## Calculus C, Homework 2 Due Friday July 16th

Exercise 1. Find the derivatives of the following functions:

$$
\begin{align*}
f(x) & =\sin ^{-1}\left(e^{x}\right)  \tag{1a}\\
g(x) & =\log \left(\sin (x) e^{x}\right)  \tag{1b}\\
h(x) & =\frac{e^{\sqrt{x}}}{\sqrt{1+\log (x)^{2}}}  \tag{1c}\\
i(x) & =\log |x| \tag{1d}
\end{align*}
$$

Can you tell where are these functions defined?

Exercise 2. A woman is at a point $A$ on the shore of a circular lake with radius 2 mi and wants to be at the point $C$ diametrically oposed to $A$, in the shortest time possible. She can walk at the rate of $4 m i / h$ and row a boat at a rate of $2 m i / h$. At what angle $\theta$ to the diameter $\overline{A C}$ should she row?

Exercise 3. Show that of all the isosceles triangles with a given perimeter the one with greatest area is equilateral

Exercise 4. A Boat leaves a dock at $2: 00 \mathrm{pm}$ and travels due south at a speed of $20 \mathrm{~km} / \mathrm{h}$. Another boat has been heading due east at $15 \mathrm{~km} / \mathrm{h}$ and reaches the same dock at $3: 00 \mathrm{pm}$. At what time were the two boats closest together?

Exercise 5. Find the local maximums and minimums of the function $\sin (1 / x)$ defined for all $x \neq 0$.

Exercise 6. Find the maximum of the function $e^{-x^{2}}$ defined for all real $x$. What about the minimum?

Exercise 7. Two runners start a race at the same time and finish in a tie. Show that at some point they had the same velocity.

Exercise 8. Find the point $P$ in the hyperbola $x y=8$ that is closest to the point $Q=(3,0)$. Is the line $\overline{P Q}$ tangent to the hyperbola at $P$ ?, is it perpendicular to the tangent line at $P$ ?

