Lista 1

Entregar 28/3/2023

1 Exercise. Let C be a category with a zero object and direct sums as defined in class. For $f, g \in$ $\operatorname{Hom}_{C}(X, Y)$ we defined $f+g \in \operatorname{Hom}_{C}(X, Y)$ as the composition

$$
X \xrightarrow{\Delta} X \oplus X \xrightarrow{f, g} Y \oplus Y \xrightarrow{\nabla} Y .
$$

Show that it is associative, commutative and that 0 is the unit for addition.
2 Exercise. Let $C_{n}=\mathbb{Z} / 8 \mathbb{Z}$ for $n \geq 0$ and $C_{n}=0$ for $n<0$. Let $d_{n}(x):=4 x$. Show that C. is a complex and compute its homology.

3 Exercise. Let \mathcal{A} be an abelian category. Show that $H_{n}: C h(\mathcal{A}) \rightarrow A b$ is a functor from chain complexes to abelian groups.

4 Exercise. Write down the complex computing the singular homology of the tetrahedron as computed in class (notice that I included a 3 -simplex, unlike Weibel). Compute its homology.

5 Exercise. Find an example of an abelian category \mathcal{A} and an object $X \in \mathcal{A}$ which is not projective.
Find an example of an abelian category without enough projectives.

