Homework 7

Exercise 1. Find the area of the paralellogram in \mathbb{R}^4 with vertices (1, 1, 1, 1), (3, 1, 1, 2), (3, 2, 3, 5) and (1, 2, 3, 4).

Exercise 2. evaluate the integral

$$\int_S x_4 dA,$$

where S is the surface in \mathbb{R}^4 defined by the parametrization

$$(x_1, x_2, x_3, x_4) = (u, v, u \cos v, u \sin v)$$

for $0 \le u \le 1$ and $0 \le v \le \pi/2$. Here dA is the volume form on S induced from the Riemmanian metric (which in turn is induced from the standard Riemannian metric of \mathbb{R}^4)

Exercise 3. Let $f : \mathbb{C} \to \mathbb{C}$ be a function. Let us say (this is not the usual definition) that f is analytic in an open set $U \subset \mathbb{C}$ if all the complex derivatives of f exists at every point of U and they are continuous.

1. if f = u + iv is analytic on an open set U prove that

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x},$$

where z = x + iy.

2. Prove that if f is analytic on U then $\int_c f dz = \int_c f(dx + idy) = 0$ for every closed curve c such that $c = \partial U$ for a 2-chain U (prove this just for a circle if you don't know what a chain is)

Exercise 4. If $f : [a,b] \to \mathbb{R}$ is non-negative and the graph of f in the xy-plane is revolved around the x-axis in \mathbb{R}^3 to yield a surface S. Show that the area of S is

$$\int_a^b 2\pi f \sqrt{1 + (f')^2}.$$

Exercise 5. Let

$$\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}},$$

be a two form on $\mathbb{R}^3 \setminus \{0\}$. Show that ω is closed and it is not exact. Show that $H^2(S^2, \mathbb{R}) \neq 0$.

Exercise 6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a smooth function and consider its graph $S \subset \mathbb{R}^3$. $g : \mathbb{R}^2 \to S$, $x \mapsto (x, f(x))$ is a diffeomorphism. Let dv_S be the volume form given by the Riemmanian metric as embedded surface of \mathbb{R}^3 . And let $dv_0 = dx \wedge dy$ be the standard volume form on \mathbb{R}^2 given by the standard Riemmanian metric of \mathbb{R}^2 . Define h by

$$g^* dv_S = h \times dv_0.$$

Find h.

Exercise 7. Let $S^n \subset \mathbb{R}^{n+1}$ be the unit sphere and let

$$X = \sum_{i=0}^{n} x_i \frac{\partial}{\partial x_i} \in \mathfrak{X}(\mathbb{R}^{n+1}).$$

Let $dv_0 = dx_0 \wedge \cdots \wedge dx_n$ be the standard volume form on \mathbb{R}^{n+1} and let dv_S be the Riemmanian volume form induced on S^n . Show that

$$dv_S = \iota_X(dv_0)|_S.$$

Exercise 8. Let T^2 be the 2-torus in \mathbb{R}^4 defined by the equations $w^2 + x^2 = y^2 + z^2 = 1$. Compute $\int_{T^2} xyz dw \wedge dy$.