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Abstract. These notes are based on lectures given at CIMPA’s school Topics
in noncommutative geometry, held in Buenos Aires in 2010. The main goal

is to expound the classification of deformation quantization algebras up to

Morita equivalence.
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1. Introduction

Deformation quantization [1] (see e.g. [15] for a survey) is a quantization
scheme in which algebras of quantum observables are obtained as formal deforma-
tions of classical observable algebras. For a smooth manifold M , let C∞(M) denote
the algebra of complex-valued smooth functions on M , and let C∞(M)[[~]] be the
space of formal power series in a parameter ~ with coefficients in C∞(M); defor-
mation quantization concerns the study of associative products ? on C∞(M)[[~]],
known as star products, deforming the pointwise product on C∞(M),

f ? g = fg +O(~),

in the sense of Gerstenhaber [13]. The noncommutativity of a star product ? is
controlled, in first order, by a Poisson structure {·, ·} on M , in the sense that

f ? g − g ? f = i~{f, g}+O(~2).

Two fundamental issues in deformation quantization are the existence and iso-
morphism classification of star products on a given Poisson manifold, and the most
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general results in these directions follow from Kontsevich’s formality theorem [18].
In these notes we treat another kind of classification problem in deformation quan-
tization, namely that of describing when two star products define Morita equivalent
algebras. This study started in [2, 5] (see also [17]), and here we will mostly review
the results obtained in [3] (where detailed proofs can be found), though from a less
technical perspective.

Morita equivalence [21] is an equivalence relation for algebras, which is based
on comparing their categories of representations. This type of equivalence is weaker
than the usual notion of algebra isomorphism, but strong enough to capture essen-
tial algebraic properties. The notion of Morita equivalence plays a central role in
noncommutative geometry and has also proven relevant at the interface of noncom-
mutative geometry and physics, see e.g. [17, 20, 27]. Although there are more
analytical versions of deformation quantization and Morita equivalence used in non-
commutative geometry (especially in the context of C∗-algebras, see e.g. [24, 25]
and [8, Chp. II, App. A]), our focus in these notes is on deformation quantization
and Morita equivalence in the purely algebraic setting.

The classification of Morita equivalent star products on a manifold M [3] builds
on Kontsevich’s classification result [18], which establishes a bijective correspon-
dence between the moduli space of star products on M , denoted by Def(M), and
the set FPois(M) of equivalence classes of formal families of Poisson structures on
M ,

(1.1) K∗ : FPois(M) ∼→ Def(M).

Morita equivalence of star products onM defines an equivalence relation on Def(M),
and these notes explain how one recognizes Morita equivalent star products in terms
of their classes in FPois(M), through Kontsevich’s correspondence (1.1). We divide
the discussion in two steps: first, we identify a canonical group action on Def(M)
whose orbit relation coincides with Morita equivalence of star products (Thm. 5.2);
second, we find the expression for the corresponding action on FPois(M), making
the quantization map (1.1) equivariant (Thm. 7.1).

This paper is structured much in the same way as the lectures presented at the
school. In Section 2, we briefly discuss how deformation quantization arises from
the quantization problem is physics; Section 3 reviews the basics on star products
and the main results on deformation quantization; Morita equivalence is recalled
in Section 4, while Section 5 presents a description of Morita equivalence for star
products as orbits of a suitable group action. Section 6 discusses the B-field action
on (formal) Poisson structures, and Section 7 presents the main results on the
classification of Morita equivalent star products.

Notation and conventions: For a smooth manifold M , C∞(M) denotes its al-
gebra of smooth complex-valued functions. Vector bundles E → M are taken to
be complex, unless stated otherwise. X •(M) denotes the graded algebra of (com-
plex) multivector fields on M , Ω•(M) is the graded algebra of (complex) differential
forms, while Ωpcl(M) denotes the space of closed p-forms on M . We use the nota-
tion H•dR(M) for de Rham cohomology. For any vector space V over k = R or C,
V [[~]] denotes the space of formal power series with coefficients on V on a formal
parameter ~, naturally seen as a module over k[[~]].

Acknowledgements: We are grateful to V. Dolgushev for his collaboration on
[3], and G. Cortiñas for his invitation to the school, hospitality in Buenos Aires,
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and encouragement to have these notes written up. H.B. thanks CNPq, Faperj and
IMPA for financial support.

2. A word on quantization

Quantization is usually understood as a map assigning quantum observables
to classical ones. In general, classical observables are represented by smooth func-
tions on a symplectic or Poisson manifold (the classical “phase space”), whereas
quantum observables are given by (possibly unbounded) operators acting on some
(pre-)Hilbert space. A “quantization map” is expected to satisfy further compati-
bility properties (see e.g. [20] for a discussion), roughly saying that the algebraic
features of the space of classical observables (e.g. pointwise multiplication and
Poisson bracket of functions) should be obtained from those of quantum observ-
ables (e.g. operator products and commutators) in an appropriate limit “~ → 0”.
As we will see in Section 3, deformation quantization offers a purely algebraic for-
mulation of quantization. In order to motivate it, we now briefly recall the simplest
quantization procedure in physics, known as canonical quantization.

Let us consider the classical phase space R2n = T ∗Rn, equipped with global
coordinates (q1, . . . , qn, p1, . . . , pn), and the canonical Poisson bracket

(2.1) {f, g} =
∂f

∂qj
∂g

∂pj
− ∂g

∂qj
∂f

∂pj
, f, g ∈ C∞(R2n),

so that the brackets of canonical coordinates are

{qk, p`} = δk` ,

for k, ` = 1, . . . , n. Quantum mechanics tells us that the corresponding Hilbert
space in this case is L2(Rn), the space of wave functions on the configuration space
Rn = {(q1, . . . , qn)}. To simplify matters when dealing with unbounded operators,
we will instead consider the subspace C∞0 (Rn) of compactly supported functions
on Rn. In canonical quantization, the classical observable qk ∈ C∞(T ∗Rn) is taken
to the multiplication operator Qk : C∞0 (Rn)→ C∞0 (Rn), ψ 7→ Qk(ψ), where

(2.2) Qk(ψ)(q) := qkψ(q), for q = (q1, . . . , qn) ∈ Rn,
while the classical observable p` ∈ C∞(T ∗Rn) is mapped to the differentiation
operator P` : C∞0 (Rn)→ C∞0 (Rn) given by

(2.3) ψ
P`7→ −i~

∂ψ

∂q`
.

Here ~ is Planck’s constant. The requirements qk 7→ Qk, p` 7→ P`, together with
the condition that the constant function 1 is taken to the identity operator Id :
C∞0 (Rn)→ C∞0 (Rn), constitute the core of canonical quantization.

A natural issue is whether one can extend the canonical quantization procedure
to assign operators to more general functions on T ∗Rn, including higher order
monomials of qk and p`. Since on the classical side qkp` = p`q

k, but on the quantum
side we have the canonical commutation relations

(2.4) [Qk, P`] = QkP` − P`Qk = i~δk` ,
any such extension relies on the choice of an ordering prescription, for which one
has some freedom. As a concrete example, we consider the standard ordering,
defined by writing, for a given monomial on qk and p`, all momentum variables
p` to the right, and then replacing qk by Qk and p` by P`; explicitly, this means
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that qk1 · · · qkrp`1 · · · p`s is quantized by the operator Qk1 · · ·QkrP`1 · · ·P`s . If f is
a polynomial in qk and p`, k, ` = 1, . . . , n, we can explicitly write this standard-
ordered quantization map as

(2.5) f 7→
∞∑
r=0

1
r!

(
~
i

)r
∂rf

∂pk1 · · · ∂pkr

∣∣∣
p=0

∂r

∂qk1 · · · ∂qkr
.

One may verify that formula (2.5) in fact defines a linear bijection

(2.6) %Std : Pol(T ∗Rn) −→ DiffOp(Rn)

between the space Pol(T ∗Rn) of smooth function on T ∗Rn that are polynomial in
the momentum variables p1, . . . , pn, and the space DiffOp(Rn) of differential opera-
tors with smooth coefficients on Rn. In order to compare the pointwise product and
Poisson bracket of classical observables with the operator product and commutator
of quantum observables, one may use the bijection (2.6) to pullback the operator
product to Pol(T ∗Rn),

(2.7) f ?Std g := %−1
Std (%Std(f)%Std(g)) ,

so as to have all structures defined on the same space. A direct computation yields
the explicit formula for the new product ?Std on Pol(T ∗Rn):

(2.8) f ?Std g =
∞∑
r=0

1
r!

(
~
i

)r
∂rf

∂pk1 · · · ∂pkr

∂rg

∂qk1 · · · ∂qkr
.

With this formula at hand, one may directly check the following properties:

(1) f ?Std g = fg +O(~);
(2) f ?Std g − g ?Std f = i~{f, g}+O(~2);
(3) The constant function 1 satisfies 1 ?Std f = f = f ?Std 1, for all f ∈

Pol(T ∗Rn);
(4) ?Std is an associative product.

The associativity property is evident from construction, since ?Std is isomorphic to
the composition product of differential operators. As we will see in the next section,
these properties of ?Std underlie the general notion of a star product.

Before presenting the precise formulation of deformation quantization, we have
two final observations.

• First, we note that there are alternatives to the standard-ordering quan-
tization (2.5). From a physical perspective, one is also interested in com-
paring the involutions of the algebras at the classical and quantum levels,
i.e., complex conjugation of functions and adjoints of operators. Regard-
ing the standard-ordering quantization, the (formal) adjoint of %Std(f)
is not given by %Std(f). Instead, an integration by parts shows that
%Std(f)∗ = %Std(N2f), for the operator N : Pol(T ∗Rn)→ Pol(T ∗Rn),

(2.9) N = exp
(

~
2i

∂2

∂qk∂pk

)
,

where exp is defined by its power series. If we pass to the Weyl-ordering
quantization map,

(2.10) %Weyl : Pol(T ∗Rn)→ DiffOp(Rn), %Weyl(f) := %Std(Nf),
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we have %Weyl(f)∗ = %Weyl(f). This quantization, when restricted to mono-
mials on qk, p`, agrees with the ordering prescribed by total symmetriza-
tion. Just as (2.7), the map (2.10) is a bijection, and it defines the Weyl
product ?Weyl on Pol(T ∗Rn) by

(2.11) f ?Weyl g = %−1
Weyl(%Weyl(f)%Weyl(g)).

The two products ?Std and ?Weyl on Pol(T ∗Rn) are related by

(2.12) f ?Weyl g := N−1(Nf ?Std Ng);

since N = Id +O(~), one may directly check that ?Weyl satisfies the same
properties (1)–(4) listed above for ?Std. But ?Weyl satisfies an additional
compatibility condition relative to complex conjugation:

(2.13) f ?Weyl g = g ?Weyl f.

The are other possible orderings leading to products satisfying (2.13), such
as the so-called Wick ordering, see e.g. [28, Sec. 5.2.3].

• The second observation concerns the difficulties in extending the quan-
tization procedures discussed so far to manifolds other than T ∗Rn. The
quantizations %Std and %Weyl are only defined for functions in Pol(T ∗Rn),
i.e., polynomial in the momentum variables. On an arbitrary manifold M ,
however, there is no analog of this class of functions, and generally there
are no natural subalgebras of C∞(M) to be considered. From another
viewpoint, one sees that the expression for ?Std in (2.8) does not make
sense for arbitrary smooth functions, as the radius of convergence in ~ is
typically 0, so ?Std does not extend to a product on C∞(T ∗Rn) (and the
same holds for ?Weyl). One can however interpret (2.8) as a formal power
series in the parameter ~, i.e., as a product on C∞(T ∗Rn)[[~]]. This
viewpoint now carries over to arbitrary manifolds and leads to the general
concept of deformation quantization, in which quantization is formulated
in purely algebraic terms by means of associative product structures ? on
C∞(M)[[~]] rather than operator representations 1.

3. Deformation quantization

Let M be a smooth manifold, and let C∞(M) denote its algebra of complex-
valued smooth functions. We consider C∞(M)[[~]], the set of formal power series
in ~ with coefficients in C∞(M), as a module over the ring C[[~]].

3.1. Star products. A star product [1] on M is an associative product ? on
the C[[~]]-module C∞(M)[[~]] given as follows: for f, g ∈ C∞(M),

(3.1) f ? g = fg +
∞∑
r=1

~rCr(f, g),

where Cr : C∞(M)×C∞(M)→ C∞(M), r = 1, 2, . . ., are bidifferential operators,
and this product operation is extended to C∞(M)[[~]] by ~-linearity (and ~-adic

1Deformation quantization, in its most general form, completely avoids analytical issues (such

as convergence properties in ~ and related operator representations); these aspects are mostly

considered in particular classes of examples, see e.g. [15, Sec. 4] for a discussion and further
references.
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continuity). Additionally, we require that the constant function 1 ∈ C∞(M) is still
a unit for ?:

1 ? f = f ? 1 = f, ∀f ∈ C∞(M).
Since

f ? g = fg mod ~, ∀f, g ∈ C∞(M),
one views star products as associative, but not necessarily commutative, defor-
mations (in the sense of [13]) of the pointwise product of functions on M . The
C[[~]]-algebra (C∞(M)[[~]], ?) is called a deformation quantization of M .

Two star products ? and ?′ onM are said to be equivalent if there are differential
operators Tr : C∞(M)→ C∞(M), r = 1, 2, . . ., such that

(3.2) T = Id +
∞∑
r=1

~rTr

satisfies

(3.3) T (f ? g) = T (f) ?′ T (g).

We define the moduli space of star products on M as the set of equivalence
classes of star products, and we denote it by Def(M).

Example 3.1. Formula (2.8) for ?Std defines a star product on M = T ∗Rn,
and the same holds for the product ?Weyl given in (2.11); by (2.12), the operator N
in (2.9) defines an equivalence between the star products ?Std and ?Weyl.

3.2. Noncommutativity in first order: Poisson structures. Given a star
product ? on M , its noncommutativity is measured, in first order, by the bilinear
operation {·, ·} : C∞(M)× C∞(M)→ C∞(M),

(3.4) {f, g} :=
1
i~

(f ? g − g ? f)
∣∣∣
~=0

=
1
i
(C1(f, g)− C1(g, f)), f, g ∈ C∞(M).

It follows from the associativity of ? that {·, ·} is a Poisson structure on M (see e.g.
[7, Sec.19]); recall that this means that {·, ·} is a Lie bracket on C∞(M), which is
compatible with the pointwise product on C∞(M) via the Leibniz rule:

{f, gh} = {f, g}h+ {f, h}g, f, g, h ∈ C∞(M).

The Leibniz rule implies that any Poisson structure {·, ·} is equivalently de-
scribed by a bivector field π ∈ X 2(M), via

{f, g} = π(df, dg),

satisfying the additional condition (accounting for the Jacobi identity of {·, ·}) that
[π, π] = 0, where [·, ·] is an extension to X •(M) of the Lie bracket of vector fields,
known as the Schouten bracket. The pair (M,π) is called a Poisson manifold (see
e.g. [7] for more on Poisson geometry). If a star product ? corresponds to a
Poisson structure π via (3.4), we say that ? quantizes π, or that ? is a deformation
quantization of the Poisson manifold (M,π).

A Poisson structure π on M defines a bundle map

(3.5) π] : T ∗M → TM, α 7→ iαπ = π(α, ·).
We say that π is nondegenerate if (3.5) is an isomorphism, in which case π is
equivalent to a symplectic structure ω ∈ Ω2(M), defined by

(3.6) ω(π](α), π](β)) = π(β, α);
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alternatively, the 2-form ω is defined by the condition that the map TM → T ∗M ,
X 7→ iXω, is inverse to (3.5).

Example 3.2. The star product ?Std on T ∗Rn quantizes the classical Poisson
bracket

{f, g} =
∂f

∂qj
∂g

∂pj
− ∂g

∂qj
∂f

∂pj
,

defined by the (nondegenerate) bivector field π = ∂
∂qj ∧ ∂

∂pj
. The same holds for

?Weyl.

3.3. Existence and classification of star products. A direct computation
shows that if ? and ?′ are equivalent star products, i.e., define the same element in
Def(M), then they necessarily quantize the same Poisson structure. For a Poisson
structure π on M , we denote by

Def(M,π) ⊂ Def(M)

the subset of equivalence classes of star products quantizing π. The central issue
in deformation quantization is understanding Def(M,π), for example by finding
a concrete parametrization of this space. Concretely, deformation quantization
concerns the following fundamental issues:

• Given a Poisson structure π on M , is there a star product quantizing it?
• If there is a star product quantizing π, how many distinct equivalence

classes in Def(M) with this property are there?
The main result on existence and classification of star products on Poisson

manifolds follows from Kontsevich’s formality theorem [18], that we briefly recall.
Let X 2(M)[[~]] denote the space of formal power series in ~ with coefficients in

bivector fields. A formal Poisson structure on M is an element π~ ∈ ~X 2(M)[[~]],

π~ =
∞∑
r=1

~rπr, πr ∈ X 2(M),

such that

(3.7) [π~, π~] = 0,

where [·, ·] denotes the ~-bilinear extension of the Schouten bracket to formal power
series. It immediately follows from (3.7) that

[π1, π1] = 0,

i.e., π1 is an ordinary Poisson structure on M . So we view π~ as a formal deforma-
tion of π1 in the realm of Poisson structures.

A formal Poisson structure π~ defines a bracket {·, ·}~ on C∞(M)[[~]] by

{f, g}~ = π~(df, dg).

Two formal Poisson structures π~ and π′~ are equivalent if there is a formal dif-
feomorphism T = exp(

∑∞
r=1 ~rXr) : C∞(M)[[~]] → C∞(M)[[~]], where each

Xr ∈ X 1(M) is a vector field, satisfying

T{f, g}~ = {Tf, Tg}′~.
(Here the exponential exp is defined by its formal series, and it gives a well-defined
formal power series in ~ since

∑∞
r=1 ~rXr starts at order ~.) We define the moduli

space of formal Poisson structures on M as the set of equivalence classes of formal
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Poisson structures, and we denote it by FPois(M). One may readily verify that
two equivalent formal Poisson structures necessarily agree in first order of ~, i.e.,
deform the same Poisson structure. So, given a Poisson structure π on M , we may
consider the subset

FPois(M,π) ⊂ FPois(M)
of equivalence classes of formal Poisson structures deforming π.

We can now state Kontsevich’s theorem [18].

Theorem 3.3. There is a one-to-one correspondence

(3.8) K∗ : FPois(M) ∼→ Def(M), [π~] = [~π1 + . . .] 7→ [?],

such that 1
i~ [f, g]?

∣∣
~=0

= π1(df, dg).

For a given star product ? on M , the element in FPois(M) corresponding to
[?] under (3.8) is called its characteristic class, or its Kontsevich class.

Theorem 3.3 answers the existence and classification questions for star products
as follows:

• Any Poisson structure π on M may be seen as a formal Poisson structure
~π. So it defines a class [~π] ∈ FPois(M), which is quantized by any star
product ? such that [?] = K∗([~π1]).

• For any Poisson structure π on M , the map (3.8) restricts to a bijection

(3.9) FPois(M,π) ∼→ Def(M,π).

This means that the distinct classes of star products quantizing π are
in one-to-one correspondence with the distinct classes of formal Poisson
structures deforming π.

Remark 3.4.

(a) Theorem 3.3 is a consequence of a much more general result, known
as Kontsevich’s formality theorem [18]; this theorem asserts that, for
any manifold M , there is an L∞-quasi-isomorphism from the differential
graded Lie algebra (DGLA) X (M) of multivector fields on M to the DGLA
D(M) of multidifferential operators on M , and moreover the first Taylor
coefficient of this L∞-morphism agrees with the natural map X (M) →
D(M) (defined by viewing vector fields as differential operators). It is a
general fact that any L∞-quasi-isomorphism between DGLAs induces a
one-to-one correspondence between equivalence classes of Maurer-Cartan
elements. Theorem 3.3 follows from the observation that the Maurer-
Cartan elements in X (M)[[~]] are formal Poisson structures, whereas the
Maurer-Cartan elements in D(M)[[~]] are star products.

(b) We recall that the L∞-quasi-isomorphism from X (M) to D(M), also called
a formality, is not unique, and the map (3.8) may depend upon this choice
(see e.g. [12] for more details and references). Just as in [3], for the
purposes of these notes, we will consider the specific global formality con-
structed in [10]. The specific properties of the global formality that we will
need are explicitly listed in [3, Sec. 2.2].

In general, not much is known about the space FPois(M,π), which parametrizes
Def(M,π), according to (3.9). An exception is when the Poisson structure π is
nondegenerate, i.e., defined by a symplectic structure ω ∈ Ω2(M). In this case, any
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formal Poisson structure π~ = ~π +
∑∞
r=2 ~rπr is equivalent (similarly to (3.6)) to

a formal series 1
~ω +

∑∞
r=0 ~rωr, where each ωr ∈ Ω2(M) is closed (see e.g. [15,

Prop. 13]); moreover, two formal Poisson structures π~, π′~ deforming the same
Poisson structure π, and corresponding to 1

~ω +
∑∞
r=0 ~rωr and 1

~ω +
∑∞
r=0 ~rω′r,

define the same class in FPois(M,π) if and only if, for all r ≥ 1, ωr and ω′r are
cohomologous. As a result, FPois(M,π) is in bijection with H2

dR(M,C)[[~]]. But in
order to keep track of the symplectic form ω, one usually replaces H2

dR(M,C)[[~]]
by the affine space [ω]

~ +H2
dR(M,C)[[~]] and considers the identification

(3.10)
1
~

[ω] +H2
dR(M,C)[[~]] ∼= FPois(M,π).

By (3.9), the map K∗ induces a bijection

(3.11)
1
~

[ω] +H2
dR(M,C)[[~]] ∼→ Def(M,π),

which gives an explicit parametrization of star products on the symplectic mani-
fold (M,ω). The map (3.11) is proven in [3, Sec. 4] to coincide with the known
classification of symplectic star products (see e.g. [15, 16] for an exposition with
original references), which is intrinsic and prior to Kontsevich’s general result. The
element c(?) ∈ 1

~ [ω] +H2
dR(M,C)[[~]] corresponding to a star product ? on (M,ω)

under (3.11) is known as its Fedosov-Deligne characteristic class. In particular, if
H2

dR(M) = {0}, all star products quantizing a fixed symplectic structure on M are
equivalent to one another. For star products satisfying the additional compatibility
condition (2.13), a classification is discussed in [23].

We now move to the main issue addressed in these notes: characterizing star
products on a manifold M which are Morita equivalent in terms of their character-
istic classes. We first recall basic facts about Morita equivalence.

4. Morita equivalence reminder

In this section, we will consider k-algebras (always taken to be associative and
unital), where k is a commutative, unital, ground ring; we will be mostly interested
in the cases k = C or C[[~]].

Morita equivalence aims at characterizing a k-algebra in terms of its represen-
tation theory, i.e., its category of modules. Let us consider unital k-algebras A, B,
and denote their categories of left modules by AM and BM. In order to compare
AM and BM, we observe that any (B,A)-bimodule X (which we may also denote
by BXA, to stress the left B-action and right A-action) gives rise to a functor
AM→ BM, defined on objects by tensor product:

V 7→ X ⊗A V.

We call BXA invertible if there is an (A,B)-bimodule AYB such that X⊗AY ∼= B as
(B,B)-bimodules, and Y ⊗B X ∼= A as (A,A)-bimodules. In this case, the functor
AM→ BM defined by BXA is an equivalence of categories.

We say that two unital k-algebras A and B are Morita equivalent if there
exists an invertible bimodule BXA. Note that if A and B are isomorphic algebras,
through an isomorphism ψ : B → A, then they are necessarily Morita equivalent:
A itself may be viewed as an invertible (B,A)-bimodule, with right A-action given
by algebra multiplication on the right, and left B-action given by left multiplication
via ψ, (b, a) 7→ ψ(b)a. One readily verifies that Morita equivalence is a reflexive
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and symmetric relation; to see that it is transitive, hence an equivalence relation
for unital k-algebras, the key observation is that if Y is a (C,B)-bimodule and X
is a (B,A)-bimodule, then the tensor product

Y ⊗B X

is a (C,A)-bimodule, which is invertible provided X and Y are.
For any unital k-algebra A, the set of isomorphism classes of invertible (A,A)-

bimodules has a natural group structure with respect to bimodule tensor product;
we denote this group of “self-Morita equivalences” of A by Pic(A), and call it the
Picard group of A.

The main characterization of invertible bimodules is given by Morita’s theorem
[21] (see e.g. [19, Sec. 18]):

Theorem 4.1. A (B,A)-bimodule X is invertible if and only if the following
holds: as a right A-module, XA is finitely generated, projective, and full, and the
natural map B → End(XA) is an algebra isomorphism.

In other words, the theorem asserts that a bimodule BXA is invertible if and
only if the following is satisfied: there exists a projection P ∈Mn(A), P 2 = P , for
some n ∈ N, so that, as a right A-module, XA ∼= PAn; additionally, XA being full
means that the ideal in A generated by the entries of P agrees with A; furthermore,
the left B-action on X identifies B with EndA(PAn) = PMn(A)P .

A simple example of Morita equivalent algebras is A and Mn(A) for any n ≥
1; in this case, an invertible bimodule is given by the free (Mn(A),A)-bimodule
An. Amongst commutative algebras, Morita equivalence boils down to algebra
isomorphism; nevertheless, the Picard group of a commutative algebra is generally
larger than its group of algebra automorphisms, as illustrated by the next example.

Example 4.2. Let A = C∞(M), equipped with the pointwise product. By
the smooth version of Serre-Swan’s theorem, see e.g. [22, Thm. 11.32], finitely
generated projective modules XA are given by the space of smooth sections of vector
bundles E →M ,

XA = Γ(E).

Writing E = PAn for a projection P , we see that tr(P ) = rank(E), so the mod-
ule XA is full whenever E has nonzero rank, in which case Γ(E) is an invertible
(Γ(End(E)), C∞(M))-bimodule. We conclude that all the algebras Morita equiva-
lent to C∞(M) are (isomorphic to one) of the form Γ(End(E)). In particular, for
any line bundle L → M , Γ(L) defines a self Morita equivalence of C∞(M), since
End(L) is the trivial line bundle M × C, so Γ(End(L)) ∼= C∞(M). Recall that
the set of isomorphism classes of complex line bundles over M forms a group (un-
der tensor product), denoted by Pic(M), which is isomorphic to the additive group
H2(M,Z).

To obtain a complete description of the Picard group of the algebra C∞(M),
recall that any automorphism of C∞(M) is realized by a diffeomorphism ϕ : M →
M via pullback,

f 7→ ϕ∗f = f ◦ ϕ,
so the group of algebra automorphisms of C∞(M) is identified with Diff(M). Putting
these ingredients together, one verifies that

Pic(C∞(M)) = Diff(M) n Pic(M) = Diff(M) nH2(M,Z),
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where the semi-direct product is with respect to the action of Diff(M) on line bundles
(or integral cohomology classes) by pullback.

5. Morita equivalence of star products

We now address the issue of describing when two star products on a manifold
M define Morita equivalent C[[~]]-algebras. The main observation in this section
is that Morita equivalence can be described as orbits of an action on Def(M). Let
us start by describing when two star products define isomorphic C[[~]]-algebras.

5.1. Isomorphic star products. Any equivalence T between star products
? and ?′, in the sense of Section 3.1, is an algebra isomorphism (by definition,
T = Id + O(~), so it is automatically invertible as a formal power series). But
not every isomorphism is an equivalence. In general, a C[[~]]-linear isomorphism
between star products ? and ?′ on M is of the form

T =
∞∑
r=0

~rTr,

where each Tr : C∞(M)→ C∞(M) is a differential operator, such that (3.3) holds
(c.f. [15], Prop. 14 and Prop. 29); note that this forces T0 : C∞(M)→ C∞(M) to
be an isomorphism of commutative algebras (relative to the pointwise product), but
not necessarily the identity. In particular, there is a diffeomorphism ϕ : M → M
such that

T0 = ϕ∗.

If we consider the natural action of the diffeomorphism group Diff(M) on star
products: ? 7→ ?ϕ, where

(5.1) f ?ϕ g = (ϕ−1)∗(ϕ∗f ? ϕ∗g), ϕ ∈ Diff(M),

we see that it descends to an action of Diff(M) on Def(M),

(5.2) Diff(M)×Def(M)→ Def(M), (ϕ, [?]) 7→ [?ϕ],

in such a way that two star products ?, ?′ define isomorphic C[[~]]-algebras if and
only if their classes in Def(M) lie on the same Diff(M)-orbit.

Remark 5.1. Similarly, given a Poisson structure π on M and denoting by

Diffπ(M) ⊆ Diff(M)

the group of Poisson automorphisms of (M,π), we see that the action (5.2) restricts
to an action of Diffπ(M) on Def(M,π) whose orbits characterize isomorphic star
products quantizing π.

We will see that there is a larger group acting on Def(M) whose orbits charac-
terize Morita equivalence.

5.2. An action of Pic(M). By Morita’s characterization of invertible bi-
modules in Theorem 4.1, the first step in describing Morita equivalent star prod-
ucts is understanding, for a given star product ? on M , the right modules over
(C∞(M)[[~]], ?) that are finitely generated, projective, and full.

One obtains modules over (C∞(M)[[~]], ?) by starting with a classical finitely
generated projective module over C∞(M), defined by a vector bundle E → M ,
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and then performing a deformation-quantization type procedure: one searches for
bilinear operators Rr : Γ(E)× C∞(M)→ Γ(E), r = 1, 2, . . ., so that

(5.3) s • f := sf +
∞∑
r=1

~rRr(s, f), s ∈ Γ(E), f ∈ C∞(M),

defines a right module structure on Γ(E)[[~]] over (C∞(M)[[~]], ?); i.e.,

(s • f) • g = s • (f ? g).

One may show [4] that the deformation (5.3) is always unobstructed, for any choice
of ?; moreover, the resulting module structure on Γ(E)[[~]] is unique, up to a
natural notion of equivalence. Also, the module (Γ(E)[[~]], •) over (C∞(M)[[~]], ?)
is finitely generated, projective, and full, and any module with these properties
arises in this way.

The endomorphism algebra End(Γ(E)[[~]], •) may be identified, as a C[[~]]-
module, with Γ(End(E))[[~]], so it induces an associative product ?′ on Γ(End(E))[[~]],
deforming the (generally noncommutative) algebra Γ(End(E)). For a line bundle
L → M , since Γ(End(L)) ∼= C∞(M), it follows that ?′ defines a new star prod-
uct on M . The equivalence class [?′] ∈ Def(M) is well-defined, i.e., it is inde-
pendent of the specific module deformation • or identification (C∞(M)[[~]], ?′) ∼=
End(Γ(L)[[~]], •), and it is completely determined by the isomorphism class of L in
Pic(M). The construction of ?′ from ? and L gives rise to a canonical action [2]

(5.4) Φ : Pic(M)×Def(M)→ Def(M), (L, [?]) 7→ ΦL([?]).

Additionally, for any Poisson structure π, this action restricts to a well defined
action of Pic(M) on Def(M,π).

5.3. Morita equivalence as orbits. Let us consider the semi-direct product

Diff(M) n Pic(M),

which is nothing but the Picard group of C∞(M), see Example 4.2. By combin-
ing the actions of Diff(M) and Pic(M) on Def(M), described in (5.2) and (5.4),
one obtains a Diff(M) n Pic(M)-action on Def(M), which leads to the following
characterization of Morita equivalent star products, see [2]:

Theorem 5.2. Two star products ? and ?′ on M are Morita equivalent if and
only if [?], [?′] lie in the same Diff(M) n Pic(M)-orbit:

[?′] = ΦL([?ϕ])

Similarly (see Remark 5.1), two star products on M quantizing the same Pois-
son structure π are Morita equivalent if and only if the lie in the same orbit of
Diffπ(M) n Pic(M) on Def(M,π).

Our next step is to transfer the actions of Diff(M) and Pic(M) = H2(M,Z) to
FPois(M) via K∗ in (3.8); i.e, we will find explicit actions of Diff(M) and H2(M,Z)
on FPois(M) making K∗ equivariant with respect to Diff(M) nH2(M,Z).

6. B-field action on formal Poisson structures

There is a natural way in which Poisson structures may be modified by closed
2-forms. In the context of formal Poisson structures, this leads to a natural action
of the abelian group H2

dR(M,C)[[~]] on FPois(M),

(6.1) H2
dR(M,C)[[~]]× FPois(M)→ FPois(M),
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that we will refer to as the B-field action, to be discussed in this section.

6.1. B-field transformations of Poisson structures. A convenient way to
describe how closed 2-forms may “act” on Poisson structures is to take a broader
perspective on Poisson geometry, following [9, 26], see also [14]. The starting
point is considering, for a manifold M , the direct sum TM ⊕ T ∗M . This bundle
is naturally equipped with two additional structures: a symmetric, nondegenerate,
fibrewise pairing, given for each x ∈M by

(6.2) 〈(X,α), (Y, β)〉 = β(X) + α(Y ), X, Y ∈ TxM, α, β ∈ T ∗xM,

as well as a bilinear operation on Γ(TM ⊕ T ∗M), known as the Courant bracket,
given by

(6.3) [[(X,α), (Y, β)]] := ([X,Y ],LXβ − iY dα),

for X,Y ∈ X 1(M) and α, β ∈ Ω1(M). The Courant bracket extends the usual Lie
bracket of vector fields, but it is not a Lie bracket itself.

One may use (6.2) and (6.3) to obtain an alternative description of Poisson
structures. Specifically, Poisson structures on M are in one-to-one correspondence
with subbundles L ⊂ TM ⊕ T ∗M satisfying the following conditions:

(a) L ∩ TM = {0},
(b) L = L⊥ (i.e., L is self orthogonal with respect to the pairing (6.2)), and
(c) Γ(L) is involutive with respect to the Courant bracket.

For a Poisson structure π, the bundle L ⊂ TM ⊕ T ∗M corresponding to it is (see
(3.5))

L = graph(π]) = {(π](α), α) | α ∈ T ∗M}.
Indeed, (a) means that L is the graph of a bundle map ρ : T ∗M → TM , while
(b) says that ρ∗ = −ρ, so that ρ = π] for π ∈ X 2(M); finally, (c) accounts for
the condition [π, π] = 0. In general, subbundles L ⊂ TM ⊕ T ∗M satisfying only
(b) and (c) are referred to as Dirac structures [9]; Poisson structures are particular
cases also satisfying (a).

We will be interested in the group of bundle automorphisms of TM ⊕ T ∗M
which preserve the pairing (6.2) and the Courant bracket (6.3); we refer to such
automorphisms as Courant symmetries. Any diffeomorphism ϕ : M →M naturally
lifts to a Courant symmetry, through its natural lifts to TM and T ∗M . Another
type of Courant symmetry, known as B-field (or gauge) transformation, is defined
by closed 2-forms [26]: any B ∈ Ω2

cl(M) acts on TM ⊕ T ∗M via

(6.4) (X,α) τB7→ (X,α+ iXB).

The full group of Courant symmetries turns out to be exactly Diff(M) n Ω2
cl(M).

For a Poisson structure π on M , the B-field transformation (6.4) takes L =
graph(π]) to the subbundle

τB(L) = {(π](α), α+ iπ](α)B) |α ∈ T ∗M} ⊂ TM ⊕ T ∗M,

and since τB preserves (6.2) and (6.3), τB(L) automatically satisfies (b) and (c) (i.e.,
it is a Dirac structure). It follows that τB(L) determines a new Poisson structure
πB , via τB(L) = graph((πB)]), if and only if τB(L)∩TM = {0}, which is equivalent
to the condition that

(6.5) Id +B]π] : T ∗M → T ∗M is invertible,
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where B] : TM → T ∗M , B](X) = iXB. In this case, the Poisson structure πB is
completely characterized by

(6.6) (πB)] = π] ◦ (Id +B]π])−1.

In conclusion, given a Poisson structure π and a closed 2-form B, if the compatibility
condition (6.5) holds, then (6.6) defines a new Poisson structure πB . A simple case
is when π is nondegenerate, hence equivalent to a symplectic form ω; then condition
(6.5) says that ω+B is nondegenerate, and πB is the Poisson structure associated
with it.

6.2. Formal Poisson structures and the B-field action. The whole dis-
cussion about B-field transformations carries over to formal Poisson structures –
and even simplifies in this context. Given a formal Poisson structure

π~ = ~π1 + ~2π2 + ... ∈ ~X 2(M)[[~]]

and any B ∈ Ω2
cl(M)[[~]], then B]π]~ = O(~), where here π]~ and B] are the associ-

ated (formal series of) bundle maps. Hence (Id +B]π]~) is automatically invertible
as a formal power series (i.e., (6.5) is automatically satisfied),

(Id +B]π]~)−1 =
∞∑
n=0

(−1)n(B]π]~)n,

and the same formula as (6.6) defines an action of the abelian group Ω2
cl(M)[[~]] on

formal Poisson structures: π~ 7→ πB~ , where

(πB~ )] = π]~ ◦ (Id +B]π]~)−1.

There are two key observations concerning this action: First, the B-field trans-
formations of equivalent formal Poisson structures remain equivalent; second, the
B-field transformation by an exact 2-form B = dA does not change the equivalence
class of a formal Poisson structure. This leads to the next result [3, Prop. 3.10]:

Theorem 6.1. The action of Ω2
cl(M)[[~]] on formal Poisson structures descends

to an action

(6.7) H2
dR(M,C)[[~]]× FPois(M)→ FPois(M), [π~] 7→ [πB~ ]

This action is the identity in first order of ~:

π~ = ~π1 +O(~) =⇒ πB~ = ~π1 +O(~).

So, for any Poisson structure π ∈ X 2(M), the action (6.7) restricts to

H2
dR(M,C)[[~]]× FPois(M,π)→ FPois(M,π).

When π is symplectic, so that we have the identification (3.10), this action is simply

(6.8) [ω~] 7→ [ω~] + [B],

for [ω~] ∈ 1
~ [ω] +H2

dR(M,C)[[~]] and [B] ∈ H2
dR(M,C)[[~]].
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7. Morita equivalent star products via Kontsevich’s classes

Our final goal is to present the description of Morita equivalent star products
in terms of their Kontsevich classes, i.e., by means of the correspondence

K∗ : FPois(M) ∼→ Def(M)

of Thm. 3.3. By Thm. 5.2, Morita equivalent star products are characterized by
lying on the same orbit of Diff(M) n Pic(M) on Def(M). In order to find the
corresponding action on FPois(M), we treat the actions of Diff(M) and Pic(M) ∼=
H2(M,Z) independently.

The group Diff(M) naturally acts on formal Poisson structures: for ϕ ∈ Diff(M),

π~ =
∞∑
r=1

~rπr
ϕ7→ ϕ∗π~ =

∞∑
r=1

~rϕ∗πr,

and this action induces an action of Diff(M) on FPois(M), with respect to which K∗
is equivariant [11]. This accounts for the classification of isomorphic star products
in terms of their Kontsevich classes, which is (the easy) part of the classification
up to Morita equivalence.

The less trivial part is due to the action (5.4) of Pic(M). In this respect, the
main result asserts that the transformation ΦL on Def(M) defined by a line bundle
L ∈ Pic(M) corresponds to the B-field transformation on FPois(M) by a curvature
form of L, see [3, Thm. 3.11]:

Theorem 7.1. The action Φ : Pic(M)×Def(M)→ Def(M) satisfies

ΦL([?]) = K∗([πB~ ]),

where B is a closed 2-form representing the cohomology class 2πic1(L), where c1(L)
is the Chern class of L→M .

A direct consequence is that flat line bundles (which are the torsion elements
in Pic(M)) act trivially on Def(M) under (5.4).

The theorem establishes a direct connection between the B-field action (6.7)
on formal Poisson structures and algebraic Morita equivalence: If a closed 2-form
B ∈ Ω2

cl(M) is 2πi-integral, then B-field related formal Poisson structures quantize
under K∗ to Morita equivalent star products.

The following classification results for Morita equivalent star products in terms
of their characteristic classes readily follow from Thm. 7.1:

• Two star products ? and ?′, with Kontsevich classes [π~] and [π′~], are
Morita equivalent if and only if there is a diffeomorphism ϕ : M → M
and a closed 2-form B, whose cohomology class is 2πi-integral, such that

(7.1) [π′~] = [(ϕ∗π~)B ].

• If ? and ?′ quantize the same Poisson structure π, so that [π~], [π′~] ∈
FPois(M,π), then the result is analogous: ? and ?′ are Morita equivalent
if and only if (7.1) holds, but now ϕ : M →M is a Poisson automorphism.

• Assume that ? and ?′ quantize the same nondegenerate Poisson struc-
ture, defined by a symplectic form ω. In this case, by (6.8), Theorem 7.1
recovers the characterization of Morita equivalent star products on sym-
plectic manifolds obtained in [5], in terms of Fedosov-Deligne classes
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(3.11): ? and ?′ are Morita equivalent if and only if there is a symplec-
tomorphism ϕ : M → M for which the difference c(?) − c(?′ϕ) is a 2πi-
integral class in H2

dR(M,C) (viewed as a subspace of H2
dR(M,C)[[~]] =

H2
dR(M,C) + ~H2

dR(M,C)[[~]]).

Remark 7.2. These notes treat star-product algebras simply as associative uni-
tal C[[~]]-algebras. But these algebras often carry additional structure: one may
consider star products for which complex conjugation is an algebra involution (e.g.
the Weyl star product, see (2.13)), and use the fact that R[[~]] is an ordered ring
to obtain suitable notions of positivity on these algebras (e.g. positive elements,
positive linear functionals). One can develop refined notions of Morita equivalence
for star products, parallel to strong Morita equivalence of C∗-algebras, taking these
additional properties into account, see e.g. [6]. An overview of these more elaborate
aspects of Morita theory for star products can be found e.g. in [29].
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