Homework 4

All exercises from Artin

due Sept 27

1 Exercise. Let α be a complex root of the polynomial $x^3 + x + 1$ over \mathbb{Q} and let K be the splitting field of this polynomial over \mathbb{Q} .

- Is $\sqrt{-3}$ in the field $\mathbb{Q}(\alpha)$? is it in *K*?
- Prove that the field $\mathbb{Q}(\alpha)$ has no automorphism except for the identity.

2 Exercise. Let f(u) be a symmetric polynomial of degree d in u_1, \dots, u_n and let $f^0(u_1, \dots, u_{n-1}) = f(u_1, \dots, u_{n-1}, 0)$. Say that $f^0(u) = g(s^0)$ where s_i^0 are the elementary symmetric functions in u_1, \dots, u_{n-1} . Prove that if n > d then f(u) = g(s).

3 Exercise. Prove that the square of the determinant of the Vandermonde matrix is the discriminant.

4 Exercise. Let $\alpha = \sqrt[3]{2}$, $\zeta = \frac{1}{2}(-1 + \sqrt{-3})$, $\beta = \alpha \zeta$. PRove that for all $c \in \mathbb{Q}$, $\gamma = \alpha + c\beta$ is the root of a degree six polynomial of the form $x^6 + ax^3 + b$

5 Exercise. Let K/F be a Galois extension whose Galois group is the symmetric group S_3 . Is it true that K is the splitting field of an irreducible cubic polynomial over F?