Homework 4

All exercises from Artin

due Sept 27

1 Exercise. Let α be a complex root of the polynomial $x^{3}+x+1$ over \mathbb{Q} and let K be the splitting field of this polynomial over \mathbb{Q}.

- Is $\sqrt{-3}$ in the field $\mathbb{Q}(\alpha)$? is it in K ?
- Prove that the field $\mathbb{Q}(\alpha)$ has no automorphism except for the identity.

2 Exercise. Let $f(u)$ be a symmetric polynomial of degree d in u_{1}, \cdots, u_{n} and let $f^{0}\left(u_{1}, \cdots, u_{n-1}\right)=$ $f\left(u_{1}, \cdots, u_{n-1}, 0\right)$. Say that $f^{0}(u)=g\left(s^{0}\right)$ where s_{i}^{0} are the elementary symmetric functions in u_{1}, \cdots, u_{n-1}. Prove that if $n>d$ then $f(u)=g(s)$.

3 Exercise. Prove that the square of the determinant of the Vandermonde matrix is the discriminant.
4 Exercise. Let $\alpha=\sqrt[3]{2}, \zeta=\frac{1}{2}(-1+\sqrt{-3}), \beta=\alpha \zeta$. PRove that for all $c \in \mathbb{Q}, \gamma=\alpha+c \beta$ is the root of a degree six polynomial of the form $x^{6}+a x^{3}+b$

5 Exercise. Let K / F be a Galois extension whose Galois group is the symmetric group S_{3}. Is it true that K is the splitting field of an irreducible cubic polynomial over F ?

