Homework 7

Exercise 1. Find the area of the paralellogram in \mathbb{R}^{4} with vertices $(1,1,1,1),(3,1,1,2),(3,2,3,5)$ and (1, 2, 3, 4).
Exercise 2. evaluate the integral

$$
\int_{S} x_{4} d A
$$

where S is the surface in \mathbb{R}^{4} defined by the parametrization

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(u, v, u \cos v, u \sin v)
$$

for $0 \leq u \leq 1$ and $0 \leq v \leq \pi / 2$. Here $d A$ is the volume form on S induced from the Riemmanian metric (which in turn is induced from the standard Riemannian metric of \mathbb{R}^{4})
Exercise 3. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a function. Let us say (this is not the usual definition) that f is analytic in an open set $U \subset \mathbb{C}$ if all the complex derivatives of f exists at every point of U and they are continuous.

1. if $f=u+i v$ is analytic on an open set U prove that

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x},
$$

where $z=x+i y$.
2. Prove that if f is analytic on U then $\int_{c} f d z=\int_{c} f(d x+i d y)=0$ for every closed curve c such that $c=\partial U$ for a 2-chain U (prove this just for a circle if you don't know what a chain is)

Exercise 4. If $f:[a, b] \rightarrow \mathbb{R}$ is non-negative and the graph of f in the $x y$-plane is revolved around the x-axis in \mathbb{R}^{3} to yield a surface S. Show that the area of S is

$$
\int_{a}^{b} 2 \pi f \sqrt{1+\left(f^{\prime}\right)^{2}}
$$

Exercise 5. Let

$$
\omega=\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

be a two form on $\mathbb{R}^{3} \backslash\{0\}$. Show that ω is closed and it is not exact.
Show that $H^{2}\left(S^{2}, \mathbb{R}\right) \neq 0$.
Exercise 6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function and consider its graph $S \subset \mathbb{R}^{3} . g: \mathbb{R}^{2} \rightarrow S$, $x \mapsto(x, f(x))$ is a diffeomorphism. Let $d v_{S}$ be the volume form given by the Riemmanian metric as embedded surface of \mathbb{R}^{3}. And let $d v_{0}=d x \wedge d y$ be the standard volume form on \mathbb{R}^{2} given by the standard Riemmanian metric of \mathbb{R}^{2}. Define h by

$$
g^{*} d v_{S}=h \times d v_{0} .
$$

Find h.

Exercise 7. Let $S^{n} \subset \mathbb{R}^{n+1}$ be the unit sphere and let

$$
X=\sum_{i=0}^{n} x_{i} \frac{\partial}{\partial x_{i}} \in \mathfrak{X}\left(\mathbb{R}^{n+1}\right)
$$

Let $d v_{0}=d x_{0} \wedge \cdots \wedge d x_{n}$ be the standard volume form on \mathbb{R}^{n+1} and let $d v_{S}$ be the Riemmanian volume form induced on S^{n}. Show that

$$
d v_{S}=\left.\iota_{X}\left(d v_{0}\right)\right|_{S}
$$

Exercise 8. Let T^{2} be the 2-torus in \mathbb{R}^{4} defined by the equations $w^{2}+x^{2}=y^{2}+z^{2}=1$. Compute $\int_{T^{2}} x y z d w \wedge d y$.

