Homework 3

Due 26/04/2024

Try as many exercises as you like, no one is expecting you to turn in a complete set.

1 Exercise. Let $a, b, p \in \mathbb{Z}_+$ with p prime. Show that $a + b = p \Rightarrow (a, b) = 1$.

2 Exercise. Factor $x^2 - 3x - 3 \in \mathbb{F}_5[x]$ into irreducible factors.

3 Exercise. Let $F \subset \mathbb{C}$ be a subfield and $f \in F[x]$ be an irreducible polynomial. Prove that f has no multiple roots in \mathbb{C} [Hint: think about the derivative of f]

4 Exercise. Find the gcd of 11 + 7i and 18 - i in $\mathbb{Z}[i]$.

5 Exercise. Show that the kernel of the map $\mathbb{C}[x, y] \to \mathbb{C}[t]$, $f(x, y) \mapsto f(t^2, t^3)$ is a principal ideal and that its image is the set of polynomials p(t) such that f'(0) = 0.

6 Exercise. Factor the following polynomials in $\mathbb{Q}[x]$

 $x^{2} + 2345x + 125,$ $x^{4} + 2x^{3} + 3x^{2} + 2x + 1.$

7 Exercise. Show that an integer prime p is prime in $\mathbb{Z}[\sqrt{3}]$ if and only if the polynomial $x^2 - 3$ is irreducible in $\mathbb{F}_p[x]$.

8 Exercise. Factor 1 - 3i and 6 + 9i into Gauss primes.

9 Exercise. Show that in \mathbb{F}_p^{\times} , p > 2, there are no elements of order 2 besides -1.