Homework 2

Due 2 September 2019

Exercise 1. Compute the coordinate representation for each of the following maps in stereographic coordinates (as in Exercise 1 of the previous homework), use this to prove that each map is smooth:

1. For each $n \in \mathbb{Z}$, the n-th power map $p_{n}: S^{1} \rightarrow S^{1}$ is given in complex notation by $p_{n}(z)=z^{n}$ (recall also Excersise 3 of the previous homework).
2. The antipodal map $S^{n} \rightarrow S^{n}, x \mapsto-x$.
3. The map $S^{3} \rightarrow S^{2}$ given by

$$
(z, w) \mapsto(z \bar{w}+w \bar{z}, i w \bar{z}-i z \bar{w}, z \bar{z}-w \bar{w}
$$

where we think of S^{3} as

$$
S^{3} \simeq\left\{\left.(w, z) \in \mathbb{C}^{2}| | w\right|^{2}+|z|^{2}=1\right\} \subset \mathbb{C}^{2}
$$

Exercise 2. Let $f: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow \mathbb{R}^{k+1} \backslash\{0\}$ be a smooth map and suppose that for somed $\in \mathbb{Z}$ we have $f(\lambda x)=\lambda^{d} f(x)$ for all $\lambda \in \mathbb{R} \backslash\{0\}$ and $x \in \mathbb{R}^{n+1} \backslash\{0\}$. Show that the map $\bar{f}: \mathbb{R}^{p} \rightarrow \mathbb{R} \mathbb{P}^{k}$ induced by f is well defined and smooth.

Exercise 3. For any topological space M let $C(M)$ be the algebra of continuous functions $M \rightarrow \mathbb{C}$. If $\varphi: M \rightarrow N$ is a continuous map defined $\varphi^{*}: C(N) \rightarrow C(M)$ by $\varphi^{*}(f)=f \circ \varphi$.

1. Show that φ^{*} is a linear map.
2. If M, N are smooth manifolds, show that φ is smooth if and only if $\varphi^{*}\left(C^{\infty}(N)\right) \subset C^{\infty}(M)$.
3. If $\varphi: M \rightarrow N$ is a homemorphism between smooth manifolds, show that it is a diffeomorphism if and only iff φ^{*} restricts to an isomorphism $C^{\infty}(N) \simeq C^{\infty}(M)$.

Exercise 4*. Let G be a connected Lie group and $U \subset G$ be any neighborhood of the identity. Show that every element of G can be written as a finite product of elements of U.
Exercise 5. Let G be a connected Lie group. Show that the universal covering \tilde{G} is unique in the following sense: if $G^{\prime} \rightarrow G$ is any other Lie group homomorphism that is a simply connected covering, then there exists a unique Lie group homomorphism $\varphi: \tilde{G} \rightarrow G^{\prime}$ making the following diagram commute:

Exercise 6. Let M be a topological manifold and \mathfrak{A} be an open cover by precompact sets. Show that \mathfrak{A} is locally finite if and only if every open $U \in \mathfrak{A}$ intersects non-trivially only finitely many open sets $V \in \mathfrak{A}$.

Exercise 7. Show that $S O(3)$ is a connected Lie group and that $S U(2)$ is its universal cover.

