Homework 1

Due August 19 2019

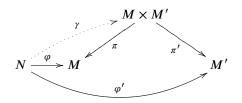
Exercise 1. Prove that $\mathbb{R}P^2$ is Hausdorff.

Exercise 2. Prove that $\mathbb{R}P^2$ is compact

Exercise 3. Let M be a second countable Hausdorff topological space. Show that the following are equivalent

- 1. For every point $m \in M$ there exists an open subset $m \in U \subset M$ and an open subset $V \subset \mathbb{R}^n$ together with an homeomorphism $\varphi : U \xrightarrow{\sim} V$.
- 2. For every point $m \in M$ there exists an open subset $m \in U \subset M$ and an homeomorphism $\varphi : U \cong \mathbb{R}^n$.

Exercise 4. Let M, M' and N be topological manifolds. Let $\varphi : N \to M$ and $\varphi' : N \to M'$ be continuous maps. Show that there exists a unique continuous map $\gamma : N \to M \times M'$ making the following diagram commutative:



Exercise 5. Does there exists a non-constant and non-surjective continuous map φ : $S^1 \rightarrow S^1$?

Exercise 6. Let \mathbb{T}^2 be the two-torus. Find a continuous map $\varphi : \mathbb{R}^1 \to \mathbb{T}^2$ such that $\varphi(\mathbb{R}^1) \subset \mathbb{T}^2$ is dense. Does there exists a similar map from S^1 instead of \mathbb{R}^1 ?

Exercise 7. Let $f : M \to N$ a continuous map and let $n \in N$ be a point in its image. Is $f^{-1}(n) \subset M$ a topological manifold?