
1. First Lecture: Poisson Vertex Algebras

1.1. The objective of these lectures is not far-reaching, we want to simply introduce the reader to
the chiral de Rham complex of a manifold M and its associated two-variable elliptic genus in the
case when M is a Calabi-Yau manifold. In the first lecture we will introduce the classical version
of algebraic structure underlying these constructions: that of a Poisson vertex algebra. We
will explain its connection to Courant algebroids and Courant Dorfman algebras. In the second
lecture we will give the basic definitions of the quantum object to play with: vertex algebras.
We will construct several examples and show how the formalism of lambda bracket is useful in
making computations. In the third lecture we will introduce the chiral de Rham complex and
show how certain geometric structures of M are reflected in its algebraic properties.

Some references for these lectures are as follows. For the basics on vertex algebras the reader
might look in [1]. For a definition in terms of lambda brackets and examples of computations
the reader might consult [2]. The chiral de Rham complex was defined in [3] and its connections
to Courant algebroids was elucidated in [4]. For the use of lambda brackets in this formalism
and the explicit construction from Courant algebroids the reader might read [5]. The notion of
Courant-Dorfman algebra is due to Roytenberg [6].

1.2. As a driving guideline for our study of vertex algebras we will have the following diagram
in mind: {

QFT
Vertex algebras

}
//

��

{
Classical Field Theory

Poisson Vertex Algebras

}

��{
Quantum Mechanics
Associative algebras

}
//
{

Classical Mechanics
Poisson Algebras

}
Where the horizontal arrows are obtained by suitable classical limits.

In the bottom right corner we study the classical motion of particles on a (finite dimensional)
manifold X, this leads to the study of the Poisson algebra of functions on its cotangent bundle
T ∗X. This latter manifold, being a symplectic manifold, admits a quantization. Typically this
is obtained by studying the Hilbert space H := L2(X) and certain associative algebra A of
operators (for example differential operators in X) acting on H .

In the top corner we replace our finite dimensional space X by LX, the loop space of X. The
“algebra of functions” on T ∗LX now has the structure of a Poisson vertex algebra reflecting
the fact that T ∗LX is a symplectic infinite dimensional manifold (and hence Poisson). To make
these statements precise one needs to explain what algebra of functions one is considering. If one
considers formal local functionals one is lead to the notion of Poisson vertex algebra explained
below. Vertex algebras in the top left corner are just deformations of the corresponding Poisson
objects.

1.3. Definition. Let k be a field. A Lie algebra is a k-vector space g together with a k-bi-linear
and tri-linear maps

µ ∈ Homk(g⊗ g, g), Jac ∈ Homk(g⊗3, g) (1.1)

such that

(a) µ is alternating: µ(a, a) = 0 for all a ∈ g. So that µ descends to a linear map µ : ∧2g→ g.
(b) Jac(a, b, c) = µ

(
a, µ(b, c)

)
+ µ

(
b, µ(c, a)

)
+ µ

(
c, µ(a, b)

)
.

(c) Jac(a, b, c) = 0 for all a, b, c ∈ g.

Often times µ(a, b) is denoted by [a, b].
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1.4. What if we move from the category of k-modules to the category of k[∂]-modules? This
category is a tensor category, that is, given V,W two k[∂]-modules, we have that ∂ acts on
V ⊗k W as

∂
(
v ⊗ w

)
= (∂v)⊗ w + v ⊗ (∂w). (1.2)

Therefore the spaces involved in (1.1) are well defined, where we replace Homk by Homk[∂], and
Definition 1.3 still makes sense in this context. We obtain the notion of a differential lie algebra,
that is a usual Lie algebra g together with an endomorphism ∂ such that ∂[a, b] = [∂a, b]+[a, ∂b].

1.5. In the context of k[∂] modules we can however make something more interesting by con-
sidering different Hom spaces in (1.1). Notice that given two k[∂] modules V and W , we have
a k[∂1, ∂2] module structure on V ⊗k W where each differential acts on different factors. This
k[∂1, ∂2] module is denoted by V �W .

We have a k[∂1, ∂2] − k[∂] bi-module structure on k[∂1, ∂2], the action of k[∂1, ∂2] is just by
multiplication, while ∂ acts by ∂1 + ∂2. We obtain a k[∂1, ∂2] module ∆!V := k[∂1, ∂2]⊗k[∂] V .

We now will consider a k[∂] module g and require our bracket µ to be an element of

µ ∈ P ∗2 (g) := Homk[∂1,∂2](g� g,∆!g). (1.3)

There is an obvious involution σ in g � g and ∆!g coming from ∂1 ↔ ∂2. On g � g it simply
exchanges the two factors. The condition a) in 1.3 is now simply

(a) µ ◦ σ = −µ.

To define the Jacobiator we need to consider the k[∂1, ∂2, ∂3] module g� g� g and ∆
(3)
! g defined

as follows. We notice that k[∂1, ∂2, ∂3] is naturally a k[∂1, ∂2, ∂3]− k[∂] bi-module, where now ∂

acts by ∂1 + ∂2 + ∂3. We define ∆
(3)
! g := k[∂1, ∂2, ∂3]⊗k[∂] g. We will require

Jac ∈ P ∗3 (g) := Homk[∂1,∂2,∂3]

(
g� g� g,∆

(3)
! g
)
.

Notice that our bracket µ composes nicely, namely, we can define for example the composition
µ23 ◦ µ12 ∈ P ∗3 (g) as the composition

g� g� g
µ⊗Idg−−−−→ ∆!g� g '

(
k[∂1, ∂2]⊗k[∂] g

)
� g '

' (k[∂1]⊗k g) � g ' k[∂1]⊗k g⊗k g
µ−→ ∆

(3)
! g

where in the last two isomorphisms we have chosen k-vector spaces isomorphisms and the
k[∂1, ∂2, ∂3]-module structure is understood. Since we have an obvious action of the symmetric
group of three elements on g�g�g we define the other compositions µ31◦µ23 and µ12◦µ31 ∈ P ∗3 (g).
Finally the other axioms in Def. 1.3 read

(b) Jac = µ23 ◦ µ12 + µ31 ◦ µ23 + µ12 ◦ µ31

(c) Jac = 0.

Definition. A k[∂]-module together with an operation µ as in (1.3) satisfying a) b) and c) above
is called a Lie conformal algebra1.

1.6. We can write more concretely the Jacobi condition and the k[∂1, ∂2]-equivariance of the
bracket µ as follows. If we choose the isomorphism of vector spaces ∆!g ' k[∂1] ⊗k g and call
∂1 = λ we see that a Lie conformal algebra consists of a k[∂] module g together with a bracket

[·Λ·] : g⊗k g→ k[λ]⊗k g,
satisfying the following axioms.

1Also known as Lie∗-algebras or vertex-Lie algebras
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(a) Sesquilinearity: [∂aλb] = −λ[aλb],
(b) ∂ is a derivation: ∂[aλb] = [∂aλb] + [aλ∂b]
(c) Skew-Symmetry: [aλb] = −[b−λ−∂a]
(d) Jacobi condition: [aλ[bµc]] = [[aλb]λ+µc] + [bµ[aλb]]

1.7. Remark.

(a) Let V be a Lie conformal algebra and define the bracket [, ] : V ⊗ V → V as [a, b] =
[aλb]λ=0. It follows from a) and b) in the definition that the space ∂V ⊂ V is an ideal
for this bracket, that is [∂V, V ] ⊂ ∂V and [V, ∂V ] ⊂ ∂V , therefore defining g := V/∂V ,
the bracket [, ] descends to a linear map g ⊗ g → g. It now follows from c) and d) that
this bracket endows g with a Lie algebra structure.

In what follows, Lie conformal algebras will be playing the role of Lie algebras in the
usual finite dimensional theory.

(b) A Lie conformal subalgebra of g is a k[∂] submodule h stable under lambda bracket. An
ideal is a subalgebra such that [hλg] ⊂ k[λ] ⊗ h. If h ⊂ g is an ideal, then the quotient
space g/h is naturally a Lie conformal algebra.

1.8. Examples.

(a) Most examples we will work will be of Lie conformal algebras that are of finite type over
k[∂]. Consider first the k[∂]-module

Vir := k[∂]/∂k[∂]⊕ k[∂]
Vect' k ⊕ k[∂].

We will denote L the generator of the free module and C the generator of the first
summand (so that ∂C = 0). The only non-trivial bracket amongst generators is

[LλL] = (∂ + 2λ)L+
λ3

12
C, (1.4)

and extend this by a) b) in 1.6 to Vir. Notice that C is central in this algebra (that is
[Cλ Vir] = 0). This algebra is called the Virasoro Lie conformal algebra

(b) Let g be a finite dimensional Lie algebra and let (, ) ∈ Sym2 g∗ be an invariant bilinear
form. We will consider the k[∂]-module

Cur(g) := k[∂]/∂k[∂]⊕ k[∂]⊗k g
Vect' k ⊕ k[∂]⊗k g,

with non-trivial brackets amongst generators

[aλb] = [a, b] + λ(a, b)K, a, b ∈ g,

where K is the central element that generates k[∂]/∂k[∂]. This algebra is called the
current or affine Lie conformal algebra.

(c) A particular example of b) is when g is Abelian. In this case g is just a finite dimensional
vector space V with a symmetric bilinear form (, ). The non-trivial brackets amongst
generators now reads:

[vλw] = λ(v, w)K, v,w ∈ V.
This algebra is called the Heisenberg or free bosons Lie conformal algebra.

(d) In a similar fashion to the previous example, let V be a finite dimensional vector space
and let 〈, 〉 be a skew-symmetric bilinear form. We consider the k[∂]-module

F (V ) := k[∂]/∂k[∂]⊕ k[∂]⊗k V
Vect' k ⊕ k[∂]⊗k V,

with non-trivial brackets amongst generators

[vλw] = 〈v, w〉K.
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This algebra will be called the free (bosonic) ghost system. Notice the difference between
this example and the previous one in that the symmetry under exchange of factors is
different but also the factor λ appearing in the Heisenberg case is not in this example.
Note also that in order to have a non-trivial bracket, the dimension of V needs to be at
least 2.

(e) From the supersymmetric point of view, the previous example is an example of free
Fermions. For this one needs a Z/2Z-graded version of the definition in 1.6. The basic
idea is that a super Lie conformal algebra is a Z/2Z-graded k[∂]-module such that a)–d)
in 1.6 hold with some additions of signs: a) and b) are left as they are, in c) the sign in
the RHS changes whenever a and b are both odd and finally the “+” symbol in the RHS
of d) becomes a “-” if both a and b are odd. As a way of remembering, whenever we
commute two odd elements, the sign changes. The basic example of a super Lie conformal
algebra is as follows.

Let V be a finite dimensional super vector space (ie. a Z/2Z-graded vector space)
and let 〈, 〉 be a super-skew-symmetric bilinear form, ie. 〈V0̄, V1̄〉 = 〈V1̄, V0̄〉 = 0 and
〈, 〉 is skew-symmetric restricted to V0̄ and symmetric when restricted to V1̄. Then we
form F (V ) as above with the same bracket and we obtain a super Lie conformal algebra.
The particular case when V is a purely odd vector space (therefore 〈, 〉 is symmetric) is
commonly known as the Vertex algebra of Free fermions. Notice that in this case, the
dimension of V may be 1 and still the algebra may not be Abelian. From this perspective,
the free (bosonic) ghosts of the previous example d) has also the name of even Fermions
in some literature. In fact that algebra goes under several other names: symplectic bosons,
Weyl Lie conformal algebra and finally is also known as a βγ-system.

Finally, in this very same example, when V is purely odd and can be written as V−⊕V+

such that each space is isotropic for 〈, 〉 and this bilinear form gives a non-degenerate
pairing V−⊗V+ → k, the corresponding Lie conformal algebra F (V ) is commonly known
as a fermionic ghost system or bc-system. We will stick to the supersymmetric point of
view and all all these examples free Fermions.

(f) Consider the super k[∂]-module NS whose even part is NS0̄ := Vir and whose odd part
is a free module NS1̄ := k[∂] with generator G. The only non-trivial brackets are (1.4)
and

[LλG] =

(
∂ +

3

2
λ

)
G, [GλG] = L+

λ2

6
C, (1.5)

Exercise. Check that these brackets are compatible with a)–d) in the definition of a Lie
conformal algebra and therefore they produce a super Lie conformal algebra NS known
as the Neveu-Schwarz or super-Virasoro Lie conformal algebra

1.9. Definition. A Poisson vertex algebra A is a tuple (A, 1, ·, {λ}) such that

(a) A is a k[∂]-module.
(b) (A, {λ}) is a Lie conformal algebra.
(c) (A, ·, 1) is a unital commutative associative algebra (in the category of k[∂]-modules)
(d) The Lie conformal algebra A acts on itself by derivations of the commutative product,

that is, the Leibniz rule is satisfied: {aλbc} = {aλb}c+ b{aλc}.

1.10. Remark. Lie conformal algebras and Poisson vertex algebras can be defined similarly over
any commutative ring R (of char 6= 2) replacing our field k. Below we will consider the case
R = k[[~]].

1.11. In the usual case (vector space as opposed to k[∂]-modules) there are two canonical exam-
ples of Poisson algebras. One is as the algebra of functions on a symplectic (or Poisson manifold),
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for example T ∗X for any manifold X. The other is as the algebra of polynomial functions on
the dual g∗ of a Lie algebra, that is Sym g carries a natural Poisson algebra structure. Both
examples have natural vertex generalizations. Let us start with the latter.

Let g be a Lie conformal algebra of finite type over k[∂]. Consider the commutative algebra
Sym g. Here the symmetric product is taken over k[∂] with the usual tensor product. Let us
describe this in slight more detail. We have seen that for any two k[∂]-modules V ⊗W is a k[∂]-
module with (1.2). This allows us to define a k[∂]-module structure on the associative algebra
T (g) =

∑
k≥0 g

⊗k. This module structure is compatible with the associative unital product, that

is ∂ acts as a derivation of this product. Consider the (two-sided) ideal I of T (g) generated by
elements of the form a⊗ b− b⊗ a for a, b ∈ g. This ideal is invariant by ∂ since the generators
are. Therefore the quotient Sym g := T (g)/I is a k[∂]-module which is a commutative algebra
since T (g) is generated by g and elements of g commute modulo I . We can extend the bracket
{λ} from g⊗ g to g⊗ Sym g by using the Leibniz rule d) in Def. 1.9. Using skew-symmetry and
d) again we obtain a Poisson vertex algebra structure in Sym g.

1.12. To understand the geometric example, let us show that in the usual case, it is an instance
of Sym g for a family of Lie algebras g over X.

Definition. Let X be a smooth manifold (in some category, like holomorphic, analytic, C∞,
etc), OX its sheaf of smooth functions, a Lie algebroid A on X is a sheaf of k-vector spaces
endowed with three maps:

(a) · : OX ⊗k A → A making A into a sheaf of OX -modules2.
(b) [, ] : A ⊗k A → A making A into a sheaf of k-linear Lie algebras.
(c) An action A ⊗k OX → OX of A on OX by derivations (ie. a(fg) = (af)g+ f(ag) for all

f, g ∈ OX and a ∈ A ).
(d) The action of A on functions is compatible with the OX module structure on A , namely

[a, fb] = a(f)b+ f [a, b].

1.13. Examples.

(a) The tangent sheaf of X, TX whose sections are smooth vector fields and with the Lie
bracket of vector fields and the usual action on functions by derivations is a Lie algebroid.
Because of d) in Def. 1.12 every Lie algebroid A comes equipped with a map ] : A → TX

of Lie algebras (and in fact of Lie algebroids) typically called the anchor.
(b) When X is a Poisson manifold with Poisson bivector π, its cotangent bundle T ∗X is a Lie

algebroid, the anchor is given by contraction with π.
(c) If the manifold X is just a point, a Lie algebroid is the same thing as a Lie algebra.
(d) Let K = ker ], then the bracket in A induces a OX linear bracket in K (since the action

of K on OX is trivial), hence K is a bundle of Lie algebras on X (in our setup it might
just be a sheaf and not an actual vector bundle).

(e) Just as in the usual case (when X is just a point) if A is a Lie algebroid on X, the
sheaf Sym A is a sheaf of Poisson algebras on X. We define {a, f} = (af) = −{f, a}
for f ∈ OX and a ∈ A , and this bracket together with the bracket in A is extended
by Leibniz rule to all of Sym A . In the particular case when A = TX the commutative
algebra Sym TX can be viewed as the algebra of functions on T ∗X. In fact these are
polynomial on the fibers, but that will be enough for our purposes.

1.14. Let P = ⊕k≥0Pk be a graded Poisson algebra such that the commutative product is of
degree 0, that is PiPj ⊂ Pi+j and the Lie bracket is of degree −1: {Pi, Pj} ⊂ Pi+j−1. The

2Differential geometers usually ask this sheaf to be locally free, algebraic geometers typically will ask this sheaf
to be quasi-coherent.
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commutative products produces a unital commutative algebra structure on P0, let us call this
algebra OX . The same commutative product restricts to a OX -module structure on P1, let us call
this module A . The Lie bracket restricts to a k-linear Lie bracket on A and from {P1, P0} ⊂ P0

we obtain an action of A on OX by derivations (since the original Poisson bracket on P satisfies
the Leibniz rule). The same Leibniz rule shows that d) in Def. 1.12 is satisfied. With a little bit
of work on morphisms We arrive to the following

Lemma. The category of graded Poisson algebras generated in degree 0 and 1 is equivalent to
the category of Lie algebroids.

1.15. We can now produce a vertex version of the above mentioned objets. We just need to
replace k-vector spaces by k[∂]-modules. Let us fix a smooth manifold X and A a Lie algebroid
on it.

Proposition. Consider the sheaf P (A ) of k[∂]⊗OX-modules freely generated by Sym A . This
is a Poisson vertex algebra with bracket

{fλg} = 0, {aλf} = a(f), {aλb} = [a, b], a, b ∈ A , f, g ∈ OX ,

extended to the whole P (A ) by the Leibniz rule and a)–d) in 1.6.

1.16. The example in 1.15 is not that interesting since it lacks powers of λ in the brackets. In
fact this example is simply (a sheaf version) of Cur(g) as in b) in 1.8 where the invariant pairing
(, ) = 0 and the Lie algebra is g := A n OX . In order to have an example with a non-trivial
(, ) we need the notion of a family version of Lie algebras together with invariant bilinear forms.
This is provided by the following

Definition. A Courant Algebroid is a OX module A together with a k-linear bracket [, ] :
A ⊗k A → A and a non-degenerate symmetric OX -linear pairing (, ) : A ⊗OX

A → OX and an
action of A on OX by derivations such that

(a) The bracket satisfies the following version of the Jacobi condition:

[a, [b, c]] = [[a, b], c] + [b, [a, c]], a, b, c ∈ A ,

but it is not skew-symmetric.
(b) The bracket fails to be skew-symmetric by the action of derivations: (a, [b, c] + [c, b]) =

a(b, c).
(c) The action of A on functions is compatible with the OX -module structure as in d) of

Def. 1.12.
(d) The pairing is invariant modulo the actions of the derivations: ([a, b], c) + (b, [a, c]) =

a(b, c).
(e) Since the bracket is not a Lie bracket, we need to specify what we mean by action of A

in O, we mean the usual condition a · b · f − b · a · f = [a, b] · f .

1.17. Remark.

(a) The action of A by derivation of OX produces a map A → TX which preserves brackets.
We call this map the anchor.

(b) Since the pairing is non-degenerate we obtain a differential dA : OX → A by (dA f, a) =
a(f). With this differential b) in the definition shows that the bracket is skew-symmetric
modulo dA -exact terms:

[b, c] + [c, b] = dA (b, c).

Notice also that this differential satisfies the Leibniz rule dA (fg) = gdA f + fdA g since
the pairing is OX -linear and A acts by derivations. We obtain thus a map T ∗X → A
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which is compatible with the dual of the anchor map in a) where we use the pairing (, )
to identify A with its dual.

(c) A := TX ⊕ T ∗X has a canonical Courant algebroid structure where the pairing is the
obvious symmetric pairing (divided by 2) and the bracket is given by the Dorfman bracket :

[X + ζ, Y + χ] = [X,Y ] + LieX χ− iY dζ, X, Y ∈ TX , ζ, χ ∈ T ∗X .

A Courant algebroid is called exact if it fits in a short exact sequence of OX -modules

0→ T ∗X → A → TX → 0,

exact Courant algebroids are locally trivial in the sense that are isomorphic to TX ⊕T ∗X
with the Dorfman bracket.

(d) When X is just a point, a Courant algebroid is the same thing as a Lie algebra with an
invariant symmetric bilinear form (non-degenerate). It is in this sense that we think of
Courant algebroids as family versions of these algebras endowed with non-trivial pairings.

1.18. Given a Courant algebroid over a point, we have constructed a Lie conformal algebra Cur(g)
in b) 1.8 and the corresponding Poisson vertex algebra in 1.11. It is natural to ask whether the
same construction goes through for Courant algebroids. This is the content of

Proposition. Let A be a Courant algebroid on X. There exists a (sheaf of) Poisson vertex
algebra P (A ) together with two maps (of sheaves of vector spaces) i : OX ↪→ P (A ) and τ : A ↪→
P (A ) sucht that

• i is a map of commutative unital algebras. In particular P (A ) is a OX-module.
• j is compatible with the OX-module structure, namely j(fa) = i(f)j(a) for all f ∈ OX

and a ∈ A .
• j satisfies the following compatibility condition between the {λ} bracket of P (A ) and the

Courant algebroid structure on A :

{j(a)λj(b)} = j[a, b] + λi(a, b), ∀a, b ∈ A

Moreover, P (A ) is universal with these conditions, namely for any other Poisson vertex algebra
P satisfying the above, there exists a unique morphism P (A ) � P .

Sketch of the Proof. Consider the constant sheaf k and form the k[∂]-module Cur(A ) as the
quotient:

0→ k[∂]⊗ OX
∂−dA−−−−→ k[∂]⊗

(
OX ⊕A

) π−→ Cur(A )→ 0.

This is naturally a (sheaf of) Lie conformal algebra with bracket given by

[aλb] = [a, b] + λ(a, b), [aλf ] = a(f), [fλg] = 0, a, b ∈ A , f, g ∈ OX .

We first need to check that this bracket is well defined on the quotient. We define the same
bracket in the free module generated by OX⊕A and we see that skew-symmetry is not satisfied,
in fact, for a, b ∈ A we have

[bλa] = [b, a] + λ(b, a) = −[a, b] + dA (a, b) + λ(a, b) =

− [a, b] +
(
λ+ ∂

)
(a, b) +

(
dA − ∂

)
(a, b) = −[a−λ−∂b] +

(
dA − ∂

)
(a, b).

From where Skew-Symmetry is satisfied in the quotient Cur(A ). Similarly for sesquilinearity a)
in Def. 1.6, we have for f ∈ OX and a ∈ A

[dA fλa] = [dA f, a] + λ(dA f, a) = λ(dA f, a) = λa(f) = λ[aλf ] = −λ[fλa].

The Jacobi condition is checked in the same way.
The Lie conformal algebra Cur(A ) is a OX differential module naturally and in fact the

submodule πk[∂] ⊗ OX is an Abelian ideal of Cur(A ). The algebra P (A ) is as in 1.11 simply
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Symk Cur(A )/I where I is the ideal generated by πk[∂] ⊗ OX . As a OX module this is just
SymOX

Cur(A ). The universality condition is straightforward to check. �

1.19. Remark.

(a) In the case when A is the standard Courant algebroid of Rem. 1.17 c) over the affine line
A1 = Spec k[x], we see that P (A ) is simply (the symmetric algebra of) the βγ-system of
Ex. 1.8 d). Here we identify γ with x ∈ OX and β with ∂x ∈ TX .

(b) Notice from the proof of Prop. 1.18 it follows that as a OX -module, P (A ) consists of
several copies of Sym A .

1.20. In fact a version of Lem. 1.14 by considering graded Poisson vertex algebras generated
in degree 0 and 1 shows that the notion of Courant algebroid needs to be relaxed in order to
allow for degenerate pairings (, ). Let V = ⊕k≥0Vk be a Poisson vertex algebra such that the
commutative product is of degree 0, the derivation ∂ is of degree 1 and the lambda bracket is of
degree −1, that is for a ∈ Vi, b ∈ Vj and {aλb} =

∑
λkck we have ck ∈ Vi+j−k−1 for all k. Let

us study the structure that we obtain from V0 and V1. The commutative product produces

(a) a commutative unital algebra OX := V0,
(b) a OX module E := V1.

The lambda bracket restricted to V1 ⊗ V1 has only two components. Naming [, ] its λ0 term and
(, ) its linear term we obtain

(c) a k-bilinear map [, ] : E ⊗ E → E ,
(d) a k-bilinear map (, ) : E ⊗ E → OX .

Since the derivation is of degree 1 we have

(e) a derivation ∂ : OX → E .

From skew-symmetry of the lambda bracket restricted to V1 ⊗ V1 we obtain immediately:

(1) (a, b) = (b, a) for all a, b ∈ E ,
(2) [a, b] + [b, a] = ∂(a, b) for all a, b ∈ E .

From sesquilinearity we obtain

(3) [∂f, a] = 0, for f ∈ OX , a ∈ E ,
(4) (∂f, ∂g) = 0, f, g ∈ OX ,

and from the Leibniz rule we get

(5) [a, fb] = (a, ∂f)b+ f [a, b].

Finally the Jacobi identity implies

(6) [a, [b, c]] = [[a, b], c] + [b, [a, c]], a, b, c ∈ E ,
(7) (a, ∂(b, c)) = ([a, b], c) + (b, [a, c]), a, b, c ∈ E .

Proposition. The set of data a) − e) above satisfying the axioms 1) − 7) is called a Courant-
Dorfman algebra. They form a category in the obvious way and we have an equivalence of
categories between graded Poisson vertex algebras freely generated in degree 0 and 1 and Courant-
Dorfman algebras

1.21. Remark. When the pairing (, ) is non-degenerate, the action of E on O determines com-
pletely the derivation ∂, hence axioms 3) and 4) above are redundant. In this case the notion of
a Courand-Dorfman algebra coincides with that of a Courant algebroid.
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2. Second Lecture: Vertex Algebras

2.1. Definition. A vertex algebra is a Lie conformal algebra V with lambda-bracket [λ] endowed
with a k-bilinear operation · : V ⊗ V → V called the normally ordered product satisfying the
following axioms:

(a) Commutativity condition:

ab− ba =

∫ 0

−∂
dλ[aλb], a, b ∈ V,

where the RHS is computed as follows. First compute [aλb] to obtain a polynomial in λ
(with values in V ). Formally integrate this polynomial in λ and then apply the limits by
replacing λ by 0 and −∂.

(b) Associativity condition:

(ab)c− a(bc) =

(
a

∫ ∂

0

dλ

)
[bλc] +

(
b

∫ λ

0

dλ

)
[aλc], a, b, c ∈ V.

here the RHS is evaluated as follows. First compute [bλc] and integrate formally the
polynomial. Apply the limits 0 and ∂ to obtain two polynomials in ∂. Apply these
polynomials to a only. The second term in the RHS is similar with a and b switched.

(c) Unit: there exists a vector |0〉 ∈ V such that

|0〉a = a|0〉 = a, [|0〉λa] = [aλ|0〉] = 0, a ∈ V.

(d) ∂ is a derivation: ∂(ab) = (∂a)b+ a(∂b).

(e) Leibniz rule: [aλbc] = [aλb]c+ b[aλc] +
∫ λ

0
dµ[[aλb]µc].

Morphisms of vertex algebras are straightforward to define.

2.2. Remark. Notice that the commutativity, associativity and Leibniz axioms a) b) and e) fail
to be the usual axioms by either ∂-exact terms or multiples of λ. In fact we have the following

Proposition. Let V be a vertex algebra and define P (V ) = V/(V ∂V ), then the normally ordered
product on V descends to a commutative unital product on P (V ) and the bracket [a, b] := [aλb]λ=0

descends to a Lie bracket on P (V ) so that P (V ) endowed with these two operations is a Poisson
algebra.

2.3. A vertex subalgebra W ⊂ V is a Lie conformal subalgebra, containing the unit vector |0〉
and invariant under the product. An ideal is a Lie conformal ideal which is an ideal for the
normally ordered product as well, that is W · V ⊂ W . If W ⊂ V is an ideal, then the quotient
V/W is naturally a vertex algebra. A vertex algebra is called Abelian if the lambda bracket
vanishes.

2.4. By a one parameter family of vertex algebras we mean a vertex algebra V~ over k[[~]]
such that [aλb] ∈ ~V [λ]. Defining the k[[~]]/~k[[~]] ' k-vector space lim~→0 V~ := V/~V with
multiplication · and bracket {aλb} := 1

~ [aλb] we obtain a Poisson vertex algebra. This is called
the quasi-classical limit of V~.

2.5. Let A be a Poisson vertex algebra, then P (A) := A/(A∂A) is a Poisson vertex algebra in the
same way as in Prop. 2.2. Similarly, given a one parameter family V~, the quotient P (V~)/~P (V~),
where P (V~) := V~/(V~∂V~) is a Poisson algebra. We obviously have P (lim−→V~) ' P (V~)/~P (V~).
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2.6. The procedure of taking quasi-classical limits from vertex algebras to Poisson vertex algebras
(or from QFT to Classical field theories in the first row of 1.2) is the analog of the classical limit
from quantum mechanics to classical mechanics, namely, let A~ be an unital associative algebra
over k[[~]], flat (think free) as a k[[~]]-module, such that ab−ba ∈ ~A , then defining P (A) = A/~A
with multiplication given by · and Lie bracket {a, b} = 1

~ (ab − ba) we obtain a Poisson algebra
called the classical limit of A~. We have defined arrows going from the “quantum” side of 1.2
(the LHS) to the “classical” side and also a vertical arrow from the top right corner of Poisson
vertex algebras (classical field theories) to the bottom right corner (classical mechanics). There
exists another vertical arrow on the RHS of 1.2 that attaches to each vertex algebra V (resp.
a family V~) an associative algebra Z(V ) (resp a family Z(V~)) called the Zhu algebra of V .
Its construction goes beyond the scope of these lectures, but we will describe its nature in the
following examples.

2.7. Theorem. Let g be a Lie conformal algebra. There exists a unique vertex algebra U(g) with
a morphism of Lie conformal algebras i : g→ U(g) and universal with this property, namely, for
any other vertex algebra j : g → V , the morphism j factors via a morphism of vertex algebras
U(g)→ V .

2.8. The image of g in U(g) produces a filtration F i ⊂ F i+1 where F i is the span of products
of i elements in g. This filtration is compatible with the product in U(g): F iF j ⊂ F i+j and in
fact the associated graded grU(g) = ⊕F i/F i−1 is naturally a Poisson vertex algebra. Indeed,
we see that the bracket [F iλF j ] ⊂ F i+j−1 (the case i = j = 1 is by definition and the other cases
are obtained by use of the Leibniz rule) hence from a) in Def. 2.1 we see that the multiplication
in grU(g) is commutative. The lambda bracket in U(g) descends clearly to a lambda bracket of
degree −1 in grU(g), namely {gri U(g)λ grj U(g)} ⊂ gri+j−1 U(g). The Leibniz rule is trivially

satisfied since for a ∈ F i, b ∈ F j and c ∈ Fk, the integral term in the Leibniz rule e) in Def 2.1
belongs to F i+j+k−2 and therefore vanishes in gri+j+j−1 U(g). The product produces a natural
isomorphism of Poisson vertex algebras

Sym g
∼−→ grU(g). (2.1)

2.9. As usual, the above Poisson vertex algebra grU(g) can be recovered in the sense of 2.4 by
defining the following family of vertex algebras. We first consider the k[[~]][∂] module g~ :=
k[[~]] ⊗ g and define the bracket [aλb]~ := ~[aλb] for a, b in g and extend bilinearly to g~.
By Theorem 2.7 we have a family of vertex algebras U(g~). The limit lim−→U(g~) is naturally

isomorphic to grU(g).
Conversely, given a filtered vertex algebra F•V with 0 = F−1 ⊂ F0 ⊂ F1 ⊂ . . . as in 2.8

such that F iF j ⊂ F i+j−1 and the bracket satisfying the following compatibility condition with
respect to the filtration: for a ∈ F i, b ∈ F j and [aλb] =

∑
λncn, we will require cn ∈ F i+j−n−1

(see the analog classical condition in 1.20). Finally we will require that ∂F i ⊂ F i+1. In this
situation we obtain a Poisson vertex algebra structure on grU := ⊕Fk/Fk−1 as above, graded
in the same way as in 1.20.

2.10. Examples.

(a) Let g be a finite dimensional Lie algebra with non-degenerate invariant bilinear form as
in 1.8 b). We have the Lie conformal algebra Cur(g) and the corresponding vertex algebra
U(Cur g). The center k ' k[∂]/∂k[∂] ⊂ Cur(g) is an Abelian ideal and it generates an ideal of
U(Cur g), we define V l(g) as the quotient U(Cur g)/U(Cur g)(K− l) where K ∈ k ⊂ Cur(g)
is the generator of the center and l ∈ k is an arbitrary number. Let us describe these objects
in a little more detail. Consider the affine Kac-Moody Lie algebra ĝ = k((t)) ⊗ g ⊕ k with
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Lie bracket

[f ⊗ a, g ⊗ b] = fg ⊗ [a, b] + (a, b)

∫
fdg, f, g ∈ k((t)), a, b ∈ g,

and k ⊂ ĝ is central. The annihilation subalgebra is ĝ+ := k[[t]]⊗ g⊕ k ⊂ ĝ. Let kl be the
one dimensional representation of ĝ+ such that K ∈ k acts by multiplication by l (the level)
and k[[t]]⊗ g acts by zero. We have the Fock or Vacuum representation of ĝ defined as

Fockl(g) := U(ĝ)⊗U(ĝ+) kl, l ∈ k.

There is a natural isomorphism of vector spaces3

V l(g) ' Fockl(g).

The filtration F i of U(Cur g) defined in 2.9 induces a similar filtration of V l(g) and the
associated graded is a Poisson vertex algebra P (g) := grU(Cur g) which is naturally iso-
morphic to Sym Cur g/k ' Sym ĝ/ĝ+ ' Sym t−1k[t−1]⊗ g. The associated Poisson algebra
is simply the finite type algebra Sym g. Finally completing the square at the bottom right
of 1.2 we have the associative algebra Z(V l(g)) ' U(g). Notice that in this case the algebra
Z(V l(g)) is naturally a deformation of Sym g.

(b) A particular example is when g is Abelian as in c) 1.8. Let us take g ' k to be one
dimensional with generator α. We have the vertex algebra V 1(g). The lie algebra ĝ is the
infinite dimensional Heisenberg algebra, denoting by αn := tn⊗α ∈ ĝ we have the brackets

[αm, αn] = mδm,−n−1K, m, n ∈ Z,
and K is central. The vertex algebra V 1(g) is the Fock representation of this Heisenberg Lie
algebra and is generated by α. In fact, as a vector space, it has a basis given by products
of α and its derivatives:

(∂k1α)(∂k2α) . . . (∂kmα), k1 ≥ k2 ≥ · · · ≥ km ≥ 0.

From the Lie algebra perspective, denoting αn := tn⊗α we have a basis for Fock1(g) given
by

α−k1−1α−k2−1 . . . α−km−1|0〉, k1 ≥ k2 ≥ · · · ≥ km ≥ 0

where |0〉 is a basis element of k1 – the notation as in a) above. The isomorphism mentioned
in a) is given by identifying ∂kα with (k+1)!α−k−1 in the above bases. We note that already
in this very simple example of vertex algebra the product is not associative. In fact since
[αλα] = λ we have that the associator is given by b) in Def. 2.1 as

(αα)α− α(αα) = ∂2α.

The Poisson vertex algebra P (g) is in this case a polynomial algebra in Z+-many variables
∂kα (commutative and associative).

(c) An important example for this notes is given by the βγ-system which corresponds to the Lie
conformal algebra F (V ) of d) in 1.8, when the space V is of dimension 2 with basis {β, γ}
and the skew-symmetric bilinear form is defined such that 〈β, γ〉 = 1 and 〈β, β〉 = 〈γ, γ〉 = 0.
We consider the vertex algebra U(F (V )) and its quotient W modulo the ideal generated by
K − 1. This vertex algebra is called the βγ-system or the Weyl vertex algebra. As in the
previous example, it is associated to an infinite dimensional Lie algebra which happens to
be isomorphic to the Heisenberg algebra of the previous example. As a vector space, W has
a basis given by monomials of the form

(∂k1β) . . . (∂knβ)(∂j1γ) . . . (∂jmγ), k1 ≥ k2 ≥ · · · ≥ kn ≥ 0, j1 ≥ j2 ≥ · · · ≥ jm ≥ 0.

3In fact, is is easy to see that V l(g) is naturally a ĝ-module and this isomorphism is naturally an isomorphism
of ĝ-modules.
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In order to relate this to a Lie algebra, consider the infinite dimensional Weyl algebra g
spanned by {βm, γm}m∈Z and a central element K, the only non-trivial brackets are

[βm, γn] = δm,−nK, m, n ∈ Z.
The annihilation subalgebra g+ has a basis given by K and {βm, γm+1}m≥0. The Fock
module for this Lie algebra is induced from the one dimensional representation of g+ such
that K acts as the identity and the other basis elements act by zero. This Fock module has
a basis given by monomials of the form

β−k1−1 . . . β−kn−1γ−j1 . . . γ−jm |0〉, k1 ≥ k2 ≥ · · · ≥ kn ≥ 0, j1 ≥ j2 ≥ · · · ≥ jm ≥ 0,

where |0〉 is the generator of the 1-dimensional g+ module. Note that the zero mode γ0

does appear in the basis for this Fock module while the mode β0 does not appear. This
asymmetry will be explained below. The isomorphism of this Fock module with our vertex
algebra W is given by denoting ∂kβ by (k+ 1)!β−k−1 and ∂kγ = (k+ 1)!γ−k and matching
up the bases.

The vertex algebra W has two Abelian subalgebras generated by either β or γ. In fact,
as algebras these are just polynomial algebras in Z+-many variables ∂kβ (resp. ∂kγ) with
trivial lambda bracket. In particular, the product is both associative and commutative in
these algebras. In the whole W , the product is not associative, as we check directly:

(γγ)β − γ(γβ) = −2∂γ.

2.11. The most common way of presenting vertex algebras is by operators acting on a vector
space and the state-field correspondence. The relation with the above definition is as follows.
Let V be a vertex algebra. For a, b ∈ V define a(n)b ∈ V for n ∈ Z by

[aλb] =:
∑
j≥0

λj

j!
a(j)b, a(−j−1)b :=

1

j!
(∂ja)b, j ≥ 0.

The operations a ⊗ b 7→ a(n)b are called n-th products and we can define a vertex algebra as a
vector space V with Z-many products satisfying the following axiom (called Borcherds’ identity)∑

j∈Z+

(−1)j
(
n

j

)(
a(m+n−j)(b(k+j)c)− (−1)nb(n+k−j)(a(m+j)c)

)
=
∑
j∈Z+

(
m

j

)
(a(n+j)b)(m+k−j)c

for all a, b, c ∈ V , m,n, k ∈ Z together with a unit |0〉 ∈ V satisfying

|0〉(n)a = δn,−1a for n ∈ Z , a(n)|0〉 = δn,−1a for n ≥ −1.

Exercise. Show that this last equation is true on a vertex algebra with our definition 2.1.
Proving that Borcherds’ identity holds is more complicated.

The k[∂]-module structure is recovered by noting that a−2|0〉 := ∂a.

2.12. For each a ∈ V and n ∈ Z define a(n) ∈ End(V ) by b 7→ a(n)b. We define the field

Y (a, z) : V → k((z))⊗ V by Y (a, z) =
∑
j∈Z a(n)bz

−1−n.

Exercise. Prove that indeed for each b ∈ V we have Y (a, z)b ∈ V ((z)) ⊂ V [[z, z−1]].

The assignement a 7→ Y (a, z) is called the state-field correspondence. Note that we have
Y (a, z)|0〉 ∈ V [[z]] (ie. it has no pole) and evaluating at zero we get

Y (a, z)|0〉|z=0 = a, a ∈ V, (2.2)
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providing us with a partial converse map (from fields to states). We will refine this map below.

2.13. Definition. A quantum-field of V is a linear map F (z) : V → k((z)) ⊗ V . Given two
quantum fields F (z) and G(w) we can consider their composition F (z)G(w) : V → k((z))((w))⊗
V ⊂ V [[z, w, z−1, w−1]]. Two quantum fields F (z) and G(w) are called mutually local if there
exists N ∈ Z+ such that

(z − w)n[F (z), G(w)] = (z − w)n (F (z)G(w)−G(w)F (z)) = 0, ∀n ≥ N.

2.14. Theorem. Let V be a vertex algebra.

(a) For every pair a, b in V the correponding quantum fields Y (a, z) and Y (b, w) are mutually
local.

(b) We have [∂, Y (a, z)] = ∂zY (a, z) for all a ∈ V .
(c) If F (z) is a quantum field satisfying b), F (z)|0〉 ∈ V [[z]] and which is mutually local with

all Y (a,w) for a ∈ V there exists a unique b ∈ V such that F (z) = Y (b, z), in particular
b is determined as F (z)|0〉|z=0.

2.15. We arrive to our third definition of a vertex algebra: it is a k[∂]-module V together with a
state-field correspondence a 7→ Y (a, z) satisfying (2.2), a)-b) in Thm 2.14 and Y (|0〉, z) = IdV .

2.16. Remark. We will not need to talk about fields nor the coordinate z in our lectures. In
fact, the beauty of the lambda bracket formalism allows one to go far in the theory of vertex
algebras without ever using the Fourier modes a(n). There are however, vertex algebras that are
difficult to construct without the field formalism, notably the lattice vertex algebras.

2.17. To show the power of the lambda bracket formalism, consider the Lie conformal algebra
Cur g as in b) 1.8 and the associated vertex algebra V l(g) as in a) 2.10. Let {ai} be a basis

for g and let {ai} be its dual basis with respect to the bilinear form (, ), that is: (ai, a
j) = δji .

Suppose g is a simple Lie algebra, so that its adjoint representation is irreducible and therefore
its Casimir element Ω :=

∑
i a
iai acts as a multiple of the identity. Let 2h∨ be this multiple.

Suppose l 6= −h∨ and define

L =
1

2(l + h∨)

∑
i

aiai ∈ V l(g).

We have:

Proposition. L satisfies the Virasoro commutation relations (1.4) with C = l dim g
(l+h∨) . This is

known as the Segal-Sugawara construction. Moreover, for any vector a ∈ V we have [Lλa] =
(∂ + λ∆a)a + O(λ2) for some number ∆a ∈ k called the conformal weight of a. A vector such
that the higher order terms O(λ2) vanish is called a primary vector. All vectors a ∈ g ⊂ V l(g)
are primary of conformal weight 1 for this L.

Proof. Let us use the summation of repeated indices notation. For any b ∈ g we have

[bλa
iai] = [b, ai]ai + λl(b, ai)ai + ai[b, ai] + λlai(b, ai) +

∫ λ

0

[[b, ai]µai]dµ =

[b, ai]ai + ai[b, ai] + 2λlb+

∫ λ

0

dµ
(

[[b, ai], ai] + µl([b, ai], ai)
)

=

[b, ai]ai + [b, ai]a
i + 2λlb+ λ[[b, ai], ai] +

λ2l

2
([b, ai], ai). (2.3)
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Recall that the Casimir element does not depend on the basis chosen, hence we have Ω = aia
i =

aiai and the λ terms look like [[b, ai], ai] = Ωb = 2h∨b. Similarly, by the independence of the
basis, we have [ai, a

i] = [ai, ai] = 0. Collecting we can express (2.3) as

[bλa
iai] = [b, ai]ai + ai[b, ai] + 2λ(l + h∨)b.

Finally from
[b, ai]ai = ([b, ai], aj)a

jai = −([b, aj ], a
i)ajai = −aj [b, aj ],

we see that the linear terms in λ vanish and we obtain:

[bλL] = λb, [Lλb] = (∂ + λ)b,

showing that all vectors b are primary of conformal weight 1. Another application of the Leibniz
rule shows:

[LλL] =
1

2(l + h∨)

[(
(∂ + λ)ai

)
ai + ai (∂ + λ) ai +

∫ λ

0

[
(∂ + λ)aiµai

]
dµ
]

= (∂ + 2λ)L+
1

2(l + h∨)

∫ λ

0

(λ− µ)µl(ai, ai) = (∂ + 2λ)L+
l dim g

12(l + h∨)
λ3

showing that L generates a Virasoro algebra of central charge c = l dim g
l+h∨ . �

2.18. In a similar way as in the previous example, let V be a vector space with a skew-
symmetric bilinear form 〈, 〉 and consider the vertex algebra F (V ) as in Example 2.10 c) or
abusing notation as in Example 1.8 d). Suppose we can write V = L ⊕ L∗ for a lagrangian
subspace L ⊂ V . Let vi be a basis for L and let vi be its dual basis with respect to 〈, 〉, that is
〈vi, vj〉 = δij . Then in a similar way as before we have

L =
∑
i

(∂vi)v
i,

is a Virasoro field of central charge c = dimL. Vectors in L have conformal weight 0 while
vectors in L∗ have conformal weight 1. When L has dimension 1 we typically call it basis vector
γ and the dual basis vector of L∗ is called β.

3. Third lecture: Chiral de Rham

3.1. Let us start by extending the Virasoro structure of the βγ-system of 2.18 to the bc-βγ
system to introduce supersymmetry. Recall the (super) Lie conformal algebra NS of Example
1.8 f) and the corresponding vertex algebra U c(NS) (as always, we already divided by the ideal
generated by C − c for c ∈ k. This vertex algebra is called the N = 1 superconformal, or the
super-Virasoro, or the Neveu-Schwarz vertex algebra.

Definition.

(a) Let V be a vertex algebra, we say that an element L ∈ V is a Virasoro field if L satisfies
(1.4) and moreover, we have {Lλ ·}λ=0 = ∂ ∈ End(V ).

(b) In addition we say that G is a Neveu-Schwarz vector if G and L satisfy the commu-
tation relations (1.5). In this case the endomorphism D = {Gλ ·}λ=0 ∈ End(V ) is an
odd endomorphism (it changes parity) that squares to ∂. We call this endomorphism a
supersymmetry.

3.2. Let now L be a finite dimensional vector space and consider the bc − βγ system based on
L. This is simply the super vector space V := L ⊕ L∗ ⊕ L̄ ⊕ L̄∗ where L̄ is L considered as
odd. This space has a natural skew-symmetric bilinear form 〈, 〉. Notice that skew-symmetric
here means in the super sense, hence the form is actually symmetric in L̄ ⊕ L̄∗. There exists a
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natural Neveu-Schwarz vector G on F (V ). With respect to this structure the vectors in L have
conformal weight 0, vectors in L∗ have conformal weight 1 and the fermions in L̄ ⊕ L̄∗ have
conformal weight 1/2. The action of the supersymmetry D is as follows. For a vector γ ∈ L and
a vector b ∈ L̄∗ we denote Dγ = c ∈ L̄ to be the same vector γ with changed parity and similarly
Db = β ∈ L∗ is the same vector with changed parity. For a basis {γi} of L with dual basis {bi}
of L̄∗ the Neveu-Schwarz vector that accomplishes this supersymmetry is

G =
∑
i

ciβi + (∂γi)bi.

3.3. The question we want to address is the following. Given a Courant Algebroid on X or more
generally a Courant-Dorfman algebra as in 1.20 we can attach to it a graded Poisson vertex
algebra P (A ) generated in degrees 0 and 1. The question is whether there exists a family vertex
algebras U~(A ) such that lim−→U~(A ) = P (A ). Recall that the degree zero part of P (A ) is an
algebra OX and the degree 1 part is a OX -module E . In the quantum version, this no longer will
be the case. Let us suppose that we have a filtered vertex algebra U(A ) as in 2.9 such that the
associated graded grU(A ) ' P (A ). The vertex algebraic structure obtained from F1 is known
as a vertex algebroid [7]. We will not need this structure in this lectures. However, we immediately
see that we need F0 = OX as commutative unital algebras and moreover gr1U(A ) = F1/F0 ' E .
Let us assume that we have these isomorphisms. Remember that for a ∈ E and f ∈ OX we have
{aλf} = a(f) in P (A ). Choosing any lifting ā ∈ F1 we need therefore [āλf ] = a(f) in U(A ).
The associativity axiom in Def. 2.1 b) implies

(fg)ā− f(gā) = (∂f)a(g) + (∂g)a(f), f, g ∈ OX , a ∈ E ,

And since OX is commutative and associative, the LHS is valid for ā modulo OX . This shows
that at the quantum level E is not a OX-module. This is the main difficulty in producing
these quantum deformations of P (A ).

3.4. In fact there are topological obstructions to produce U(A ), even when A is the standard
Courant algebroid Rem. 1.17 c). We will not dwell on these subjects in these lectures. Instead,
let us try to quantize a supersymmetric version of these algebras. We first construct the Poisson
vertex algebra structure. Let X be a smooth variety (in your favourite category) and consider the
commutative algebra OX . Let TX be its tangent bundle and consider the (super) commutative
algebra OY := SymOX

TX [−1]. The shifting can be thought of a change of parity so that as
mere OY -modules, this is just ∧∗TY . We have the standard Courant algebroid AY = TY ⊕T ∗Y
over Y and we can therefore consider its associated Poisson vertex agebra P (AY ). Finally, we
push this forward to X by the projection Y → X and call this algebra Psuper(AX).

3.5. Let us describe the algebra Psuper(A ) of 3.4 in more explicit terms. Consider the Poisson
vertex algebra generated by OY and TY with the obvious bracket {aλf} = a(f) for a ∈ TY and
f ∈ OY . Let us spell this out in local coordinates. Choose local coordinates {γi} for X in an
open patch. We have the local coordinates bi = ∂γi ∈ TX [−1] of Y (note that these are odd

coordinates). We have the associated local coordinates ci = dγi ∈ T ∗Y and βi = dbi ∈ T ∗Y . Notice
that βi are even and ci are odd coordinates. Finally, we note that we identify T ∗Y ' TY since Y
is a symplectic manifold (being the shifted cotangent bundle to X). Locally, P is generated by
these set of 4 dimY generators with brackets:

{βiλγj} = δji ,
{
biλc

j
}

= δji , i, j = 1, . . . ,dimY. (3.1)
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Under a different set of coordinates γ̃i = γ̃i(γj) we have the new set of generators (we sum over
repeated indexes):

γ̃i, b̃i =
∂γj

∂γ̃i
bj , c̃i =

∂γ̃i

∂γj
cj , β̃i =

∂γj

∂γ̃i
βj +

∂2γj

∂γ̃i∂γ̃k
∂γ̃k

∂γl
(bjc

l) (3.2)

3.6. Yet another way which seems more natural from the supersymmetric perspective is to define
a SUSY version of a Poisson vertex algebra [8], then to the standard Courant algebroid on X we
would associate our Psuper(A ). The advantage of this formalism is that in the SUSY case there
is no difference between the structure of a Poisson vertex algebra truncated in degrees 0 and 1
and that of a vertex algebra truncated to those degrees, therefore any Courant algebroid can be
quantized straightforwardly.

In terms of plain vertex algebras, we may start with our commutative algebra OY and its
tangent bundle TY [−1] considered odd. Let us produce a Poisson vertex algebra together with
a generator for supersymmetry D = {Gλ·}λ=0 that squares to ∂. Our algebra will be generated
by functions OY , vector fields TY [−1] and their superpartners with non-trivial brackets:

{DXλf} = X(f), {XλDf} = X(f), {DXλDY } = D[X,Y ]

3.7. Remark. The construction described in 3.4 gives a Poisson vertex algebra associated to
the standard Courant algebroid of X. For other Courant algebroids E the situation is similar,
one considers π∗E as a Courant algebroid on Y = T ∗[1]X, where π : Y → X is the standard
projection and then we construct Psuper(E ) := π∗P (π∗E ).

3.8. We now proceed to quantize the Poisson vertex algebra Psuper(A ) associated to the standard
Courant algebroid on X following [3]. On a coordinate chart U ⊂ X with coordinates {γi} we
consider the free bc−βγ system F (U) generated by (3.1) (we will write the brackets [λ] instead of
using braces to differentiate the quantum algebra from the Poisson vertex algebra). On a different

coordinate patch Ũ we would have similar fields γ̃i, β̃i, b̃i and c̃i, we need to check that on the
intersection U ∩ Ũ these two algebras coincide. For this we need to use the transformations (3.2).
Notice the subtlety of the last term in (3.2), since in the vertex algebra F (U) the multiplication is
not associative, we need to be careful in writing the parentheses for the products. Note however
that the algebra of functions of γi and their derivatives (the Jet space of X) is a commutative
associative subalgebra of F (U) hence we don’t need to worry about parenthesis in this subalgebra.

We clearly have that γ̃i commutes with the other generators c̃i and b̃i. We easily compute

[γ̃iλβ̃j ] =
∂γk

∂γ̃j
[γ̃iλβk] = −∂γ

k

∂γ̃j
∂γ̃i

∂γk
= −δij .
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