products ? and
?′ on a symplectic manifold (M,ω) are Morita equivalent if and only if there is a
symplectomorphism Φ such that

(2.9) Φ∗c(?′)− c(?) ∈ 2πiH2
dR(M,Z).

In this case, the line bundle L with Chern class c1(L) = 1
2πi

(Φ∗c(?′)− c(?)) can be
deformed into an equivalence bimodule for ? and ?′.
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More specifically, one obtains an equivalence bimodule for star products through
a deformed bimodule structure on Γ∞(L)[[~]], where ? acts on the right and ?′

acts (via Φ) on the left. Note that here only the image of the Chern class of L in
de Rham cohomology matters; in particular, since torsion elements in Ȟ2(M,Z)
vanish in H2

dR(M,Z), they only account for isomorphic star products.
The previous theorem already hints at how the classification for star products

on general Poisson manifolds should be: one should “invert” the relation Φ∗c(?′) =
c(?) + 2πic1(L) via a geometric series to get the corresponding relation for the
Kontsevich classes. This heuristic reasoning first appeared in [23], where Morita
equivalence was studied in the context of non-commutative gauge field theories.

To make this heuristics precise we have to elaborate on how two-forms act on
Poisson structures. Given a formal Poisson structure

π = ~π1 + · · · ∈ ~Γ∞(Λ2TM)[[~]],

we can equivalently view it, as usual, as a C[[~]]-linear bundle map

(2.10) π] : Γ∞(T ∗M)[[~]] −→ ~Γ∞(TM)[[~]]

via π](α) = π(α, · ), where α ∈ Γ∞(T ∗M)[[~]]. Analogously, given a two-form
B ∈ Γ∞(Λ2T ∗M)[[~]] we have a bundle map in the opposite direction

(2.11) B] : Γ∞(TM)[[~]] −→ Γ∞(T ∗M)[[~]],

via B](X) = B(X, · ), for X ∈ Γ∞(TM)[[~]]. Since we require π to start in first
order of ~, the composition B]π] is a C[[~]]-linear endomorphism of Γ∞(T ∗M)[[~]]
raising the ~-degree at least by one. Hence id +B]π] is necessarily invertible via
a geometric series, so we may consider the inverse

(2.12)
(
id +B]π]

)−1
: Γ∞(T ∗M)[[~]] −→ Γ∞(T ∗M)[[~]].

We have the following results:

Proposition 2.3. Let B ∈ Γ∞(Λ2T ∗M)[[~]] and π ∈ ~Γ∞(Λ2TM)[[~]].

1. There exists a unique a(B, π) ∈ ~Γ∞(Λ2TM)[[~]] with a(B, π)] = π] ◦
(id +B]π])−1.

2. If π is a formal Poisson structure and B is closed then a(B, π) is also a
formal Poisson structure.

3. a defines an action of the abelian group of formal series of closed two-forms
on the set of formal Poisson structures.
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In analogy to the case without ~-powers, we call the map π 7→ a(B, π) a
gauge transformation of π by the two-form B, see [40]; note that, in the purely
geometric situation (with no powers in ~), the invertibility of id +B]π] is not
automatic, depending on the choices of B and π.

A key feature of the action a is that exact two-forms B = dA, with A ∈
Γ∞(T ∗M)[[~]], yield equivalent formal Poisson structures. Thus we obtain a well-
defined action of the second de Rham cohomology H2

dR(M,C)[[~]] on the equiva-
lence classes of formal Poisson structures which preserves the lowest order term
π1. We denote this action by

(2.13) a : H2
dR(M,C)[[~]]× FPoisson(M,π1) −→ FPoisson(M,π1).

This is the action which determines the Morita classification of star product [14]:

Theorem 2.4 (Morita classification, Poisson case). Let ? and ?′ be two star prod-
ucts on a Poisson manifold (M,π1) with classes [π] and [π′], respectively. Then ?
and ?′ are Morita equivalent if and only if there is a Poisson diffeomorphism Φ
and an integral two-form B, [B] ∈ 2πiH2

dR(M,Z), such that

(2.14) Φ∗[π′] = [a(B, π)].

As in Theorem 5.3, the corresponding line bundle with Chern class c1(L) =
1

2πi
[B] can be deformed into an equivalence bimodule for ?′ and ?.
The construction of equivalence bimodules for star products can be refined

in more specific geometric situations. We will mention two examples related to
Nikolai’s work, namely the cases of Kähler manifolds and cotangent bundles:

• For a Kähler manifold M , Fedosov’s construction gives (at least) three
canonical star products on M : the Weyl-ordered star product ?Weyl, the
Wick star product ?Wick, and the anti-Wick star product ?Wick. It was known
that these three star product are not equivalent in general, and their char-
acteristic classes are given by
(2.15)

c(?Weyl) =
[ω]

i~
, c(?Wick) =

[ω]

i~
−iπc1(Lcan), and c(?Wick) =

[ω]

i~
+iπc1(Lcan),

where Lcan denotes the canonical line bundle of M , i.e. the line bundle of
holomorphic volume forms, see [24] as well as Nikolai’s PhD thesis [32]. Thus
we see from Theorem 2.2 that ?Wick and ?Wick are always Morita equivalent,
and they are Morita equivalent to ?Weyl if and only if the canonical line bundle
has a square root [34]. The construction of the deformed bimodule structure
of Lcan can be obtained from a rather explicit Fedosov construction. Also
in [34] it was shown that for a holomorphic line bundle one can achieve
deformed bimodule structures with the separation of variables property.
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• For a cotangent bundle M = T ∗Q, a line bundle L −→ T ∗Q is isomorphic
to the pull-back of a line bundle on Q. Hence the curvature two-form of L
corresponds to a closed two-form B on Q which has the physical interpre-
tation of a magnetic field. If B is not exact, and thus L is not the trivial
line bundle, then B corresponds to a magnetic monopole. The integrality
condition in Theorem 2.2 can then be understood as Dirac’s quantization
condition for a magnetic monopole, giving a new interpretation of this con-
dition in terms of Morita theory [12]. This result relates to previous work of
Nikolai on the representation theory of star products, see [8, 9, 7], as well as
his Diploma thesis [31]. We will come back to these results in Section 5.1.

3 Modules with additional structures

3.1 Inner products

We now consider additional properties of star-product algebras, beyond their ring
structure, and discuss how they lead to enhanced notions of modules and represen-
tations. As mentioned in the introduction, we may restrict ourselves to Hermitian
star products, which renders star product algebras with the structure of ∗-algebras,
with involution given by complex conjugation of functions. We will also consider
the order structure on the ring R[[~]], which leads to various notions of positivity
for star-product algebras. It will be convenient to work, more generally, in the
following algebraic set-up: we will consider ∗-algebras over a ring C = R(i), with
i2 = −1 and R being an ordered ring. This framework encompasses Hermitian
star product algebras (with C = C[[~]]) and also C∗-algebras (with C = C).

Guided by the notions of Hilbert modules and strong Morita equivalence for
C∗-algebras, see e.g. [38, 39, 27, 37], one considers the following. Let A be a
∗-algebra over C, and let EA be a right A-module. We henceforth assume that
all modules carry a compatible C-module structure such that all other structure
maps are (multi-)linear over C. Even though this is not strictly necessary, we
assume for simplicity that all algebras are unital and all modules are unital as
well, i.e. the algebra unit acts as the identity on the module.

An A-valued inner product is a map

(3.1) 〈 · , · 〉A : EA× EA −→ A,

which is C-linear in the second argument, and such that 〈x, y · a〉A = 〈x, y〉A a, for
all x, y ∈ EA and a ∈ A, and 〈x, y〉A = ( 〈y, x〉A)∗. We call 〈 · , · 〉A non-degenerate
if 〈x, y〉A = 0 for all y ∈ EA implies x = 0. Note that these inner products already
make use of the ∗-involution.

In order to take into account the ordering of R, we proceed as follows. First,
we call a linear functional ω : A −→ C positive if ω(a∗a) ≥ 0 for all a ∈ A.
In this case, ω satisfies a Cauchy-Schwarz inequality and behaves much like the
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positive functionals in operator algebra theory. We use these positive functionals
to define positivity of algebra elements: a ∈ A is positive if ω(a) ≥ 0 for all
positive ω. In quantum physical terms this means that all the expectation values
of the observable a are positive. Since this is all the information we can possibly
get about the observable a in an operational way, this notion of “positivity by
measurement” is well motivated by the desired applications in quantum physics.
Standard arguments show that positive functionals form a convex cone in the dual
of A which is stable under the operation ω 7→ ωb, with ωb(a) = ω(b∗ab) for every
b ∈ A. Moreover, the set of positive elements in A, which we denote by A+, form a
convex cone as well, stable under the maps a 7→ b∗ab. Clearly, it contains the cone
of “sums of squares” A++, i.e. those a which can be written as a =

∑n
i=1 αib

∗
i bi

with 0 < αi ∈ R and bi ∈ A. In general it is a nontrivial question to decide
whether A+ = A++; for polynomials this is the famous Hilbert’s 17th problem.
For C∗-algebras one always has equality, a fact heavily relying on continuous
spectral calculus.

We can now define the positivity requirements for an algebra-valued inner
product. We call an A-valued inner product 〈 · , · 〉A positive if 〈x, x〉A ∈ A+,
for all x ∈ EA. To get better properties with respect to tensor products, it will
be convenient to refine this notion and call 〈 · , · 〉A completely positive if, for all
n ∈ N and all x1, . . . , xn ∈ EA, the matrix ( 〈xi, xj〉A) ∈ Mn(A) is positive. Here
we use that Mn(A) is naturally a ∗-algebra, so the notion of positivity makes
sense. Such a right A-module EA with completely positive and non-degenerate
inner product 〈 · , · 〉A will be called a (right) pre-Hilbert A-module. If we only have
a non-degenerate inner product, we call EA a (right) inner-product A-module. It
is clear that we can define an inner product on a left A-module in an analogous
way, replacing the A-linearity in the second argument to the right by A-linearity
in the first argument to the left.

Let B be another ∗-algebra acting on EA from the left, such that we have
a (B,A)-bimodule BEA. We always assume that the left B-module structure is
compatible with EA, i.e., 〈b · x, y〉A = 〈x, b∗ · y〉A for all b ∈ B and x, y ∈ BEA.
If the inner product is non-degenerate then we call this an inner-product (B,A)-
bimodule. If in addition 〈 · , · 〉A is completely positive, then we call BEA a pre-
Hilbert (B,A)-bimodule. Note that the two algebras B and A enter the picture in
a non-symmetrical way.

Given two inner-product, or pre-Hilbert, bimodules BEA and BE ′A, a morphism
T : BEA −→ BE ′A is a bimodule morphism such that there exists a (necessarily
unique) bimodule morphism T ∗ : BE ′A −→ BEA with

(3.2) 〈x, Ty〉A
′ = 〈T ∗x, y〉A

for all x ∈ BE ′A and y ∈ BEA. We call T ∗ the adjoint of T . With these morphisms,
one may consider the category of inner product (B,A)-bimodules as well as the
category of pre-Hilbert (B,A)-bimodules. These categories define two possible
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notions of “∗-representation theory” for a ∗-algebra B: we denote the categories
of ∗-representations of B on inner-product A-modules by ∗-ModA(B), and on pre-
Hilbert A-modules by ∗-RepA(B).

We conclude this section with some examples.

Example 3.1. For a unital ∗-algebra A, consider the free right A-module An; we
define the A-valued inner product

(3.3) 〈x, y〉 =
n∑
i=1

x∗i yi,

which is easily shown to be completely positive and non-degenerate. On An we
have a natural left action of the matrix algebra Mn(A), by matrix multiplication,
which turns An into a pre-Hilbert (Mn(A),A)-bimodule.

More generally, let P = P 2 = P ∗ ∈Mn(A) be a Hermitian idempotent matrix,
i.e. a projection. Let us consider the projective right A-module PAn, with the
inner product given by the restriction of (3.3). Since P is a projection, we have
〈Px, Py〉 = 〈x, Py〉 =

∑n
i=1 x

∗
iPijyj, where Pij ∈ A are the coefficients of P . One

may check that this is a completely positive, non-degenerate inner product. If
we consider PMn(A)P with its canonical ∗-algebra structure, then PAn is a pre-
Hilbert (PMn(A)P,A)-bimodule. It is easy to see that PMn(A)P consists of all
right A-linear endomorphisms of PAn in this case.

Example 3.2. Let us consider the geometric example A = C∞(M), as in Exam-
ple 2.1. As mentioned there, a finitely-generated, projective module PAn is, up
to isomorphism, just the module of smooth sections Γ∞(E) of a complex vector
bundle E −→M . A fiber metric h on E gives a non-degenerate inner product via

(3.4) 〈ψ, φ〉 (p) = hp(ψ(p), φ(p)),

for p ∈ M and ψ, φ ∈ Γ∞(E). In this case we have not only non-degeneracy, but
the map

(3.5) Γ∞(E) 3 ψ 7→ 〈ψ, · 〉 ∈ (Γ∞(E))∗ = Γ∞(E∗)

from the right A-module Γ∞(E) into the dual left A-module is bijective. In gen-
eral, we call an inner product with this property strongly non-degenerate. Finally,
note that writing Γ∞(E) = PC∞(M)n as a projective module amounts to estab-
lishing an isomorphism E = imP ⊆M ×Cn of E with a subbundle of the trivial
bundle. Then PMn(C∞(M))P corresponds to the sections Γ∞(End(E)) of the
endomorphism bundle of E.

3.2 Hopf-algebra symmetries

We now discuss notions of (bi)modules when the algebras carry symmetries. In the
C∗-algebraic framework this has been done for actions of locally compact groups
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under the name of C∗-dynamical systems. We choose here a slightly more general
notion of Hopf-algebra action so as to include infinitesimal actions of Lie algebras
by derivations. Details can be found in [22].

Let H be a Hopf ∗-algebra over C, i.e. a Hopf algebra with a ∗-involution
such that the coproduct ∆ and the counit ε are ∗-homomorphisms, and such that
S(S(g)∗)∗ = g for every g ∈ H, where S is the antipode of H. An H-symmetry of
a ∗-algebra A is an action of H on A, that we denote by

. : H ×A −→ A;

i.e. it is an H-module algebra structure, such that in addition we have (g . a)∗ =
S(g)∗ . a∗. Suppose that all algebras in question have such a symmetry of a fixed
Hopf ∗-algebra H. If we are given a (right) inner-product A-module EA, then we
call it H-covariant (or H-equivariant) if we have an H-action on EA such that

(3.6) g . (x · a) = (g(1) . x) · (g(2) . a)

and

(3.7) g . 〈x, y〉A = 〈S(g(1))
∗ . x, g(2) . y〉A ,

where we use the Sweedler notation ∆(g) = g(1)⊗g(2) for the coproduct. If we have
an inner product (B,A)-bimodule then we require an analogous compatibility for
the left B-module structure. Finally, morphisms between H-covariant bimodules
are adjointable morphisms as above which, in addition, commute with the H-
action. In this way we obtain the categories of H-covariant ∗-representations of a
∗-algebra B on H-covariant inner-product, or pre-Hilbert, (B,A)-bimodules. We
denote these categories by ∗-ModA,H(B) and ∗-RepA,H(B), respectively.

3.3 Tensor products

As we now see, all the notions of bimodule previously introduced can be seen
as “generalized morphisms” between ∗-algebras; their composition is given by
suitable tensor products, which we now discuss.

Let CFB and BEA be inner-product, or pre-Hilbert, bimodules over the ∗-
algebras A, B, and C, with or without H-symmetry. One defines an A-valued
inner product on the algebraic tensor product CFB⊗B BEA as follows: first, we set

(3.8) 〈φ⊗ x, ψ ⊗ y〉F⊗EA =
〈
x, 〈φ, ψ〉FB · y

〉E
A
,

and we define an inner product by C-sesquilinear extension of this formula to
all elements of the tensor product. Note that this is indeed well-defined on the
tensor product over B. It is not hard to check that 〈 · , · 〉F⊗EA is an A-valued inner
product and the left C-module structure is compatible with it. Slightly less trivial
is the fact that this inner product is again completely positive, provided that
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both inner products are completely positive, see [13, Thm. 4.7]. It may however
be degenerate. To circumvent this problem, we mod out the tensor product by
the subspace ( CFB⊗B BEA)⊥ to get

(3.9) CFB ⊗̂B BEA := ( CFB⊗B BEA)
/

( CFB⊗B BEA)⊥.

It can be checked that this is an inner-product (resp. pre-Hilbert) (C,A)-bimodule.
Moreover, if all algebras and bimodules are H-covariant, then on the tensor prod-
uct one defines an H-action in the usual way: g . (φ⊗B x) = (g(1) . φ)⊗B (g(2) . x).
This action passes to the quotient CFB ⊗̂B BEA and turns it into an H-covariant
bimodule. All the above constructions are compatible with the morphisms we
have specified, so we conclude that the tensor product defines functors

(3.10) ⊗̂B : ∗-ModB,H(C)× ∗-ModA,H(B) −→ ∗-ModA,H(C)

as well as

(3.11) ⊗̂B : ∗-RepB,H(C)× ∗-RepA,H(B) −→ ∗-RepA,H(C),

where we can omit H for the versions without symmetry.
The tensor product ⊗̂ also enjoys the usual associativity properties, up to a

canonical isomorphism. This means that we have an isomorphism

(3.12) asso :
(

DGC ⊗̂C CFB
)
⊗̂B BEA −→ DGC ⊗̂C

(
CFB ⊗̂B BEA

)
,

which respects all the structures on the bimodules, i.e. the inner products and,
in the covariant case, the H-symmetry. Indeed, the usual associativity of the
algebraic tensor product (x ⊗ y) ⊗ z 7→ x ⊗ (y ⊗ z) holds also on the quotients
needed for ⊗̂, and respects all extra structures.

Since we have unital ∗-algebras, there is a canonical pre-Hilbert (A,A)-bimodule
given by AAA, with the inner product 〈a, a′〉 = a∗a′. Note that the unit is needed
to show that 〈 · , · 〉 is non-degenerate. This inner product is also full, in the sense
that the span of all 〈a, a′〉 is the whole algebra A. (More generally, we could use ∗-
algebras which are idempotent and non-degenerate in the sense that ab = 0 for all
b implies a = 0; then AAA would have the same properties.) If A is equipped with
an H-symmetry, then AAA inherits this symmetry. These particular bimodules
serve as “units” for the tensor product; i.e., there is a canonical isomorphism

(3.13) left : BBB ⊗̂B BEA −→ BEA

for every BEA, and similarly we have a canonical isomorphism

(3.14) right : BEA ⊗̂A AAA −→ BEA,

respecting all the additional structures we have. Indeed, on the level of algebraic
tensor products these maps are the usual ones, i.e. b ⊗ x 7→ b · x. (For the
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case of non-unital algebras, we have to add the conditions B · BEA = BEA and

BEA ·A = BEA for all the bimodules, so as to restore surjectivity of left and right.)
We observe that the isomorphisms asso, left, and right satisfy the usual co-

herence conditions, as the ones for the algebraic tensor product. This allows the
construction of the following bicategories (weak 2-categories), see [4]. As objects
we take unital ∗-algebras (more generally, we could work with non-degenerate
and idempotent ∗-algebras). We can also add an H-symmetry for the ∗-algebras.
For the 1-morphisms from A to B, we take the inner-product (resp. pre-Hilbert)
(B,A)-bimodules, with H-symmetry if the ∗-algebras carry H-symmetry. For the
2-morphisms from BEA to BE ′A, we take the adjointable bimodule morphisms,
which should be H-covariant in the presence of H-symmetries. The tensor prod-
uct ⊗̂ together with the canonical maps asso, left, and right define a bicategory.
We wind up with four possible flavors of bicategories of bimodules denoted by

1. Bimod∗ for inner-product bimodules,

2. Bimodstr for pre-Hilbert bimodules,

3. Bimod∗H for inner-product bimodules with H-symmetry,

4. Bimodstr
H for pre-Hilbert bimodules with H-symmetry.

For completeness, we mention that there are the ring-theoretic versions Bimod
and BimodH , where we only have algebras over C as objects but no ∗-involutions.
In this case the tensor product is just the algebraic tensor product.

Important for us is the fact that in any bicategory we have a bigroupoid of
invertible 1-morphisms. Here invertible means invertible with respect to the tensor
product, up to 2-isomorphisms. This bigroupoid is called the Picard bigroupoid of
the bicategory. In our situation, we have again four flavours of Picard groupoids:

1. The ∗-Picard bigroupoid Pic∗ is the bigroupoid of invertible 1-morphisms of
Bimod∗.

2. The strong Picard bigroupoid Picstr is the bigroupoid of invertible 1-morphisms
in Bimodstr.

3. The H-covariant ∗-Picard bigroupoid Pic∗H is the bigroupoid of invertible
1-morphisms of Bimod∗H .

4. The H-covariant strong Picard bigroupoid Picstr
H is the bigroupoid of invert-

ible 1-morphisms in Bimodstr
H .

Again, there are ring-theoretic versions of the Picard bigroupoid which we denote
by Pic and PicH , in the H-covariant case.
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4 Strong and covariant Morita equivalences

Any bigroupoid corresponds to a groupoid, obtained through the identification
of isomorphic 1-morphisms. For the Picard bigroupoids that we just introduced,
we have to use isometric isomorphisms in order to respect all relevant structures.
This leads to the following Picard groupoids : the ∗-Picard groupoid Pic∗, the
strong Picard groupoid Picstr, theH-covariant ∗-Picard groupoid Pic∗H , and theH-
covariant strong Picard groupoid Picstr

H . These groupoids consist of the ∗-algebras
as units and the equivalence classes of invertible bimodules (of the corresponding
type) as arrows. In particular, for every ∗-algebra A we have the isotropy group of
arrows starting and ending at A. This is the Picard group of A, which we denote
by Pic∗(A), Picstr(A), Pic∗H(A), and Picstr

H (A), depending on the case.
We now define the associated versions of Morita equivalence:

Definition 4.1 (Morita equivalence). Two ∗-algebras over C are called

1. ∗-Morita equivalent if they are isomorphic in Bimod∗,

2. strongly Morita equivalent if they are isomorphic in Bimodstr,

3. H-covariantly ∗-Morita equivalent if they are isomorphic in Bimod∗H ,

4. H-covariantly strongly Morita equivalent if they are isomorphic in Bimodstr
H .

As usual, isomorphism of objects in a bicategory means that there is an invert-
ible 1-morphism between them. Equivalently, two ∗-algebras are Morita equivalent
in one of the above senses if and only if they are in the same orbit of the corre-
sponding Picard groupoid. We also note that we have the ring-theoretic versions
based on the Picard groupoids Pic and PicH , the former leading to the notion of
Morita equivalence discussed in Section 2.2. A bimodule which is invertible, and
hence defines a Morita equivalence, is also referred to as an equivalence bimodule,
and a key problem is to characterize them in each case.

Note that forgetting the additional structures on bimodules (e.g. the complete
positivity of inner products, the H-covariance, the inner products) preserves their
invertibility. This gives the following diagram

(4.1)

Picstr
H

PicH
))SSSSSSSSSSSSSSPicstr

H Pic∗H// Pic∗H

PicH
uukkkkkkkkkkkkkk

Picstr

Pic
))SSSSSSSSSSSSSSSPicstr Pic∗,// Pic∗,

Pic
uukkkkkkkkkkkkkkk

��

��

��

of commuting groupoid morphisms. Hence a lot of questions in Morita theory
can be answered by first understanding the Picard groupoids Pic and PicH in
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the ring-theoretic setting and, afterwards, investigating the kernels and images of
these groupoid morphisms.

An immediate consequence of Morita equivalence is the equivalence of appro-
priate categories of modules:

Theorem 4.2 (Equivalence of representation theories). Let BEA be a ∗-Morita
equivalence bimodule, and let D be a fixed ∗-algebra. Then the functor

(4.2) RE = BEA ⊗̂A : ∗-ModD(A) −→ ∗-ModD(B)

is an equivalence of categories. Analogous statements hold for a strong Morita
equivalence bimodule, an H-covariant ∗-Morita equivalence bimodule, or an H-
covariant strong Morita equivalence bimodule.

The idea is to show that there are natural transformations from RA to the
identity functor (via left) and from RF ◦ RE to RF⊗̂BE (via asso). Having the
bicategory properties of Bimod∗, this is immediate.

Remark 4.3 (Picard groupoid actions). We can view Theorem 4.2 as a conse-
quence of an action of the Picard groupoid on the representation theories of the
∗-algebras under consideration. In a similar way, many other Morita invariants can
be viewed as arising from suitable actions of the Picard groupoid. Basic examples
include the Picard groups themselves, the centers, the (H-equivariant) K-theory,
and the lattices of certain ∗-ideals carrying information about the H-symmetry.
We refer to [22] for a further discussion.

We now discuss how an equivalence bimodule actually looks like. Note that if
EA is an inner-product rightA-module then we have particular rank one operators
Θx,y : EA −→ EA defined by

(4.3) Θx,y(z) = x · 〈y, z〉A ,

for x, y, z ∈ EA. From the properties of 〈 · , · 〉A we see that Θx,y is right A-linear.
Moreover, Θx,y has an adjoint operator explicitly given by Θy,x. We denote by

(4.4) F( EA) = C- span {Θx,y | x, y ∈ EA}

the finite rank operators on EA. They form a ∗-algebra such that EA becomes
an inner product (F( EA),A)-bimodule. Moreover, if EA is equipped with an
H-symmetry, then we get an induced ∗-action of H on F( EA).

Theorem 4.4 (Equivalence bimodules). Two unital ∗-algebras A and B are ∗-
Morita equivalent if and only if there exists an inner product (B,A)-bimodule BEA
such that

1. The inner product 〈 · , · 〉A is full (and necessarily strongly non-degenerate).
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2. B is isomorphic to F( EA) via the action map.

In this case BEA is equipped with a full B-valued inner product Θ · , · and B ∼= F( EA)
coincides with all adjointable operators on EA. Moreover, BEA is finitely generated
and projective as a right A-module and as a left B-module. If A and B are strongly
Morita equivalent, then 〈 · , · 〉A and Θ · , · are, in addition, completely positive. In
the H-covariant case, the bimodule carries an H-action compatible with both inner
products.

For all cases, with additional effort, one also has non-unital formulations for
idempotent and non-degenerate algebras. The ∗-Morita equivalence version is due
to Ara [1], the strong Morita equivalence version comes from [13, Thm. 6.1], while
the H-covariant versions were treated in [22].

5 Back to Morita classification of star products

We now revisit the Morita classification of star products, see Theorems 2.2 and
2.4, in light of the refined notions of Morita equivalence discussed in Section 4.

5.1 Strong Morita equivalence

It is known that, for unital C∗-algebras, ring-theoretic and strong Morita equiva-
lences coincide, see [3]. It turns out that the same holds for Hermitian star-product
algebras. The fact underlying this result is that, on any ring-theoretic equivalence
bimodule between Hermitian star products, one can find suitable algebra-valued
inner products. At the classical level of undeformed algebras, this follows from
(3.4) since on every vector bundle we have a positive definite Hermitian fiber
metric. Then one should verify that such fiber metrics can be deformed into
algebra-valued inner product for ?. This fact was shown in [11] and treated more
systematically in [13, Sect. 7 and Sect. 8], where the general relations between
the ring-theoretic and the strong Picard groupoid, Pic and Picstr, are studied in
detail. The conclusion from [13, Thm. 8.9] can be formulated in terms of the
groupoid morphisms (4.1):

Theorem 5.1 (Strong Morita equivalence of Hermitian star products).

(a) Within the class of Hermitian star products, the canonical groupoid mor-
phism Picstr −→ Pic is injective, and Picstr has the same orbits as Pic. In
particular, two Hermitian star products are strongly Morita equivalent if and
only if they are Morita equivalent.

(b) If ? and ?′ are Morita equivalent Hermitian star products, then Picstr(?, ?′) −→
Pic(?, ?′) is surjective if and only if all derivations of ? are quasi-inner.
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In part (b), we use the notation Picstr(?, ?′) for the space of arrows in Picstr

from ? to ?′ (similarly for Pic); we also call a derivation D of ? quasi-inner if it
is of the form D = 1

i~ [H, · ]?, for some H ∈ C∞(M)[[~]]. Hence, the coincidence
of the ring-theoretic and strong Picard groups boils down to whether there are
derivations which are not quasi-inner. In the symplectic case, it is known that all
derivations are quasi-inner if and only if H1

dR(M,C) = {0}. So, although strong
and ring-theoretic Morita equivalences define the same equivalence relation for
Hermitian star products, the corresponding Picard groups are generally distinct.

In light of part (a) of the theorem, one may directly use Theorems 2.2 and 2.4
for a description of strongly Morita equivalent Hermitian star products in terms
of their characteristic classes. We mention, for completeness, that a result of
Nikolai [33, Sec. 5] characterizes symplectic Hermitian star products in terms of
the classes (2.7): they must satisfy c(?) = −c(?), a property that is stable under
Morita equivalence (c.f. Theorems 2.2). A similar characterization, extending
Nikolai’s result, should also hold for the classes (2.5) in the Poisson case.

Remark 5.2. We note that ∗-Morita equivalence of Hermitian star products falls
into the same classification since, on a connected component of M , the (strongly
non-degenerate) inner products on the sections of a line bundle can either be
completely positive or completely negative.

As discussed in [12] and mentioned at the end of Section 2.2, strong Morita
equivalence turns out to be related to Nikolai’s work on the representation theory
of star products on cotangent bundles M = T ∗Q [8, 9, 7]. More specifically, the
usual Schrödinger type representation on functions on the configuration space Q
requires a star product ? with trivial class (i.e. without magnetic monopoles, see
Section 2.2). In the presence of a magnetic monopole described by an integral
two-form B, one can deform the associated line bundle on the cotangent bundle
T ∗Q into a strong Morita equivalence bimodule between ? and a new star product
?B. We can then use this equivalence bimodule to relate (pre-Hilbert) modules
over ? and ?B (see Theorem 4.2). In particular, tensoring this equivalence bimod-
ule with the Schrödinger representation of ? on C∞0 (Q)[[~]] yields a representation
of ?B on the space of sections Γ∞0 (L)[[~]] of the line bundle L over Q determined
by B. On the other hand, the star product ?B had been previously considered
in Nikolai’s joint work [7], where a representation of ?B on the space Γ∞0 (L)[[~]]
was constructed directly, locally out of ? by applying a local version of “minimal
coupling” using the local potentials A ∈ Γ∞(T ∗U) of B

∣∣
U

= dA. It was shown
in [12] that, modulo canonical identifications, both constructions agree: the rep-
resentation of ?B on Γ∞0 (L)[[~]] from [7] exactly corresponds to the Schrödinger
representation of ? under strong Morita equivalence.

Still in this direction, we mention the unfinished project by Nikolai to trans-
fer the ideas of the representation theory of star products on cotangent bundles
to star products on general Lie algebroids. Building on [35], the plan was to
construct representations and equivalence bimodules as in the cotangent bundle
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case, thereby establishing the relation to the pseudo-differential operator algebraic
quantizations in [36]. Nikolai was unfortunately not able to finish this project,
but Nikolai’s student Alexander Held took initial steps in his Diploma thesis.

5.2 Covariant Morita equivalence

We finally address covariant Morita equivalence for star products on symplectic
manifolds; this was the subject of one of Nikolai’s last joint projects. The general
case of star products on Poisson manifolds is yet to be worked out, but should
follow along the same lines, relying on Theorem 2.4 and equivariant formality
maps [16].

Let (M,ω) be a symplectic manifold acted upon by a Lie algebra g; we as-
sume the action to be symplectic, though not necessarily Hamiltonian. We will
also assume that the action preserves a connection (and hence also a torsion-free
symplectic connection). This is in fact a mild requirement: if the g-action comes
from a symplectic action of a Lie group G and if this G-action is proper, then we
always have such an invariant connection. But even in the non-proper case there
are interesting examples where such a connection exists.

A star product ? is called g-invariant if the fundamental vector fields ξM ∈
Γ∞(TM) of the g-action act as derivations of ? for all ξ ∈ g. One has a classifi-
cation of g-invariant star products, up to g-invariant equivalence transformations
[5]: every such star product is g-invariantly equivalent to a Fedosov star product
?Ω, where the closed two-form Ω ∈ ~Γ∞(Λ2T ∗M)g[[~]] is g-invariant, and two such
star products ?Ω, ?′Ω are g-invariantly equivalent if and only if the corresponding
two-forms Ω and Ω′ are cohomologous in the invariant de Rham cohomology.
Thus one can define a g-invariant characteristic class by

(5.1) cg(?) =
[ω] + [Ω]

i~
∈ [ω]

i~
+ H2

dR(M,C)g[[~]],

where H•dR(M,C)g denotes the g-invariant de Rham cohomology of M .
Forgetting the invariance gives us a canonical map

(5.2) H•dR(M,C)g −→ H•dR(M,C).

We also need to consider the g-equivariant de Rham cohomology. We use the
Cartan model, see e.g. [19]. Here we only need its Lie algebra version: the complex
is

(5.3) Ω•g(M,C) =
∞⊕
k=0

⊕
2i+j=k

(
Poli(g)⊗ Γ∞(ΛjT ∗M)

)g
,

with the differential dg given by (dg α)(ξ) = dα(ξ) + iξM α(ξ) for ξ ∈ g. In
particular, for the second equivariant de Rham cohomology we have a two-form
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part and a function part linear in g. Projecting on the two-form part, we get an
induced map in cohomology

(5.4) H2
g(M,C) −→ H2

dR(M,C)g.

Using these canonical maps we can refine Theorem 2.2 as follows [21]:

Theorem 5.3. Let (M,ω) be a symplectic manifold carrying a symplectic Lie
algebra action of g which preserves a connection. Let ? and ?′ be two g-invariant
star products (resp. Hermitian star products) on (M,ω). Then ? and ?′ are g-
covariantly (resp. strongly g-covariantly) Morita equivalent if and only if there
exists a g-invariant symplectomorphism Φ such that Φ∗cg(?′) − cg(?) is in the
image of the first map in

(5.5) H2
g(M,C) −→ H2

dR(M,C)g −→ H2
dR(M,C),

and maps to a 2πi-integral de Rham cohomology class under the second map.

As previously mentioned, a similar classification should hold in the Poisson
case, based on Theorem 2.4 and on equivariant formality maps, as in [16]; we
observe that, just as Theorem 5.3, the construction of equivariant formalities
make use of g-invariant connections.
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