Homework 2

Due 2 September 2019

Exercise 1. Compute the coordinate representation for each of the following maps in stereographic coordinates (as in Exercise 1 of the previous homework), use this to prove that each map is smooth:

- 1. For each $n \in \mathbb{Z}$, the n-th power map $p_n : S^1 \to S^1$ is given in complex notation by $p_n(z) = z^n$ (recall also Excersise 3 of the previous homework).
- 2. The antipodal map $S^n \to S^n$, $x \mapsto -x$.
- 3. The map $S^3 \rightarrow S^2$ given by

$$(z,w) \mapsto (z\overline{w} + w\overline{z}, iw\overline{z} - iz\overline{w}, z\overline{z} - w\overline{w})$$

where we think of S^3 as

$$S^{3} \simeq \left\{ (w, z) \in \mathbb{C}^{2} \mid |w|^{2} + |z|^{2} = 1 \right\} \subset \mathbb{C}^{2}.$$

Exercise 2. Let $f : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}^{k+1} \setminus \{0\}$ be a smooth map and suppose that for some $d \in \mathbb{Z}$ we have $f(\lambda x) = \lambda^d f(x)$ for all $\lambda \in \mathbb{R} \setminus \{0\}$ and $x \in \mathbb{R}^{n+1} \setminus \{0\}$. Show that the map $\overline{f} : \mathbb{RP}^n \to \mathbb{RP}^k$ induced by f is well defined and smooth.

Exercise 3. For any topological space M let C(M) be the algebra of continuous functions $M \to \mathbb{C}$. If $\varphi : M \to N$ is a continuous map defined $\varphi^* : C(N) \to C(M)$ by $\varphi^*(f) = f \circ \varphi$.

- 1. Show that φ^* is a linear map.
- 2. If M, N are smooth manifolds, show that φ is smooth if and only if $\varphi^*(C^{\infty}(N)) \subset C^{\infty}(M)$.
- 3. If $\varphi : M \to N$ is a homemorphism between smooth manifolds, show that it is a diffeomorphism if and only iff φ^* restricts to an isomorphism $C^{\infty}(N) \simeq C^{\infty}(M)$.

Exercise 4^{*}. Let G be a connected Lie group and $U \subset G$ be any neighborhood of the identity. Show that every element of G can be written as a finite product of elements of U.

Exercise 5. Let G be a connected Lie group. Show that the universal covering \tilde{G} is unique in the following sense: if $G' \to G$ is any other Lie group homomorphism that is a simply connected covering, then there exists a unique Lie group homomorphism $\varphi : \tilde{G} \to G'$ making the following diagram commute:

Exercise 6. Let M be a topological manifold and \mathfrak{A} be an open cover by precompact sets. Show that \mathfrak{A} is locally finite if and only if every open $U \in \mathfrak{A}$ intersects non-trivially only finitely many open sets $V \in \mathfrak{A}$.

Exercise 7. Show that SO(3) is a connected Lie group and that SU(2) is its universal cover.