Homework 2

Due 26 August 2019

Exercise 1. Let $p^{ \pm}=(0, \cdots, 0, \pm 1) \in S^{n} \subset \mathbb{R}^{n+1}$. Define the stereographic projections $\sigma^{ \pm}: S^{n} \backslash\left\{p^{ \pm}\right\} \rightarrow$ \mathbb{R}^{n} by

$$
\sigma^{ \pm}\left(x^{0}, \cdots, x^{n}\right)=\frac{\left(x^{0}, \cdots, x^{n}\right)}{1 \mp x^{n}}
$$

Show that $\sigma^{ \pm}$defines an Atlas on S^{n} and that the corresponding smooth structure is the same as the one defined in class.

Exercise 2. Denote by $\mathbb{C P}^{n}$ the set of complex linear subspaces of \mathbb{C}^{n+1} with the quotient topology π : $\mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C P}^{n}$. Show that $\mathbb{C P}^{n}$ is naturally a compact $2 n$ dimensional smooth manifold.

Exercise 3. Show that $\mathbb{R P}^{1} \simeq S^{1}$ as smooth manifolds. Let $\left[x_{0}: x_{1}\right]$ be homogeneous coordinates of $\mathbb{R} \mathbb{P}^{1}$ and $\left[y_{0}: y_{1}\right]$ be homogeneous coordinates of another copy of $\mathbb{R P}^{1}$ and let $\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$ be homogeneous coordinates on $\mathbb{R P}^{3}$. Show that the map

$$
\left(\left[x_{0}: x_{1}\right],\left[y_{0}: y_{1}\right]\right) \rightarrow\left[x_{0} y_{0}: x_{0} y_{1}: x_{1} y_{0}: x_{1} y_{1}\right]
$$

is a well defined smooth map $S^{1} \times S^{1} \hookrightarrow \mathbb{R} \mathbb{P}^{3}$, that is the two torus embeds as a submanifold of $\mathbb{R} \mathbb{P}^{3}$.
Exercise 4. Show that $\mathbb{C P}^{1} \simeq S^{2}$ as smooth manifolds. Conclude that with the same notation as in the previous exercise, there is an embedding $S^{2} \times S^{2} \hookrightarrow \mathbb{C P}^{3}$.

Exercise 5. Let Heis (\mathbb{R}) be the set of upper triangular 3×3 matrices with real entries and 1 on the diagonal. Let Heis ${ }_{3}(\mathbb{R})$ be the subset of matrices with integer entries.

1. Show that they are both smooth manifolds of dimension 3 and 0 respectively.
2. Let $X=\operatorname{Heis}_{3}(\mathbb{R}) /$ Heis $_{3}(\mathbb{Z})$. Show that the map

$$
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \mapsto\left(e^{2 \pi i a}, e^{2 \pi i b}\right)
$$

descends to a well defined map $\pi: X \rightarrow \mathbb{T}^{2}$.
3. For any $x \in \mathbb{T}^{2}$ show that $\pi^{-1}(x) \simeq S^{1}$.

4*. Show that X is a smooth manifold and that π is a smooth map. Such an X is called an S^{1} fibration over the torus.

