Lista 2

Entregar 09/05/2023

1 Exercise. Let R be a commutative ring and $A, A', B, B' \in R - mod$. Show that there is a natural external tensor product

$$\operatorname{Tor}_p(A,B)\otimes_R\operatorname{Tor}_q(A',B')\to\operatorname{Tor}_{p+q}(A\otimes_RA',B\otimes_RB')$$

which is associative and commutes with the connecting homomorphism of the long exact sequences associated to Tor (Weibel 2.7.5).

2 Exercise. Let k be a field and R be the ring of polynomial differential operators on the line, that is the k-algebra generated by x and ∂_x with the commutation relation

$$\partial_x \cdot x - x \cdot \partial_x = 1.$$

Let $\mathcal{O} := k[x] \in R - mod$ and $j_*j^*\mathcal{O} := k[x, x^{-1}] \in R - mod$ be given by the standard action where x acts by multiplication by x and ∂_x acts by derivation. Let $\iota_!k$ be the quotient module so that we have a short exact sequence of R-modules

$$0 \to \mathcal{O} \to j_* j^* \mathcal{O} \to \iota_! k \to 0.$$

- a) Is \mathcal{O} a projective *R*-module?
- b) Is ι_1 a projective *R*-module?
- c) Is any of the three modules flat?
- d) Compute $\operatorname{Tor}_*(\iota_! k, \iota_! k)$.

3 Exercise. Let R be a ring and P be its module, show that P is projective if and only if $\text{Ext}_R^1(P, M) = 0$ for all $M \in R - mod$.

4 Exercise. Let R be a ring, $A \in mod - R$ and $B \in R - mod$. Let $P_{\bullet} \to A$ and $Q_{\bullet} \to B$ be projective resolutions. We know that

$$H_{\bullet}(P_{\bullet}\otimes B)\simeq H_{\bullet}(A\otimes Q_{\bullet}).$$

Find an example of $A,B,P_{\bullet},Q_{\bullet}$ where there is no map of complexes

$$P_{\bullet} \otimes B \to A \otimes Q_{\bullet},$$

nor map in the other direction.

5 Exercise. Let $p, p' \in \mathbb{Z}$ be distinct primes. Find

$$\operatorname{Tor}_{\bullet}(\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}/p'\mathbb{Z}).$$