Homework 2

Due 26 August 2019

Exercise 1. Let $p^{\pm} = (0, \dots, 0, \pm 1) \in S^n \subset \mathbb{R}^{n+1}$. Define the stereographic projections $\sigma^{\pm} : S^n \setminus \{p^{\pm}\} \to \mathbb{R}^n$ by

$$\sigma^{\pm}(x^0,\cdots,x^n) = \frac{(x^0,\cdots,x^n)}{1 \mp x^n}.$$

Show that σ^{\pm} defines an Atlas on S^n and that the corresponding smooth structure is the same as the one defined in class.

Exercise 2. Denote by \mathbb{CP}^n the set of complex linear subspaces of \mathbb{C}^{n+1} with the quotient topology π : $\mathbb{C}^{n+1} \setminus \{0\} \twoheadrightarrow \mathbb{CP}^n$. Show that \mathbb{CP}^n is naturally a compact 2n dimensional smooth manifold.

Exercise 3. Show that $\mathbb{RP}^1 \simeq S^1$ as smooth manifolds. Let $[x_0 : x_1]$ be homogeneous coordinates of \mathbb{RP}^1 and $[y_0 : y_1]$ be homogeneous coordinates of another copy of \mathbb{RP}^1 and let $[z_0 : z_1 : z_2 : z_3]$ be homogeneous coordinates on \mathbb{RP}^3 . Show that the map

$$([x_0 : x_1], [y_0 : y_1]) \rightarrow [x_0y_0 : x_0y_1 : x_1y_0 : x_1y_1],$$

is a well defined smooth map $S^1 \times S^1 \hookrightarrow \mathbb{RP}^3$, that is the two torus embeds as a submanifold of \mathbb{RP}^3 .

Exercise 4. Show that $\mathbb{CP}^1 \simeq S^2$ as smooth manifolds. Conclude that with the same notation as in the previous exercise, there is an embedding $S^2 \times S^2 \hookrightarrow \mathbb{CP}^3$.

Exercise 5. Let $Heis_3(\mathbb{R})$ be the set of upper triangular 3×3 matrices with real entries and 1 on the diagonal. Let $Heis_3(\mathbb{R})$ be the subset of matrices with integer entries.

- 1. Show that they are both smooth manifolds of dimension 3 and 0 respectively.
- 2. Let $X = Heis_3(\mathbb{R})/Heis_3(\mathbb{Z})$. Show that the map

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mapsto \left(e^{2\pi i a}, e^{2\pi i b} \right),$$

descends to a well defined map $\pi : X \to \mathbb{T}^2$.

- 3. For any $x \in \mathbb{T}^2$ show that $\pi^{-1}(x) \simeq S^1$.
- 4^{*}. Show that X is a smooth manifold and that π is a smooth map. Such an X is called an S¹ fibration over the torus.