Homework 3

Due 26/04/2024

Try as many exercises as you like, no one is expecting you to turn in a complete set.
1 Exercise. Let $a, b, p \in \mathbb{Z}_{+}$with p prime. Show that $a+b=p \Rightarrow(a, b)=1$.
2 Exercise. Factor $x^{2}-3 x-3 \in \mathbb{F}_{5}[x]$ into irreducible factors.
3 Exercise. Let $F \subset \mathbb{C}$ be a subfield and $f \in F[x]$ be an irreducible polynomial. Prove that f has no multiple roots in \mathbb{C} [Hint: think about the derivative of f]

4 Exercise. Find the gcd of $11+7 i$ and $18-i$ in $\mathbb{Z}[i]$.
5 Exercise. Show that the kernel of the map $\mathbb{C}[x, y] \rightarrow \mathbb{C}[t], f(x, y) \mapsto f\left(t^{2}, t^{3}\right)$ is a principal ideal and that its image is the set of polynomials $p(t)$ such that $f^{\prime}(0)=0$.

6 Exercise. Factor the following polynomials in $\mathbb{Q}[x]$

$$
x^{2}+2345 x+125, \quad x^{4}+2 x^{3}+3 x^{2}+2 x+1 .
$$

7 Exercise. Show that an integer prime p is prime in $\mathbb{Z}[\sqrt{3}]$ if and only if the polynomial $x^{2}-3$ is irreducible in $\mathbb{F}_{p}[x]$.

8 Exercise. Factor $1-3 i$ and $6+9 i$ into Gauss primes.
9 Exercise. Show that in $\mathbb{F}_{p}^{\times}, p>2$, there are no elements of order 2 besides -1 .

