Homework 6

Due 13 November 2019

Exercise 1. Let M be a smooth manifold. Two embedded submanifolds $S_1, S_2 \subset M$ are said to be transverse if for each $p \in S_1 \cap S_2$, $T_pS_1 + T_pS_2 = T_pM$.

- Let $M = \mathbb{R}^3$. $S_1 = \{(x, y, z) \in \mathbb{R}^3 | x = z^2\}$, $S_2 = \{(x, y, z) \in \mathbb{R}^3 | y = z^3\}$. Are S_1 and S_2 transverse?
- Show that if S_1 and S_2 are transverse, then the intersection $S_1 \cap S_2$ is an embedded submanifold of dimension dim S_1 + dim S_2 dim M.

Exercise 2. Let G be a Lie group acting smoothly on a manifold M. Show that each orbit is immersed. Under what conditions on the action are the orbits embedded?

Exercise 3. Give an example of a smooth proper action of a group on a manifold M such that the quotient space is not a topological manifold.

Exercise 4. Show that U(n) is diffeomorphic to $U(1) \times SU(n)$ for every *n* but they are not isomorphic Lie groups if n > 1.

Exercise 5. Let V be a finite dimensional vector space and $F_{\bullet} = \{0 \subset F_1 \subset F_2 \subset \cdots \subset F_k \subset V\}$ a sequence of sub-vector spaces each one included in the next. Show that the set

$$\left\{F'_{\bullet} = \left\{0 \subset F'_1 \subset \dots \subset F'_k \subset V\right\} \mid \exists \phi \in GL(V), \; \phi F_i = F'_i \; \forall i \right\}$$

is naturally a smooth manifold.

Exercise 6. Let M be the manifold of the previous example.

- Show that M comes equipped with a sequence of vector bundles $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_k$ each one a sub-bundle of the next one.
- Show that all of them are included in a trivial vector bundle of rank dim V.

Exercise 7. Let $V \subset W$ be a subvector space of a finite dimensional vector space. Consider it's quotient Q and the sequence

$$0 \to V \xrightarrow{i} W \xrightarrow{\pi} Q \to 0.$$

There always exists a section $\sigma : Q \to W$ and $j : W \to V$ such that $\pi \circ \sigma = \mathrm{Id}_Q$, $j \circ \iota = \mathrm{Id}_V$ and ker $j = \mathrm{im}\sigma$ (simply take a complementary subspace to $V \subset W$).

Show that this is not the case if V, W and Q are vector bundles on a manifold M instead of vector spaces [Hint: the previous excercise provides counterexamples]

Exercise 8. Show that $SL(n, \mathbb{R})$ and $SL(n, \mathbb{C})$ are diffeomorphic to $SO(n) \times \mathbb{R}^{n(n+1)/2}$ and $SU(n) \times \mathbb{R}^{n^2}$ respectively.