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Abstract

We discuss recent results extending the notions of hamiltonian action and reduction in
symplectic geometry to the setting of twisted Dirac geometry. We focus on the role of Lie
algebroids as infinitesimal symmetries and applications to quasi-Poisson geometry.

1 Introduction

This note discusses several aspects of the hamiltonian theory of twisted Dirac manifolds following
[9, 10]. The focus of the exposition is on the interplay between infinitesimal symmetries of Dirac
manifolds and reduction, as well as on the close ties between Dirac geometry, quasi-Poisson
geometry and the theory of group-valued momentum maps [1, 2, 3].

The classical set-up for hamiltonian theory [22, 23] involves a Poisson manifold (M,π), a Lie
algebra g, and an infinitesimal action ρM : g → X(M). This action is called hamiltonian if
there exists a smooth ad∗-equivariant map J : M → g∗ relating π and ρM by

ρM (v) = idJvπ, ∀v ∈ g, (1.1)

where Jv ∈ C∞(M) is defined by Jv(x) = 〈J(x), v〉, x ∈ M . The map J is the momentum
map of the action. Each level set J−1(µ) is invariant under gµ, the isotropy Lie algebra at
µ ∈ g∗ with respect to the coadjoint action, and the reduced space Mµ = J−1(µ)/gµ acquires
a Poisson structure induced from the one on M ; when M is symplectic, each Mµ is symplectic.
Examples of symplectic manifolds obtained by reduction [23] include complex projective spaces
and coadjoint orbits; an infinite-dimensional version of this construction produces symplectic
structures on moduli spaces in gauge theory [5].

Several interesting generalized notions of hamiltonian action and momentum map have ap-
peared in the last years, see e.g. [28]. One body of generalizations, studied in [24], is based
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on allowing the target of the momentum map to be an arbitrary Poisson manifold rather than
just the dual of a Lie algebra. This theory includes the hamiltonian theory of Poisson-Lie group
actions [20] and naturally leads to Lie algebroids and symplectic groupoids. We recall it in
Section 3.

Another important class of generalizations arises in the context of “quasi”-Poisson geometry
[1, 21], the semiclassical limit of the theory of quasi-Hopf algebras [17]. The study of symmetries
in this setting does not fit into the usual framework of Poisson geometry since the bivector fields
and 2-forms entering the picture are no longer Poisson or symplectic. This will be recalled in
Section 4, with emphasis on the theory of group-valued momentum maps [3, 2].

Despite the seemingly different ingredients used in each of these two lines of generalizations
of hamiltonian theory, they have several features in common. In particular, both produce
(ordinary) symplectic/Poisson spaces via reduction. As we will see, this fact can be explained
by looking at all these examples as particular cases of hamiltonian spaces in Dirac geometry.
In Section 5, we recall the basic notions of Dirac geometry, its connections with Lie algebroid
actions, and its hamiltonian theory with focus on reduction. In Section 6, we revisit various
examples of generalized symmetries and explain how they fit into the Dirac-geometric framework.
Acknowledgments: I thank M. Forger, P. Piccione and C. Gorodsky for the invitation to the
XIII School of Differential Geometry at USP, São Paulo, J. Zubelli for hosting a subsequent visit
to IMPA, and CNPq for financial support. I thank R. Moraru for comments on the manuscript.

2 Poisson geometry and hamiltonian spaces

We recall some basics facts about Poisson geometry to fix our notation. We refer the reader to
[13] for details and references.

A Poisson manifold is a manifold M equipped with a bivector field π ∈ Γ(∧2TM) satisfying
the integrability condition [π, π] = 0, where [·, ·] is the Schouten bracket on multivector fields;
this condition is equivalent to the requirement that the bracket

{f, g} := π(df, dg), f, g ∈ C∞(M) (2.1)

satisfies the Jacobi identity.
Given a function f ∈ C∞(M), its hamiltonian vector field is defined by Xf := π](df) ∈

X1(M), where π] is the bundle map

π] : T ∗M → TM, β(π](α)) = π(α, β), for α, β ∈ T ∗M. (2.2)

It follows from the integrability of π that LXf
π = 0 for all f ∈ C∞(M).

A Poisson structure π for which π] is invertible is equivalent to a symplectic structure ω by

(π])−1 = ω], (2.3)

where ω] : TM → T ∗M is the bundle map defined by ω](X) := iXω. The condition dω = 0
is equivalent to [π, π] = 0. More generally, if (M,π) is any Poisson manifold, the image of the
bundle map π] : T ∗M → TM defines an integrable generalized distribution on M whose leaves
are locally swept out by flows of hamiltonian vector fields. The restriction of π to each leaf is
nondegenerate, so each leaf carries a symplectic structure. Conversely, this singular symplectic
foliation completely determines π.
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Example 2.1 Let g be a (real, finite-dimensional) Lie algebra, and let g∗ be its dual. The
Lie-Poisson structure πg∗ on g∗ is defined by the bracket

{f, g}(µ) := 〈µ, [df(µ), dg(µ)]〉, f, g ∈ C∞(g∗), µ ∈ g∗, (2.4)

where we used the identification T ∗µg∗ ∼= g. The leaves in this example are the coadjoint orbits,
and the leafwise symplectic form is given by

ω(ρg∗(u), ρg∗(v))(µ) = −〈µ, [u, v]〉, u, v ∈ g, µ ∈ g∗, (2.5)

where ρg∗(u)(µ) = ad∗u(µ) = π]g∗(u)(µ) is the infinitesimal generator of the coadjoint action.

If (M1, π1) and (M2, π2) are Poisson manifolds, then a smooth map ψ : (M1, π1) → (M2, π2)
is a Poisson map if the bivector fields π2 and π1 are ψ-related:

π1(ψ∗(α), ψ∗(β)) = π2(α, β) ◦ ψ, for α, β ∈ Ω1(M2). (2.6)

This is equivalent to requiring that ψ∗ : C∞(M2) → C∞(M1) preserves the brackets (2.1). If π1

is symplectic, then a Poisson map ψ : M1 →M2 is called a symplectic realization of M2. For
example, the inclusion of a symplectic leaf into a Poisson manifold is a symplectic realization.

The next result reveals the close relationship between hamiltonian actions and Poisson maps.

Proposition 2.2 Let (M,π) be a Poisson manifold, and let J : M → g∗ be a smooth map.
Then the following are equivalent:

1. J is a Poisson map;

2. The “momentum-map condition” (1.1) defines a g-action on M for which J is equivariant
(i.e., J is a momentum map for a hamiltonian g-action on M).

Example 2.3 The identity map g∗ → g∗ is the momentum map for the coadjoint action, and
each coadjoint orbit is a hamiltonian space with respect to the restricted action and momentum
map given by the inclusion map.

3 Generalized symmetries in Poisson geometry

Interesting extensions of the notion of hamiltonian action arise when one allows the momentum
map to take values on a general Poisson manifold [24] (see also [16]). Unraveling the infinitesimal
symmetries associated with arbitrary Poisson maps J : M → P naturally leads to Lie algebroids,
so we recall the basic definitions, see e.g. [13].

3.1 Infinitesimal actions of Lie algebroids

A Lie algebroid over a manifold P is a vector bundle A→ P together with a map ρ : A→ TP ,
called the anchor, and a Lie bracket [·, ·]A on Γ(A) satisfying the Leibniz rule

[a, fb]A = f [a, b]A + Lρ(a)(f)b, for a, b ∈ Γ(A), and f ∈ C∞(M).

We often denote a Lie algebroid by the triple (A, ρ, [·, ·]A). Two central features of Lie algebroids
are that ρ(A) ⊆ TP defines a generalized integrable distribution (whose leaves are called “orbits”
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of A) and, at each y ∈ P , the restriction of [·, ·]A to ker(ρ)y is a Lie bracket (defining the
“isotropy” Lie algebra at y), see e.g. [13].

An action of a Lie algebroid A → P on a manifold M along a map J : M → P is a Lie
algebra homomorphism ρ̂M : Γ(A) → X(M) satisfying

TJ(ρ̂M (a)) = ρ(a) and ρ̂M (fa) = J∗fρ̂M (a), ∀ a ∈ Γ(A), f ∈ C∞(P ),

see e.g. [18, 25]. One recovers the usual notion of action for Lie algebras when P is a point.
Hamiltonian g-actions with momentum maps J : M → g∗ can be expressed in terms of Lie

algebroids as follows. Instead of thinking of g as dual to g∗, we now regard its elements as
constant sections of the bundle T ∗g∗ = g∗ × g. The space Ω1(g∗) = C∞(g∗, g) admits the
following Lie bracket extending the one on g:

[u, v](x) = [u(x), v(x)] + Lρg∗ (u(x))v(x)− Lρg∗ (v(x))u(x), u, v ∈ C∞(g∗.g), (3.1)

with ρg∗ defined as in Example 2.1. The action ρM : g → X(M) defined by (1.1) induces a map

ρ̂M : C∞(g∗, g) → X(M), ρ̂M (u)(x) = ρM (u(J(x)))(x) (3.2)

which is a Lie algebra homomorphism and satisfies the “momentum-map condition”

ρ̂M (u) = π](J∗u), u ∈ Ω1(g∗). (3.3)

The cotangent bundle T ∗g∗ = g∗ × g together with the bracket (3.1) and map ρg∗ : Tg → Tg∗

is a Lie algebroid (in fact, it is a transformation Lie algebroid [13]), and the map (3.2) defines
an action of T ∗g∗ on M along the momentum map J . The conclusion is that the infinitesimal
symmetries encoded in a Poisson map J : M → g∗ can be expressed in two alternative ways:
either as a g-action on M defined by (1.1) or as a Lie algebroid action of T ∗g∗ along J defined
by (3.3); each action completely determines the other by (3.2).

3.2 Generalizing the target of momentum maps

Let (P, πP ) be a Poisson manifold. To regard it as the receptacle of a “momentum map”, a
central fact is that p := (T ∗P, π]P , [·, ·]) is a Lie algebroid, with bracket on Ω1(P ) given by

[α, β] := L
π]

P (α)
β − L

π]
P (β)

α− dπP (α, β).

The orbits of this Lie algebroid are the symplectic leaves of P .
If (M,π) is a Poisson manifold and J : M → P is a smooth map, let us consider, analogously

to (3.3), the map
ρ̂M : Ω1(P ) → X(M), α 7→ π](J∗α). (3.4)

We have the following generalization of Proposition 2.2:

Proposition 3.1 The map ρ̂M defines a Lie algebroid p-action on M along J if and only if J
is a Poisson map.

So if J : M → P is a Poisson map, it can be seen as a “momentum map” for the “hamiltonian”
p-action defined by the “momentum-map condition” (3.4).
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To carry out reduction starting with a Poisson map J : M → P , one notices that the Lie
algebroid action of p on M defined by (3.4) induces, for each y ∈ P regular value of J , a Lie
algebra action of the isotropy Lie algebra

py = kery(π
]
P ) ⊆ T ∗yP (3.5)

on the level set J−1(y). Assuming that this action is regular (in the sense that its orbits
form a simple foliation), then the orbit space J−1(y)/py acquires a Poisson structure uniquely
determined by the fact that the projection J−1(y) → J−1(y)/py is a Poisson map. If M is
symplectic, then the reduced spaces are also symplectic. This is the infinitesimal version of
Mikami-Weinstein reduction [24] for Poisson manifolds, see also [16].

When P = g∗, the Lie algebras (3.5) are the isotropy Lie algebras for the coadjoint action, and
we recover the usual reduction procedure for hamiltonian actions [22, 23]. Another important
class of examples is given when P is the a dual Poisson-Lie group G∗; in this case one recovers
Lu’s hamiltonian theory for Poisson-Lie group actions [20].

Remark 3.2 The description of the global symmetries of M associated with a Poisson map
J : M → P involves the theory of symplectic groupoids [27]. If P is an integrable Poisson
manifold, and if J : M → P is a complete Poisson map [13], then the corresponding p-action on
M can be integrated to a symplectic groupoid action of G on M , where G is the (source-simply-
connected) symplectic groupoid integrating the Lie algebroid p = T ∗P , see e.g. [16, 24].

4 Symmetries beyond Poisson geometry

Let G be a Lie group with Lie algebra g, and suppose that g is equipped with a non-degenerate,
invariant, quadratic form (·, ·)g. Let φG ∈ Ω3(G) be the Cartan 3-form on G,

φG =
1
12

([θ, θ], θ)g =
1
12

(
[θ, θ], θ

)
g
,

where θ, θ ∈ Ω1(G, g) are the left and right Maurer-Cartan 1-forms, respectively.
A quasi-hamiltonian g-space [3] is a g-manifold M equipped with an invariant 2-form

ω ∈ Ω2(M), and an Ad-equivariant map J : M → G such that

dω = J∗φG, (4.1)
ker(ω)x = {ρM (v)x | v ∈ g, (AdJ(x) + 1)v = 0}, ∀x ∈M, (4.2)

iρM (v)ω =
1
2
J∗

(
θ + θ, v

)
g

= J∗σ(v), v ∈ g, (4.3)

where ρM : g → TM is the infinitesimal action and

σ : g → T ∗G, σ(v) =
1
2
(vr + vl, ·)g, (4.4)

where vr, vl are the right and left translations of v ∈ g. If M is a G-manifold, ω is G-invariant
and J is G-equivariant, then it is a quasi-hamiltonian G-space. The map J is a G-valued
momentum map.

Note that M is not symplectic in general, but conditions (4.1) and (4.2) describe the precise
way in which ω fails to be closed and nondegenerate according to the geometry of the Lie group
G. Condition (4.3) is the analog of the momentum map condition (1.1) (but, unlike (1.1), this
condition alone is not enough to determine the infinitesimal action ρM ).
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Example 4.1 Analogously to Example 2.3, each conjugacy class C in G is a quasi-hamiltonian
G-space with respect to the action by conjugation. The momentum map is the inclusion ι : C ↪→
G and the 2-form is

ω(ρG(u), ρG(v)) =
1
2
(
(Adg −Adg−1)(u), v

)
g
, (4.5)

where ρG(u) = ur − ul is the infinitesimal generator of the action of G on itself by conjugation.
This 2-form is analogous to (2.5), though it may be neither nondegenerate nor closed.

In spite of M not being symplectic and J not being a Poisson map, “quasi-hamiltonian”
reduction produces honest symplectic spaces (generally singular) [3]: the level set J−1(e) ↪→M
is invariant under the g-action, and the pull-back of ω to J−1(e) is basic and descends to a
symplectic form on J−1(e)/g. Here e is the identity in G, but one can also reduce at different
momentum levels.

The main application of quasi-hamiltonian reduction is to give a finite-dimensional construc-
tion of the symplectic structure of certain moduli spaces:

Example 4.2 Let G act on G2h by conjugation on each factor, and consider the equivariant
map

J : G2h → G, J(a1, b1, . . . , ah, bh) =
h∏
i=1

[ai, bi]. (4.6)

In [3] the authors define a 2-form ω ∈ Ω2(G2h) making G2h into a quasi-hamiltonian space with
group-valued momentum map (4.6). The reduced space

M = J−1(e)/G = {(a1, b1, . . . , ah, bh) ∈ G2h,

h∏
i=1

[ai, bi] = e}/G

coincides with the representation space Hom(π1(Σ), G)/G, where Σ is a compact, connected,
oriented, 2-manifold of genus h (without boundary), and π1(Σ) is its fundamental group. If G is
simply connected, the holonomy map identifies M with the moduli space of gauge equivalence
classes of flat connections on Σ×G, and the symplectic structure on M is obtained via quasi-
hamiltonian reduction coincides with the one constructed by Atiyah and Bott [5] via infinite-
dimensional Marsden-Weinstein reduction.

Remark 4.3 (Hamiltonian quasi-Poisson actions)
There is a version of the theory of group-valued momentum maps J : M → G in which

M carries an invariant bivector field rather than a 2-form; these spaces are called hamiltonian
quasi-Poisson manifolds [2]. Some of their features are analogous to Poisson manifolds: for
example, they are associated with Lie algebroids [9, 10] whose orbits define a singular foliation,
but unlike Poisson manifolds the bivector field may be degenerate along the leaves. However, one
can still find leafwise 2-forms making the leaves into quasi-hamiltonian spaces [2, 9], though the
relationship between the bivector field and 2-forms is much more intricate than (2.3). Reduction
in this context produces Poisson spaces; an interesting example is the construction of Poisson
structures on moduli space of flat connections on surfaces with boundary [2, Sec. 6].

Quasi-Poisson manifolds with group-valued momentum maps fit into the yet more general
hamiltonian theory of quasi-Poisson actions developed in [1]. In this setting, momentum maps
take values in certain homogeneous spaces associated with Lie quasi-bialgebras [17, 21].
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5 Dirac geometry and symmetries

Dirac structures [14, 15] provide a common ground for the study of various “integrable” geomet-
rical structures. We refer the reader to [12] for details, more examples and further references.

5.1 Dirac manifolds and closed 3-forms

Let φ ∈ Ω3(M) be a fixed closed 3-form on a manifold M . A φ-twisted Dirac structure on
M is a subbundle L ⊂ E := TM ⊕ T ∗M such that

1. L is maximal isotropic with respect to the symmetric pairing

〈·, ·〉 : E × E → R, 〈(X,α), (Y, β)〉 = α(Y ) + β(X).

(This means that rank(L) = dim(M) and 〈·, ·〉|L = 0);

2. Γ(L) is closed under the bracket [[·, ·]]φ : Γ(E)× Γ(E) → Γ(E),

[[(X,α), (Y, β)]]φ = ([X,Y ],LXβ − iY dα+ iX∧Y φ). (5.1)

We denote φ-twisted Dirac manifolds by the triple (M,L, φ). The bracket in (5.1) is the φ-
twisted Courant bracket [26], and condition 2. is referred to as the integrability condition.

Example 5.1 Bivector fields π ∈ Γ(∧2TM) (resp. 2-forms ω) can be seen as examples of Dirac
structures by means of the graphs of the associated bundle maps π] (resp. ω]) in TM ⊕ T ∗M .
The integrability condition 2. amounts to [π, π] = 2π](φ) (resp. dω + φ = 0). Hence, for φ = 0,
Dirac structures include Poisson structures and closed 2-forms as particular examples.

Just as Poisson structures, twisted Dirac structures are always associated with Lie algebroids
and singular foliations. Let L ⊂ TM ⊕ T ∗M be a φ-twisted Dirac structure, and let pr :
TM ⊕ T ∗M → TM be the natural projection. Then:

• The triple (L,pr|L, [[·, ·]]φ|Γ(L)) is a Lie algebroid over M . In particular, the generalized
distribution pr(L) ∈ TM is integrable, and, at each x ∈M ,

Lx ∩ T ∗xM = kerx(pr|L) (5.2)

has a Lie algebra structure induced from [[·, ·]]φ.

• Each leaf ι : O ↪→M of this singular foliation carries a 2-form ωL defined at x ∈ O by

ωL(X,Y ) = α(Y ), (5.3)

where X,Y ∈ pr(L)x and α ∈ T ∗xM is any covector satisfying (X,α) ∈ Lx (the value of
(5.3) turns out to be independent of α), and

dωL + ι∗φ = 0. (5.4)

• The singular foliation and the leafwise 2-forms completely determine L: at each point, we
can obtain L from ωL by

L = {(X,α) | X ∈ pr(L), α|pr(L) = iXωL}. (5.5)
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All these notions reduce to the ones of Section 3.2 when L is the graph of a Poisson structure.
It follows from (5.3) that, at each x ∈M ,

ker(L)x := TxM ∩ Lx (5.6)

is the kernel of the leafwise 2-form ωL at that point.
We define the opposite of L by L = {(X,−α) | (X,α) ∈ L}.

Remark 5.2 Functions whose differentials are annihilated by ker(L) are called admissible;
when φ = 0, they form a Poisson algebra with respect to the bracket

{f, g} := dg(Xf ),

where Xf is any (local) vector field satisfying (Xf , df) ∈ L. It follows that whenever ker(L) is
the tangent distribution of a simple foliation, the quotient M/ ker(L) has a Poisson structure
defined via the identification of its functions with admissible functions on M .

Example 5.3 LetG be a Lie group with Lie algebra g equipped with a nondegenerate, invariant,
quadratic form (·, ·)g. We saw in Example 4.1 that the singular foliation ofG by conjugacy classes
ι : C ↪→ G admits a leafwise 2-form ω satisfying dω = ι∗φG. This suggests the existence of an
underlying −φG-twisted Dirac structure LG on G.

By (5.5) LG must be given at each point of G by

L = {(X,α) | X = ρG(v), v ∈ g, and α|ρG(g) = iρG(v)ω}.

By (4.5), if X = ρG(v) = vr − vl, then

α|ρG(g) =
1
2
(vr + vl, ·)g = σ(v),

where σ is defined in (4.4). It follows that

α− σ(v) ∈ ρG(g)◦ = L ∩ T ∗M.

One can check that σ maps ker(ρG) isomorphically onto L ∩ T ∗M , so α − σ(v) is in the image
of σ. So there exists u ∈ g satisfying X = ρG(u) = ρG(v) and α = σ(u). It follows that

LG = {(ρG(u), σ(u)), u ∈ g} = {(ur − ul,
1
2
(ur + ul, ·)g), u ∈ g}, (5.7)

which is indeed a smooth Dirac structure. Note that

ker(LG)g = {ρG(v)g | (1 + Adg)v = 0}. (5.8)

We call LG the Cartan-Dirac structure on G with respect to (·, ·)g.

Remark 5.4 Cartan-Dirac structures fit into a more general class of examples:
Let g be a Lie quasi-bialgebra [17, 21]. Let d be its Drinfeld double, (G,D) the associated

group pair [1], and consider the homogeneous space S = D/G. The trivial bundle d × S → S
has the structure of an exact Courant algebroid [4], and g ⊆ d defines a Dirac structure. Hence
a choice of splitting d × S ∼= TS ⊕ T ∗S determines a twisted Dirac structure LS on S. For a
suitable choice of quasi-bialgebra, S ∼= G, and LS = LG (5.7).
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5.2 Dirac maps and infinitesimal symmetries

We now discuss the relationship between Dirac maps and infinitesimal Lie algebroid actions,
analogous to Prop. 3.1. Details on Dirac maps can be found e.g. in [12].

Let (M,L, φ) and (P,LP , φP ) be twisted Dirac manifolds. A smooth map ψ : M → P is a
forward Dirac map (or simply an f-Dirac map) if, for each x ∈M ,

(LP )ψ(x) = {(Txψ(X), β) | X ∈ TxM, β ∈ T ∗ψ(x)P, (X,Tψ∗(β)) ∈ (LM )x}. (5.9)

A direct computation shows that if L and LP are defined by Poisson structures, then (5.9) is
equivalent to (2.6). An immediate property of an f-Dirac map is that

ker(LP )ψ(x) = Txψ(ker(L)x). (5.10)

Let p be the Lie algebroid associated with LP , and let J : M → P be a smooth map.
Following Section 3, it is natural to call a p-action on M , ρ̂M : Γ(LP ) → X(M), “hamiltonian”
with “momentum map” J if the following extension of the “momentum-map condition” (3.4)
holds: if X = ρ̂M (Y, β), then, at each point of M , X satisfies

TJ(X) = Y, and (X, (TJ)∗(β)) ∈ L. (5.11)

If ρ̂M is “hamiltonian” in this sense, then J is an f-Dirac map. However, unlike Prop. 3.1, an
f-Dirac map may not completely specify an infinitesial action via (5.11); this is the reason for
the quotes in “hamiltonian”. If J : M → P is an f-Dirac map, and given (Y, β) ∈ Γ(LP ), one
can always find X satisfying (5.11) at each point. We have the following equivalent conditions:

1. For each (Y, β) ∈ Γ(LP ), condition (5.11) defines a unique X at each point of M .

2. The map J : M → P satisfies

ker(TJ) ∩ ker(L) = {0}. (5.12)

3. The restriction of TJ to ker(L) induces an isomorphism

TJ : ker(L) ∼→ ker(LP ). (5.13)

We have the following generalization of Prop. 3.1 to Dirac geometry:

Proposition 5.5 Let (M,L, φ) and (P,LP , φP ) be Dirac manifolds, and let J : M → P be a
smooth map. Suppose that φ = J∗φP and that J satisfies (5.12). Then J is an f-Dirac map if
and only if (5.11) defines a p-action on M along J .

Proposition 5.5 indicates the type of Dirac maps that will play a special role as momentum
maps: An f-Dirac map J : M → P is a Dirac realization if

φ = J∗φP , (5.14)

and (5.12) holds. If M is presymplectic we call J a presymplectic realization of P . We will
further discuss the extra conditions (5.12) and (5.14) in the next subsection. A simple example
of a presymplectic realization is the inclusion of any presymplectic leaf into a twisted Dirac
manifold.
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Example 5.6 We now show that quasi-hamiltonian spaces are precisely presymplectic realiza-
tions of Cartan-Dirac structures (Example 5.3) [11]; note the analogy with Prop. 2.2 .

Let J : (M,ω) → (G,LG) be a presymplectic realization. The associated Lie-algebroid action
of LG on M (5.11), given by

ρ̂M (ρG(v), σ(v)) = X, where TJ(X) = ρG(v), and iXω = J∗σ(v),

defines a Lie-algebra action ρM : g → X(M) by v 7→ ρ̂M (ρG(v), σ(v)). A direct consequence of
the definition of ρM is that J is g-equivariant and (4.3) holds. By (5.14), ω satisfies (4.1). Using
(5.13), we know that ker(ω)x = {X | TJ(X) ∈ ker(LG)} ⊂ ρM (g)x. It follows from (5.8) that
(4.2) holds. Hence ρM is a quasi-hamiltonian action with J as momentum map.

The g-invariance of ω follows as a consequence: Using the Maurer-Cartan equations dθ =
(1/2)[θ, θ] (resp. dθ = −(1/2)[θ, θ]), we have

LρM (v)ω = iρM (v)J
∗φG +

1
2
J∗d

(
θ + θ, v

)
g

= iρM (v)J
∗ 1
12

([θ, θ], θ)g +
1
4
J∗

(
[θ, θ]− [θ, θ], v

)
g

=
1
4
J∗

(
[θ, θ], (Adg−1 − 1)v

)
g
+

1
4
J∗([θ, θ]−Adg([θ, θ]), v)g = 0.

Remark 5.7 (Global symmetries and examples)
The global objects integrating φ-twisted Dirac structures are φ-twisted presymplectic groupoids
[11, 29]; this generalizes Remark 3.2. Under suitable completeness/integrability assumptions,
infinitesimal “hamiltonian” actions in the sense of (5.11) correspond to global actions of presym-
plectic groupoids [9].

If G is a twisted presymplectic groupoid over (P,LP ) with source and target maps s and t,
then t is an f-Dirac map (though it may not satisfy (5.12)) and is a “momentum map” for the
“hamiltonian” action of G on itself by left multiplication; the map (t, s) : G → P × P is a Dirac
realization, corresponding to the G × G-action on G by (g, h) · x = gxh−1.

5.3 Reduction

We now turn to reduced spaces in Dirac geometry, unifying the reduction procedure of Section
3.2 and the quasi-hamiltonian reduction of Section 4. The key point is to understand when these
more general Dirac-reduced spaces carry ordinary Poisson structures.

Let (M,L, φ) and (P,LP , φP ) be twisted Dirac manifolds and suppose that ρ̂M is a p-action
on M along J : M → P satisfying the “momentum-map condition” (5.11); in particular, J is
f-Dirac but may not satisfy (5.12). Following Section 3.2, let y ∈ P be a regular value of J ,
and consider the submanifold J−1(y) ↪→ M and the isotropy Lie algebra py = LP ∩ T ∗yP . If
(0, β) ∈ py and X = ρ̂M ((0, β)), then (5.11) implies that TJ(X) = 0. Hence ρ̂M restricts to a
Lie-algebra action ρM of py on J−1(y), which we assume to be regular.

The level set ι : J−1(y) ↪→ M inherits a “pull-back” Dirac structure ι∗L from the ambient
manifold M with leaves given by O ∩ J−1(y), where O is a leaf of L in M , and leafwise 2-form
ι∗ωL. It is simple to check that

ρM (py) ⊆ ker(ι∗L). (5.15)

If ι∗φ is basic with respect to the py-orbits on J−1(y), then the orbit space Mred = J−1(y)/py
inherits a Dirac structure which is generally degenerate and twisted, and uniquely characterized
by J−1(y) →Mred being an f-Dirac map.
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Example 5.8 Let G be a (source-connected) twisted presymplectic groupoid over (P,LP ), and
consider the infinitesimal p-action on G by left multiplication (with momentum J = t the target
map, see Remark 5.7). The action of py on t−1(y) is regular, and the reduced space can be
naturally identified with the leaf of LP through y. The reduced Dirac structure is the twisted
presymplectic structure on the leaf.

Let us focus on the case where Mred = J−1(y)/py inherits an honest Poisson structure. To
avoid the 3-form twist on Mred, it suffices to assume that ι∗φ = 0 on J−1(y) (or that it is zero
along each leaf of ι∗L). On the other hand, following Remark 5.2, the reduced Dirac structure
on Mred is nondegenerate if and only if (5.15) is an equality:

ρM (py) = ker(ι∗L), (5.16)

since in this case we can identify functions on Mred with admissible functions on (J−1(y), ι∗L).

Lemma 5.9 The py-action on J−1(y) satisfies (5.16) if and only if J satisfies (5.12) at each
x ∈ J−1(y).

Proof: Note that (X, 0) ∈ ker(ι∗L)x if and only if TJ(X) = 0 and there is a β ∈ T ∗yP such
that (X, J∗(β)) ∈ Lx. Since J is an f-Dirac map, it follows that (TJ(X), β) = (0, β) ∈ (LP )y. If
(5.12) holds, then this implies that (X, J∗(β)) = ρ̂M (0, β), showing that (5.16) holds.

On the other hand, let β ∈ py, and suppose that X = ρM (β). By (5.11), TJ(X) = 0 and
(X, J∗(β)) ∈ L. If X ′ ∈ ker(L) ∩ ker(TJ), then X +X ′ still satisfies these conditions and does
not lie in the image of ρM unless X ′ = 0. So (5.16) implies that (5.12) holds. �

As a result, we have [9, Thm. 4.11]:

Theorem 5.10 Let J : M → P be a Dirac (resp. presymplectic) realization, and suppose that
the py-action on J−1(y) is regular. Then there is a unique Poisson (resp. symplectic) structure
on the reduced space Mred = J−1(y)/py for which J−1(y) →Mred is an f-Dirac map.

Thm. 5.10 recovers the reduction of Section 3.2 when P is a Poisson manifold, and quasi-
hamiltonian reduction [3] when J is as in Example 5.3. For presymplectic realizations, it coin-
cides with the infinitesimal version of Xu’s reduction in [29].

Remark 5.11 There is a more general version of reduction in the spirit of the intertwiner spaces
of Xu [29]. If Ji : (Mi, Li) → (P,LP ) are Dirac realizations, i = 1, 2, we consider the fibred
product

M = M1 ×P M2 = {(x1, x2) ∈M1 ×M2 | J1(x1) = J2(x2)},

which we assume to be a submanifold ιM : M ↪→ M1 ×M2. The Lie algebroid p acts on M
along the map J : M → P , J(x1, x2) = J1(x1) = J2(x2). Let us assume that this action is
regular. Consider M1 ×M2 with the product Dirac structure L1 × L2, and let M be equipped
with LM = ι∗M (L1 × L2). Just as in Theorem 5.10, the twisting of LM vanishes and

ρM (p) = ker(LM ),

so the orbit space Mred = M/p inherits a Poisson structure (which is symplectic if M1 and M2

are presymplectic [29]). Theorem 5.10 follows from this result if one takes J1 to be the inclusion
of the presymplectic leaf Oy through y in P . Then M ∼= J−1(Oy), and J−1(Oy)/p ∼= J−1(y)/py
are naturally isomorphic.
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6 Revisiting symmetries and momentum maps

Let (P,LP , φP ) be a twisted Dirac manifold. Let us summarize the ingredients of the hamiltonian
theory of p-actions with P -valued momentum maps:

Hamiltonian spaces: Hamiltonian p-spaces are Dirac realizations1 J : M → P . They
form a category Mom(P ), and presymplectic realizations form a subcategory Momps(P ).

Reduction: Reduced spaces are the Poisson/symplectic spaces J−1(y)/py, y ∈ P , of
Theorem 5.10 (or, more generally, Remark 5.11)

Global symmetries: Assuming p to be integrable, global symmetries are described by
actions of φP -twisted presymplectic groupoids G over (P,LP ).

This framework unifies the notions of symmetry discussed in Sections 3 and 4; as we now see,
each example is recovered by a suitable choice of target P :

• If P is a Poisson manifold and J : M → P is a Dirac realization, then (5.13) implies
that M is necessarily Poisson and J is a Poisson map. So Mom(P ) coincides with the
category of Poisson maps into P . The reduced spaces are those of Section 3.2 [24] and
global symmetries are given by actions of symplectic groupoids. More specifically:

– If P = G∗, a dual Poisson-Lie group, one recovers the hamiltonian Poisson actions
and reduction of Lu [20].

– If G∗ = g∗, the dual of a Lie algebra, one recovers classical hamiltonian theory.

• Let P = (S,LS) be a twisted Dirac manifold associated with a Lie quasi-bialgebra as
in Remark 5.4. The main result of [10] asserts that there is a correspondence between
quasi-Poisson bivector fields and twisted Dirac structures so that Mom(S) is isomorphic
to the category of hamiltonian quasi-Poisson g-spaces with S-valued momentum maps of
[1]. Particular cases are:

– If S = G equipped with the Cartan-Dirac structure, then Mom(G) is isomorphic
to the category of hamiltonian quasi-Poisson g-manifolds with G-valued momentum
maps [2, 9]. Reduction coincides with the quasi-Poisson reduction of [2].

– If S = G equipped with the Cartan-Dirac structure, then Momps(G) is exactly the
category of quasi-hamiltonian g-spaces, as shown in Example 5.6; reduction coincides
with quasi-hamiltonian reduction [3].

The presymplectic groupoid associated with (G,LG) is the AMM-groupoid [6], see [11].

The framework of Dirac geometry sheds light on various aspects of quasi-Poisson geometry,
such as the existence of quasi-hamiltonian foliations [9, 10]. Besides reduction, this framework
encompasses other key features that different hamiltonian theories share, such as convexity [30]
and prequantization [19], and the relationship between momentum map theories corresponding
to different target Dirac manifolds can be investigated through Xu’s Morita theory for twisted
presymplectic groupoids [29].

1Hamiltonian spaces for which J does not satisfy (5.12) seem relevant in applications such as [7, 8].
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