Homework 2

Due 16 September 2019

Exercise 1. Let $F : \mathbb{R} \to \mathbb{R}^2$ be defined by $F(t) = (\cos t, \sin t)$. Let $X = \frac{\partial}{\partial t} \in \mathfrak{X}(\mathbb{R})$ and

$$Y = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \in \mathfrak{X}(\mathbb{R}^2).$$

Show that for each $p \in \mathbb{R}$ we have $F_*X_p = Y_{F(p)}$.

Exercise 2. Let $F : M \to N$ be a smooth map with M connected and dF = 0. Show that F is constant.

Exercise 3. Let M_1, \dots, M_k be smooth manfifolds. Let $\pi_i : M_1 \times \dots \times M_k \to M_i$ be the projection to the *i*-th factor. Show that for a collection of points $p_i \in M_i$, $i = 1, \dots, k$ the map

$$\alpha: T_{(p_1,\ldots,p_k)}\left(M_1\times\cdots\times M_k\right) \to T_{p_1}M_1\oplus\cdots\oplus T_{p_k}M_k,$$

defined by

$$\alpha(X) = \left(\pi_{1*}X, \cdots, \pi_{k*}X\right)$$

is an isomorphism.

Exercise 4. Let G be a Lie group

- 1. Let $m : G \times G \to G$ be the multiplication map. Identifying $T_{(e,e)}(G \times G) \simeq T_e G \oplus T_e G$ as above. Show that $m_* : T_e G \oplus T_e G \to T_e G$ is given by $m_*(X,Y) \simeq X + Y$.
- 2. Let $i : G \to G$ be the inversion map. Show that $i_* = -\operatorname{Id}_{T_eG}$.

Exercise 5. Let $F : M \to N$ be a smooth map. Show that $dF : TM \to TN$ is smooth.