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1 Introduction and statement of the results

Let α be an irrational number. According to Dirichlet’s theorem, the inequality

|α − p
q
| < 1

q2
has infinitely many rational solutions p

q
. Hurwitz improved this result

by proving that |α − p
q
| < 1√

5q2
also has infinitely many rational solutions p

q
for any irra-

tional α, and that
√

5 is the largest constant that works for any irrational α. However,

for particular values of α we can improve this constant.

More precisely, if we define k(α) := sup{k > 0 | |α − p
q
| < 1

kq2
has infinitely many

rational solutions p
q
} = lim supp,q→+∞ (q|qα− p|)−1. We have k(α) ≥

√
5, ∀α ∈ R \Q and

k
(

1+
√

5
2

)
=
√

5. We can define the set L = {k(α) | α ∈ R \Q, k(α) < +∞}.
This set is called the Lagrange spectrum. Hurwitz theorem determines the first element

of L, which is
√

5. This set L encodes many diophantine properties of real numbers. It

is a classical subject the study of the geometric structure of L. Markov proved in 1879

([Ma]) that

L ∩ (−∞, 3) = {k1 =
√

5 < k2 = 2
√

2 < k3 =

√
221

5
< . . . }

where kn is a sequence (of irrational numbers whose squares are rational) converging to 3,

which means that the “beginning” of the set L is discrete. This is not true for the whole

set L. Indeed, M. Hall proved in 1947 ([H]) that L contains a whole half line (for instance

[6,+∞)), and G. Freiman determined in 1975 ([F]) the biggest half line that is contained

in L, which is [c,+∞), with

c =
2221564096 + 283748

√
462

491993569
∼= 4, 52782956616 . . . .
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These last two results are based on the study of sums of regular Cantor sets, whose

relationship with the Lagrange spectrum will be explained below.

If the continued fraction of α is α = [a0, a1, a2, . . . ] then we have the following formula:

k(α) = lim sup
n→∞

(αn + βn),

where αn = [an, an+1, an+2, . . . ] and βn = [0, an−1, an−2, . . . , a1].

This follows from the equality∣∣∣∣α− pn
qn

∣∣∣∣ =
1

(αn+1 + βn+1)q2
n

, ∀n ∈ N,

which can be easily proved by induction.

This formula for k(α) implies that we have the following alternative definition of the

Lagrange spectrum L:

Let Σ = NZ be the set of all bi-infinite sequences of positive integers. If θ = (an)n∈Z ∈
Σ, let αn = [an; an+1, an+2, . . . ] and βn = [0; an−1, an−2, . . . ],∀n ∈ Z. We define f(θ) =

α0 + β0 = [a0; a1, a2, . . . ] + [0; a−1, a−2, . . . ]. We have L = {lim supn→∞ f(σnθ), θ ∈ Σ},
where σ : Σ→ Σ is the shift defined by σ((an)n∈Z) = (an+1)n∈Z.

Let us define the Markov spectrum M by M = {supn∈Z f(σnθ), θ ∈ Σ}. It also has an

arithmetical interpretation, namely

M = {( inf
(x,y)∈Z2\(0,0)

|f(x, y)|)−1, f(x, y) = ax2 + bxy + cy2, b2 − 4ac = 1}.

It is well-known (see [CF]) that M and L are closed sets of the real line and L ⊂M .

We have the following results about the Markov and Lagrange spectra:

Theorem 1: Given t ∈ R we have

HD(L ∩ (−∞, t)) = HD(M ∩ (−∞, t)) =: d(t)

(here HD denotes Hausdorff dimension), and d(t) is a continuous surjective function from

R to [0, 1]. Moreover:

i) d(t) = min{1, 2D(t)}, where D(t) := HD(k−1(−∞, t)) = HD(k−1(−∞, t]) is a

continuous function from R to [0, 1).

ii) max{t ∈ R | d(t) = 0} = 3
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iii) d(
√

12) = 1.

(indeed ii) and iii) are consequences of i)).

This theorem solves affirmatively Problem 3 of [B]. It also gives some answers to

Problem 5 of the same paper: the continuous function d(t) = HD(L ∩ (−∞, t)), which

coincides (for t > 0) with σ(1/t), in the notation of [B], is a Cantor stair function -

it is constant in the connected components of the complement of L ∩ (−∞, t1], where

t1 := min{t ∈ R | d(t) = 1}; notice that L∩ (−∞, t1] is a compact set with zero Lebesgue

measure, and so with empty interior. On the other hand, by its definition, d(t) cannot be

Hölder continuous with any exponent, since, for ε > 0 small, it sends the set L∩(−∞, 3+ε],

whose Hausdorff dimension d(3 + ε) is a small positive number to the nontrivial interval

[0, d(3 + ε)] - this implies that any Hölder exponent α > 0 for the function d(t) should

satisfy α ≤ d(3 + ε),∀ε > 0, and thus α = 0, a contradiction.

The proof of Theorem 1 is based on the idea of approximating parts of the spectra

from inside and from outside by sums of regular Cantor sets. Theorem 1 uses techniques

developed in a joint work with J.C. Yoccoz about sums of Cantor sets that implies that

the sum of two non essentially affine regular Cantor sets have Hausdorff dimension equal

to the minimum between one and the sum of their Hausdorff dimensions. This result will

be discussed in the next section.

Theorem 2: limt→∞HD(k−1(t)) = 1.

This in particular solves affirmatively Problem 4 of [B].

We also prove a result on the topological structure of the Lagrange spectrum L:

Theorem 3: L′ is a perfect set, i.e., L′′ = L′.

I would like to thank Aline Gomes Cerqueira for helpful comments and suggestions

which substantially improved this work.

2 A dimension formula for arithmetic sums of regular

Cantor sets

We say that K ⊂ R is a regular Cantor set of class Ck, k ≥ 1, if:

i) there are disjoint compact intervals I1, I2, . . . , Ir such that K ⊂ I1∪ · · · ∪ Ir and the
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boundary of each Ij is contained in K;

ii) there is a Ck expanding map ψ defined in a neighbourhood of I1 ∪ I2 ∪ · · · ∪ Ir such

that ψ(Ij) is the convex hull of a finite union of some intervals Is satisfying:

ii.1) for each j, 1 ≤ j ≤ r and n sufficiently big, ψn(K ∩ Ij) = K;

ii.2) K =
⋂
n∈N

ψ−n(I1 ∪ I2 ∪ · · · ∪ Ir).

We say that {I1, I2, . . . , Ir} is a Markov partition for K and that K is defined by ψ.

Let K,K ′ be regular Cantor sets of class C2. Let ψ be the expansive function which

defines K. It is a general fact that, given a periodic point p of period r of ψ, there is

a C2 diffeomorphism h of the support interval I of K such that h−1 ◦ ψr ◦ h is affine

in h−1(J), where J is the connected component of the domain of ψr which contains p.

Defining ψ̃ := h−1 ◦ψ ◦h, we say that K is non essentially affine if (ψ̃r)
′′
(x) 6= 0 for some

x ∈ h−1(K).

In [Mo], we use the Scale recurrence Lemma of [MY] in order to prove the following

Theorem. If K and K ′ are regular Cantor sets of class C2 and K is non essentially

affine, then HD(K +K ′) = min{HD(K) +HD(K ′), 1}.

3 Regular Cantor sets defined by the Gauss map

The Gauss map is the map g : (0, 1]→ [0, 1] given by g(x) = { 1
x
} = 1

x
− b 1

x
c, ∀x ∈ (0, 1].

Regular Cantor sets defined by the Gauss map (or iterates of it) restricted to some finite

union of intervals are closely related to continued fractions with bounded partial quotients.

We will often consider such regular Cantor sets associated to complete shifts . A complete

shift is associated to finite sets of finite sequences of positive integers. Given a finite set

B = {β1, β2, . . . , βm}, m ≥ 2, where βj ∈ (N∗)rj , rj ∈ N∗, 1 ≤ j ≤ m and βi does not be-

gin by βj for i 6= j, the complete shift associated to B is the set Σ(B) ⊂ (N∗)N of the finite

sequences obtained by concatenations of elements of B, that is, Σ(B) = {(α0, α1, α2, . . . ) |
αj ∈ B, ∀ j ∈ N}. Here (and in the rest of the paper), we use the following notation

for concatenations of finite sequences: if αj = (a
(1)
j , a

(2)
j , . . . , α

(mj)
j ) then (α0, α1, α2, . . . )

means the sequence (a
(1)
0 , a

(2)
0 , . . . , α

(m0)
0 , a

(1)
1 , a

(2)
1 , . . . , α

(m1)
1 , a

(1)
2 , a

(2)
2 , . . . , α

(m2)
2 , . . . ). In
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some cases some of the αj are finite sequences and some cases are single numbers, which

are viewed as one-element sequences for this notation. Associated to Σ(B) is the Can-

tor set K(B) ⊂ [0, 1] of the real numbers whose continued fractions are of the form

[0; γ1, γ2, γ3, . . . ], where γj ∈ B, ∀ j ≥ 1. It is a regular Cantor set. Indeed, if aj and bj

are respectively the smallest and the largest elements of K(B) whose continued fractions

begin by [0; βj], for 1 ≤ j ≤ m, and Ij = [aj, bj] then K(B) is the regular Cantor set

defined for the map ψ with domain
m⋃
j=1

Ij given by ψ|Ij = grj , 1 ≤ j ≤ m.

We have the following

Proposition. The Cantor sets K(B) defined by the Gauss map associated to complete

shifts are non essentially affine.

Proof: Let B = {β1, β2, . . . , βm}, βj ∈ (N∗)rj , 1 ≤ j ≤ m. For each j ≤ m, let

xj = [0; βj, βj, βj, . . . ] ∈ Ij be the fixed point of ψ|Ij = grj . Moreover, according to the

classical theory of continued fractions, if p
(j)
k /q

(j)
k := [0; b

(j)
1 , b

(j)
2 , . . . , b

(j)
k ], for 1 ≤ j ≤ m,

1 ≤ k ≤ rj, we have Ij ⊂ {[0; βj, α], α ≥ 1} and ψ|Ij(x) is given by

ψ|Ij(x) =
q

(j)
n x− p(j)

n

−q(j)
n−1x+ p

(j)
n−1

;

so xj is the positive root of q
(j)
n−1x

2 + (q
(j)
n − p(j)

n−1)x− p(j)
n = 0 (since xj is the fixed point

of ψ|Ij).
For each j ≤ m, since ψ|Ij is a Möbius function with a hyperbolic fixed point xj, there

is a Möbius function αj(x) =
ajx+bj
ajx+dj

with αj(xj) = xj, α
′
j(xj) = 1 such that αj◦(ψ|Ij)◦α−1

j

is an affine map. If we show that the Möbius functions α1 ◦ (ψ|I2) ◦ α−1
1 is not affine then

we are done, since the second derivative of a non-affine Möbius function never vanishes.

Suppose by contradiction that α1 ◦ (ψ|I2) ◦ α−1
1 is affine. Since α1 ◦ (ψ|I1) ◦ α−1

1 is

also affine these two functions have a common fixed point at ∞, so α−1
1 (∞) = −d1/c1 is

a common fixed point of ψ|I2 and ψ|I1 , which implies that α−1
1 (∞) is a common root of

q
(1)
n x2 + (q

(1)
n−1 − p

(1)
n )x− p(1)

n−1 and q
(2)
n x2 + (q

(2)
n−1 − p

(2)
n )x− p(2)

n−1. Since these polynomials

of Z[x] are monic and irreducible (indeed x1 and x2 are irrational), they must coincide,

and so their remaining roots x1 and x2 must coincide, which is a contradiction.

Definition: If β = (b1, b2, . . . , bn−1, bn) then βt := (bn, bn−1, . . . , b2, b1). Given a set of
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finite sequences B, we define Bt := {βt, β ∈ B}.

Proposition. HD(K(B)) = HD(K(Bt)), ∀ B.

Proof: This follows from qn(β) = qn(βt), ∀β (see the appendix of [CF] on properties of

continuants).

Corollary. HD(K(B) + K(Bt)) = min{1, 2 · HD(K(B))}, for every set B of finite

sequences of positive integers.

4 Fractal dimensions of the spectra

We recall that the Lagrange spectrum is given by L = {`(θ), θ ∈ Σ}, where Σ = (N∗)Z

and, for θ = (an)n∈Z ∈ Σ, `(θ) := lim supn→+∞(αn + βn), where αn and βn are defined as

the continued fractions αn := [an, an+1, an+2, . . . ] and βn := [0, an−1, an−2, . . . ], while the

Markov spectrum is given by M = {m(θ), θ ∈ Σ}, where m(θ) = sup{αn + βn, n ∈ Z}.
Let Σ = (N∗)N = Σ− × Σ+, where Σ− = (N∗)Z− and Σ+ = (N∗)N, and σ : Σ → Σ

the shift given by σ((an)n∈Z) = (an+1)n∈Z. We will work with a one-parameter family of

subshifts of Σ given by Σt = {θ ∈ Σ | m(θ) ≤ t}; for t ∈ R (in fact we will take t ≥ 3).

Given a finite sequence α = (a1, a2, . . . , an) ∈ (N∗)n, we define its size by s(α) :=

|I(α)|, where I(α) is the interval {x ∈ [0, 1] | x = [0; a1, a2, . . . , an, αn+1], αn+1 ≥ 1}. If

we take p0 = 0, q0 = 1, p1 = 1, q1 = a1 and, for k ≥ 0, pk+2 = ak+2pk+1 + pk and qk+2 =

ak+2qk+1 + qk, we have that I(α) is the interval with extremities [0; a1, a2, . . . , an] = pn/qn

and [0; a1, a2, . . . , an−1, an + 1] = pn+pn−1

qn+qn−1
, and so

s(α) =

∣∣∣∣pnqn − pn + pn−1

qn + qn−1

∣∣∣∣ =
1

qn(qn + qn−1)

(since pnqn−1 − pn−1qn = (−1)n−1). We define r(α) = blog s(α)−1c. We also define, for

r ∈ N, Pr = {α = (a1, a2, . . . , an) | r(α) ≥ r and r((a1, a2, . . . , an−1)) < r}.
If θ = (an)n∈Z ∈ Σ then m(θ) ≥ sup{an, n ∈ Z}. Thus, if sup{an, n ∈ Z} ≥ 5, then

m(θ) belongs to Hall’s ray. So we will assume that an ≤ 4, ∀ n ∈ N, and m(θ) < 5. Given

t ∈ [3, 5] and r ∈ N, let C(t, r) be the set {α = (a1, a2, . . . , an) ∈ Pr | Kt ∩ I(α) 6= ∅}.
Here Kt := {[0; γ], γ ∈ π+(Σt)}, where π+ : Σ → Σ+ is the projection associated to the

decomposition Σ = Σ− × Σ+. We define N(t, r) := |C(t, r)|.
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It is not difficult to show that for any finite sequences α, β and any k ∈ {1, 2, 3, 4} we

have r(αβk) ≥ r(α) + r(β), so if C(t, r) = {α1, α2, . . . , αu} and C(t, s) = {β1, β2, . . . , βv},
we may cover Kt by the 4uv = 4N(t, r)N(t, s) intervals I(αiβjk), 1 ≤ i ≤ u, 1 ≤ j ≤ v,

1 ≤ k ≤ 4 which satisfy r(αiβjk) ≥ r + s, ∀ i, j, k. Replacing, if necessary, some of

these intervals by larger intervals I(γ) with r(γ) = r + s, we conclude that N(t, r + s) ≤
4N(t, r)N(t, s), so

log(4N(t, r + s)) ≤ log(4N(t, r)) + log(4N(t, s)), ∀ r, s.

This implies that

lim
m→∞

1

m
log(4N(t,m)) = inf

n∈N∗
1

m
log(4N(t,m)) = lim

m→∞

1

m
log(N(t,m))

exists. We will call this limit D(t) (which coincides with the box dimension of Kt, as

follows easily from its definition).

Lemma 1. Given t ∈ [3, 5] and η ∈ (0, 1) there is δ > 0 and a Cantor set K(B) defined by

the Gauss map associated to a complete shift Σ(B) ⊂ {1, 2, 3, 4}N such that Σ(B) ⊂ Σt−δ

and HD(K(B)) > (1− η)D(t).

Proof: Let τ = η/40. Choose r0 ∈ N large such that, for r ≥ r0, | logN(t,r)
r
−D(t)| < τ

2
D(t).

Let B0 := C(t, r0) and N0 := N(t, r0) = |B0|. Let k = 8N2
0 d2/τe. Take B̃ = {β =

β1β2 . . . βk | βj ∈ B0, 1 ≤ j ≤ k and Kt ∩ I(β) 6= ∅}.
Given β = β1β2 . . . βk ∈ B̃ with βi ∈ B0, 1 ≤ i ≤ k, we say that j, 1 ≤ j ≤ k,

is a right-good position of β if there are elements β(s) = β1β2 . . . βj−1β
(s)
j β

(s)
j+1 . . . β

(s)
k ,

s = 1, 2 of B̃ such that we have the following inequality of continued fractions: [0; β
(1)
j ] <

[0; βj] < [0; β
(2)
j ]. We say that j is a left-good position if there are elements β(s) =

β1β2 . . . βj−1β
(s)
j β

(s)
j+1 . . . β

(s)
k , s = 3, 4 of B̃ such that [0; (β

(3)
j )t] < [0; βtj] < [0; (β

(4)
j )t].

Finally, we say that j is a good position if it is both right-good and left-good.

We will show that most positions of most words of B̃ are good. Let us first estimate

|B̃|. It is not difficult to show that, for β ∈ B̃, |I(β)| < (2e−r0)k < e−k(r0−1). Moreover,

since N(t, k(r0 − 1)) ≥ 1
4
ek(r0−1)D(t), {I(β); β ∈ B̃} form a covering of Kt by intervals of

size smaller than e−k(r0−1) and the function h : B̃ → C(t, k(r0 − 1)) defined by h(β) =

h((b1b2 . . . bk)) = (b1b2 . . . bj), where j = min{i ; i ≤ k and r((b1b2 . . . bi)) ≥ k(r0 − 1) } is

onto, we have:
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|B̃| ≥ 1

4
ek(r0−1)D(t) > 2 ek(r0−2)D(t)

≥ 2 e(1−τ/2)r0kD(t), since r0 is large

> 2 e(1−τ)(1+τ/2)r0kD(t)

> 2N
(1−τ)k
0 , sinceN(t, r0) < e(1+ τ

2
)D(t)r0 .

Now, let us estimate the number of words β ∈ B̃ such that at least k/20 positions of

β are not right good: we have at most 2k choices for the set of the m ≥ k/20 positions

which are not right-good. Once we choose this set of positions, if j is such a position

and β1, β2, . . . , βj−1 ∈ B0 are already chosen, there are at most two (the largest and the

smallest) choices for βj ∈ B0 such that for some β = β1β2 . . . βj−1βjβj+1 . . . βk ∈ B̃ the

position j is not right good. If j is any other position we have of course at most N0 = |B0|
possible choices for βj, so we have at most 2m · Nk−m

0 ≤ 2k/20N
19k/20
0 words in B̃ with

this chosen set of m positions which are not right-good. Therefore, the number of words

β ∈ B̃ for which the number of positions which are not right-good is at least k/20 is

bounded by 2k ·2k/20 ·N19k/20
0 = 221k/20 ·N19k/20

0 . Analogously, the number of words β ∈ B̃
for which there are at least k/20 positions which are not left-good is also bounded by

221k/20 ·N19k/20
0 .

This implies that for at least |B̃|−2 ·221k/20 ·N19k/20
0 > 2N

(1−τ)k
0 −21+21k/20 ·N19k/20

0 >

N
(1−τ)k
0 words of B̃, the number of good positions is at least 9k/10. Let us call such a

word of B̃ an excellent word.

If β = β1β2 . . . βk ∈ B̃ (with βj ∈ B0, 1 ≤ j ≤ k) is an excellent word, we may find

d2k/5e positions i1, i2, . . . , id2k/5e ≤ k with is+1 ≥ is + 2, ∀ s < d2k/5e such that the

positions i1, i1 + 1, i2, i2 + 1, . . . , id2k/5e, id2k/5e+ 1 are good. Since k = 8N2
0 d2/τe, we may

take, for 1 ≤ s ≤ 3N2
0 , js := isd2/τe (notice that 3N2

0 d2/τe < 16
5
N2

0 d2/τe = 2k/5), so we

have js+1 − js ≥ 2d2/τe, ∀ s < 3N2
0 and the positions js, js+1 are good for 1 ≤ s ≤ 3N2

0 .

Now, the number of possible choices of (j1, j2, . . . , j3N2
0
) is bounded by

(
k

3N2
0

)
< 2k and,

given (j1, j2, . . . , j3N2) the number of choices of (βj0 , βj0+1, . . . , βj
3N2

0

, βj
3N2

0+1
) is bounded

by N
6N2

0
0 . So, we may choose ̂1, ̂2, . . . , ̂3N2 with ̂s+1− ̂s ≥ 2d2/τe, ∀ s < 3N2

0 and words

β̂̂1 , β̂̂1+1, β̂̂2 , β̂̂2+1, . . . , β̂̂
3N2

0

, β̂̂
3N2

0
+1 ∈ B0 such that the set X := {β = β1β2 . . . βk ∈ B̃
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excellent | ̂s, ̂s+1 are good positions and β̂s = β̂̂s , β̂s+1 = β̂̂s+1,∀ s ≤ 3N2
0} has at least

N
(1−τ)k
0 /2k ·N6N2

0
0 > N

(1−2τ)k
0 elements.

Since N0 = |B0|, there are N2
0 possible choices for the pairs (β̂̂s , β̂̂s+1). We will

consider, for 1 ≤ s < t ≤ 3N2
0 , the projections πs,t : X → B ̂t−̂s

0 given by πs,t(β1β2 . . . βk) =

(β̂s+1, β̂s+2, . . . , β̂t).

For each pair (s, t) with 0 ≤ s < t ≤ 3N2
0 such that |πs,t(X)| < N

(1−10τ)(̂t−̂s)
0 , we

will exclude from {1, 2, . . . , 3N2
0} the indices s, s+ 1, . . . , t− 1. Let us estimate the total

number of indices excluded: the set of excluded indices is the union of the intervals [s, t)

(intersected with Z) over the pairs (s, t) as above. Now we use the elementary fact that,

given a finite family of intervals, there is a subfamily of disjoint intervals whose sum of

lenghts is at least half of the measure of the union of the intervals of the original family.

We apply this fact to the above intervals [s, t). Suppose that the total number of indices

excluded is at least 2N2
0 . Then, by the above fact, we may find a disjoint collection of

intervals [s, t) as above whose sum of lenghts is at least N2
0 . Let us call P the set of these

pairs (s, t). Since ̂t − ̂s ≥ 2(t − s)d2/τe,∀t > s, the sum of (̂t − ̂s) for (s, t) ∈ P is at

least 2N2
0 d2/τe. Since for each pair (s, t) ∈ P we have |πs,t(X)| < N

(1−10τ)(̂t−̂s)
0 , we get

N
(1−2τ)k
0 < |X| < N

(1−10τ)
∑

(s,t)∈P
(̂t−̂s)

0 N
#{i;i /∈[̂s ,̂t),∀(s,t)∈P}
0

< N
(1−10τ)·2N2

0 d2/τe
0 ·Nk−2N2

0 d2/τe
0 ,

since we have at most N0 choices for βi for each index i which does not belong to the union

of the intervals [̂s, ̂t) associated to these pairs (s, t). However, this is a contradiction,

since this inequality is equivalent to N
20τN2

0 d2/τe
0 < N2τk

0 , which cannot hold, because

2τk = 16τN2
0 d2/τe < 20τN2

0 d2/τe. So, we proved that the total number of excluded

indices is smaller than 2N2
0 .

Now, there are at least N2
0 + 1 indices which are not excluded. We will have two

non-excluded indices s < t such that β̂̂s = β̂̂t and β̂̂s+1 = β̂̂t+1. We claim that, for

B := πs,t(X), the shift Σ(B) satisfies the conclusions of the statement.

Indeed, since s and t are not excluded, we have |B| ≥ N
(1−10τ)(̂t−̂s)
0 . Moreover, for

α ∈ B, |I(α)| > (100er0)−(̂t−̂s) > e−(̂t−̂s)(r0+5). So, the Hausdorff dimension of K(B) is

at least

(1− 10τ) logN0

r0 + 5
>

(1− 10τ)r0

r0 + 5
· (1− τ

2
)D(t) > (1− 12τ)D(t) > (1− η)D(t).
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On the other hand, if k̃ := ̂t − ̂s, γ1 := β̂̂s+1 and γ2 := β̂̂t = β̂̂s , all elements of B

are of the form γ1β2β3 . . . βk̃−1γ2, where γ1, β2, β3, . . . , βk̃−1, γ2 ∈ B0 and there are γ′1, γ
′′
1 ,

γ′2, γ
′′
2 ∈ B0 with [0; γ′2] < [0; γ2] < [0; γ′′2 ]; [0; (γ′1)t] < [0; γt1] < [0; (γ′′1 )t] such that

I(γ′1β2β3 . . . βk̃−1γ2γ1) ∩Kt 6= ∅, I(γ′′1β2β3 . . . βk̃−1γ2γ1) ∩Kt 6= ∅,

I(γ2γ1β2β3 . . . βk̃−1γ
′
2) ∩Kt 6= ∅, I(γ2γ1β2β3 . . . βk̃−1γ

′′
2 ) ∩Kt 6= ∅.

We will show that this implies the existence of δ > 0 such that Σ(B) ⊂ Σt−δ. Let

γt1 = (c1, c2, . . . , cm1), with cj ∈ {1, 2, 3, 4}, ∀ j ≤ m1 and γ2 = (d1, d2, . . . , dm2) with

dj ∈ {1, 2, 3, 4}, ∀ j ≤ m2. Let γ1β2β3 . . . βk̃−1γ2 ∈ B where β2β3 . . . βk̃−1 = a1a2 . . . am̃

with ãj ∈ {1, 2, 3, 4}, ∀ j ≤ m̃. We want to estimate sums of continued fractions beginning

by [aj; aj+1, . . . , am̃, γ2, γ1, . . . ] + [0; aj−1, . . . , a1, γ
t
1, γ

t
2, . . . ]. Let us assume, without loss of

generality, that qm2+m̃−j(aj+1, ..., am̃, γ2) ≤ qm1+j−1(aj−1, ..., a1, γ
t
1) (the other case, when

the reverse inequality qm1+j−1(aj−1, ..., a1, γ
t
1) ≤ qm2+m̃−j(aj+1, ..., am̃, γ2) holds, is sym-

metric). Assume also that [aj; aj+1, ..., am̃, γ2] < [aj; aj+1, ..., am̃, γ
′
2] (otherwise we change

γ′2 by γ′′2 ). This allows us to exhibit δ > 0 such that, for any θ(i) ∈ {1, 2, 3, 4}N, 1 ≤ i ≤ 4,

[aj; aj+1, . . . , am̃, γ2, θ
(1)] + [0; aj−1, . . . , a1, γ

t
1, γ

t
2, θ

(2)] <

< [aj; aj+1, . . . , am̃, γ
′
2, θ

(3)] + [0; aj−1, . . . , a1, γ
t
1, γ

t
2, θ

(4)]− δ.

Indeed,

[aj; aj+1, . . . , am̃, γ
′
2, θ

(3)]− [aj; aj+1, . . . , am̃, γ2, θ
(1)] >

1

12qm2+m̃−j(aj+1, ..., am̃, γ2)2
and

∥∥∥[0; aj−1, . . . , a1, γ
t
1, γ

t
2, θ

(4)]− [0; aj−1, . . . , a1, γ
t
1, γ

t
2, θ

(2)]
∥∥∥ <

1

qm1+m2+j−1(aj−1, ..., a1, γt1, γ
t
2)2

<
1

(Fm2+1qm1+j−1(aj−1, ..., a1, γt1))2
≤

1

(Fm2+1qm2+m̃−j(aj+1, ..., am̃, γ2))2
≤ 1

64qm2+m̃−j(aj+1, ..., am̃, γ2)2
(here we use m2 ≥ 5;

(Fn) denotes Fibonacci’s sequence, given by F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn,∀n ≥ 0).
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So, the inequality holds with

δ :=
1

52(m1+m2+m̃)
<

1

20qm2+m̃−j(aj+1, ..., am̃, γ2)2
.

On the other hand, I(γ2γ1, β2β3 . . . βk̃−1γ
′
2) ∩ Kt 6= ∅, so there are θ(3) and θ(4) such

that (θ(4))tγ2γ1β2β3 . . . βk̃−1γ
′
2θ

(3) ∈ Σt, and thus [aj; aj+1, . . . , am̃, γ
′
2, θ

(3)] +

[0; aj−1, . . . , a1, γ
t
1, γ

t
2, θ

(4)] ≤ t, which implies that, for any θ(i) ∈ {1, 2, 3, 4}N, i = 1, 2,

[aj; aj+1, . . . , am̃, γ2, θ
(1)] + [0; aj−1, . . . , a1, γ

t
1, γ

t
2, θ

(2)] < t− δ.
We also want to estimate sums of continued fractions beginning by [dj; dj+1, ..., dm2 ,

γ1, ...] + [0; dj−1, ..., d1, am̃, ..., a1, γ
t
1, ...] (and, symmetrically, sums of continued fractions

beginning by [0; cj+1, ..., cm1 , γ
t
2, ...] + [cj; cj−1, ..., c1, a1, ..., am̃, γ2, ...]). We have:

qm2−j+m1(dj+1, ..., dm2 , γ1) ≤ qj−1+m̃+m1(dj−1, ..., d1, am̃, ..., a1, γ
t
1).

Assume that [dj; dj+1, ..., dm2 , γ1] < [dj; dj+1, ..., dm2 , γ
′
1] (otherwise we change γ′1 by γ′′1 ).

Since I(γ2γ1β2β3 . . . βk̃−1γ2γ
′
1) ∩ Kt 6= ∅, estimates analogous to the previous ones

imply that, for any θ(i) ∈ {1, 2, 3, 4}N, i = 1, 2, we have [dj; dj+1, ..., dm2 , γ1, θ
(1)]+

[0; dj−1, ..., d1, am̃, ..., a1, γ
t
1, γ

t
2, θ

(2)] < t− δ.
This implies that the complete shift Σ(B) satisfies the conditions of the statement, which

concludes the proof of the Lemma.

Lemma 2. Given a complete shift Σ(X) ⊂ {1, 2, 3, 4}N (where X is a finite set of finite

sequences whose terms belong to {1, 2, 3, 4}) we have HD(`(Σ(X))) = HD(m(Σ(X))) =

min{2 ·HD(K(X)), 1}.

Proof: First of all we clearly have `(Σ(X)) ⊂ m(Σ(X)) ⊂
4⋃

a=1

(a + K(X) + K(X)), so

HD(`(Σ(X)) ≤ HD(m(Σ(X)) ≤ min{2 ·HD(K(X)), 1}.
Let ε > 0 be given. We will show that there are regular Cantor sets K,K ′ defined by

iterates of the Gauss map with HD(K), HD(K ′) > HD(K(X))− ε such that K +K ′ ⊂
`(Σ(X)) ⊂ m(Σ(X)). Since, by the dimension formula stated in section 2, HD(K+K ′) =

min{HD(K) + HD(K ′), 1} > min{2 · HD(K(X)), 1} − 2ε, and ε > 0 is arbitrary, the

result will follow.

Given a positive integer n, let Xn = {(γ1, γ2, . . . , γn)|γj ∈ X, ∀j ≤ n}. We have

Σ(Xn) = Σ(X) and K(Xn) = K(X). Replacing X by Xn for some n large, we may
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assume without loss of generality that for any A ⊂ X (resp. At ⊂ X t) with |A| ≤ 2

(resp. |At| ≤ 2), we have HD(K(X \ A)) > HD(K(X)) − ε (resp. HD(K(X t \ At)) >
HD(K(X t))− ε = HD(K(X))− ε).

We will order X and X t in the following way: given γ, γ̃ ∈ X (resp. γ, γ̃ ∈ X t), we

say that γ < γ̃ if and only if [0; γ] < [0; γ̃].

Suppose that the maximum of m(Σ(X)) is attained at θ̃ = (. . . , γ̃−1, γ̃0, γ̃1, . . . ), γ̃i ∈
X, ∀i ∈ Z, in a position corresponding to the sequence γ̃0. Let X∗ = X\{minX,maxX},
X t = {γt, γ ∈ X}, (X t)∗ = X t\{minX t,maxX t}. For each positive integer m, let Cm

be the set of sequences

(. . . γ−m−2, γ−m−1, γ̃−m, γ̃−m+1, . . . , γ̃−1, γ̃0, γ̃1, . . . , γ̃m−1, γ̃m, γm+1, γm+2, . . . )

where γk ∈ X∗ for k ≥ m + 1, γtk ∈ (X t)∗ for k ≤ −m − 1. Then, for m large enough,

there is η > 0 such that for each θ ∈ Cm, sup(αn + βn) = m(θ) is attained only for values

of n corresponding to the piece τ = γ̃−m, γ̃−m−1, . . . , γ̃−1, . . . γ̃0, γ̃1, . . . , γ̃m−1, γ̃m of θ, and,

if n does not correspond to the piece τ , then αn + βn < m(θ)− η. Indeed, if it is not the

case, we may assume without loss of generality that there are a sequence mk tending to

+∞ and, for each k, θ(k) ∈ Cmk and nk corresponding to a piece γr(k), with r(k) > mk such

that αnk(θ
(k)) + βnk(θ

(k)) > m(θ(k)) − 1/k. Since θ(k) converges to θ̃, which maximizes

m in Σ(X), m(θ(k)) converges to m(θ̃), and, by compacity, if Nk denotes the size of

the sequence γ̃0, γ̃1, . . . , γ̃mk−1, γ̃mk , γmk+1, γmk+2, . . . γr(k)−1, (σNk(θ(k))) has a subsequence

which converges to some θ̂ = (. . . , γ̂−1, γ̂0, γ̂1, . . . ) ∈ Σ(X), with γ̂i ∈ X∗,∀i ≥ 0, such

that sup(αn + βn) = m(θ̂) = m(θ̃) is attained for some n corresponding to the piece γ̂0.

This is a contradiction, since m(θ̃) is the maximum of m(Σ(X)), and, changing γ̂1 by

minX or maxX, we increase strictly the value of m(θ̂). Notice that the same argument

shows that for any θ ∈ Cm and θ∗ ∈ Σ(X∗), we have m(θ∗) < m(θ) − η (for m large

enough).

Now, fixing m with the above properties and γ(0) ∈ X such that (γ(0))t ∈ (X t)∗, we

may associate to each x = [0; γ1(x), γ2(x), γ3(x), . . . ] ∈ K(X∗), an element θ(x) ∈ Cm

given by

θ(x) = (. . . , γ(0), γ(0), γ̃−m, γ̃−m+1, . . . γ̃−1, γ̃0, γ̃1, . . . γ̃m−1, γ̃m, γ1(x), γ2(x), . . . ) =

= (. . . , γ(0), γ(0), τ, γ1(x), γ2(x), . . . ).
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For each position n corresponding to the piece τ of θ(x), we write gn(x) = αn(θ(x)) +

βn(θ(x)); in fact βn(θ(x)) does not depend on x, so, for distinct values of n, the functions

gn are distinct rational maps of x. This implies that, except for finitely many values

of x, the values of gn(x) for these values of n are all distinct. Let us fix such a value

x# = [0; γ#
1 , γ

#
2 , γ

#
3 , . . . ] of x (such that the values of gn(x#) for these values of n are all

distinct). Since sup(αn + βn) = m(θ(x#)) is attained only for values of n corresponding

to the piece τ of θ(x#), take n0 such that αn0(θ(x
#)) + βn0(θ(x

#)) is maximum. For

N large enough, taking τ# = ((γ(0))N , τ, γ#
1 , γ

#
2 , . . . , γ

#
N ), the following holds: if θ =

(. . . , γ−2, γ−1, τ
#, γ1, γ2, . . . ), with γk ∈ X∗, (γ−k)

t ∈ (X t)∗,∀k ≥ 1, writing σn0(τ#) =

(a−N1 , . . . , a−2, a−1, a0, a1, a2, . . . , aN2), we have m(θ) = [a0; a1, a2, . . . , aN2 , γ1, γ2, γ3, . . . ]+

[0; a−1, a−2, . . . , aN1 , γ−1
t, γ−2

t, γ−3
t, . . . ]. It follows that, defining

K := {[a0; a1, a2, . . . , aN2 , γ1, γ2, γ3, . . . ]; γj ∈ X∗,∀j ≥ 1} and

K ′ := [0; a−1, a−2, . . . , aN1 , γ
′
1
t
, γ′2

t
, γ′3

t
, . . . ]; γ′j

t ∈ (X t)∗,∀j ≥ 1},

we have K +K ′ ⊂ `(Σ(X)) ⊂ m(Σ(X)). In order to show this, given

x = [a0; a1, a2, . . . , aN2 , γ1, γ2, γ3, . . . ] ∈ K and

y = [0; a−1, a−2, . . . , aN1 , γ
′
1
t, γ′2

t, γ′3
t, . . . ] ∈ K ′, and defining, for each positive integer m,

τ (m) = (γ′m, γ
′
m−1, . . . , γ

′
1, τ

#, γ1, γ2, ..., γm), we have, for

θ∗(x, y) = (. . . , γ(0), γ(0), τ (1), τ (2), τ (3), . . . ), and θ̂(x, y) = (. . . , γ′3, γ
′
2, γ
′
1, τ

#, γ1, γ2, γ3, . . . ),

`(θ∗(x, y)) = m(θ̂(x, y)) = x+ y.

Indeed, there is a sequence (sk) with sk corresponding to the piece τ (k) of θ∗(x, y) such

that σsk(θ∗(x, y)) converges to σn0(θ̂(x, y)), so αsk(θ
∗(x, y)) + βsk(θ

∗(x, y)) converges to

αn0(θ̂(x, y)) + βn0(θ̂(x, y)) = m(θ̂(x, y)) = x + y, and, in particular, `(θ∗(x, y)) ≥
m(θ̂(x, y)) = x + y. On the other hand, there are increasing sequences (mk) and (rk)

such that the position mk corresponds to the piece τ (rk) in θ∗(x, y) and αmk(θ
∗(x, y)) +

βmk(θ
∗(x, y)) converges to `(θ∗(x, y)). Now, if |mk − srk | has a bounded subsequence,

then there is b ∈ Z such that σmk(θ∗(x, y)) has a subsequence converging to σb(θ̂(x, y)),

so `(θ∗(x, y)) = lim(αmk(θ
∗(x, y)) + βmk(θ

∗(x, y))) ≤ m(θ̂(x, y)) = x + y. On the other

hand, if |mk− srk | is unbounded, there is c ∈ Z and a subsequence of σmk(θ∗(x, y)) which
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converges to σc(θ∗), where θ∗ is an element of Σ(X∗), but in this case we would have

`(θ∗(x, y)) ≤ m(θ∗) < m(θ̂(x, y))− η, which is a contradiction.

Finally, notice that K and K ′ are diffeomorphic respectively to K(X∗) and K((X t)∗),

so HD(K) = HD(K(X∗)) > HD(K(X)) − ε and HD(K ′) = HD(K((X t)∗)) >

HD(K(X t))− ε = HD(K(X))− ε.

Proof of Theorem 1: Applying Lemma 2 to the complete shift Σ(B) obtained in

Lemma 1, we get that, for any η > 0, there is δ > 0 such that min{2(1 − η)D(t), 1} ≤
HD(K(B)) ≤ HD(L ∩ (−∞, t − δ)) ≤ HD(M ∩ (−∞, t − δ)) ≤ HD(M ∩ (−∞, t)) ≤
min{2 ·HD(Kt), 1} ≤ min{2 ·D(t), 1}, so d(t) := HD(L∩ (−∞, t)) = HD(M ∩ (−∞, t))
satisfies d(t) = min{2 ·D(t), 1}.

In order to show that d(t) = min{2HD(k−1(−∞, t)), 1}, it is enough to show that

HD(k−1(−∞, t)) = D(t). We first notice that, in the notations of the end of the proof of

Lemma 2 above, given z = [0;α1, α2, . . . ];αj ∈ X∗,∀j ≥ 1} ∈ K(X∗), we may define

λ(z) = λx,y(z) = (α1!, τ
(1), α2!, τ

(2), α3, α4, α5, α3!, τ
(3), α7, . . . , α4!, τ

(4),

α25, α26, . . . , α5!, τ
(5), . . . , αr!, τ

(r), αr!+1, . . . ),

and h(z) = [0;λ(z)]. We have, as before, k(h(z)) = `(. . . , γ(0), γ(0), λ(z)) = x+ y. On the

other hand, given any ρ > 0, we have |z − z′| = O(|h(z) − h(z′)|1−ρ) for |z − z′| small,

so HD(k−1(x + y)) ≥ HD(K(X∗)) > HD(K(X)) − ε. Taking X = B, as before, we

get HD(k−1(−∞, t)) ≥ HD(k−1(−∞, t − δ)) ≥ HD(k−1(x + y)) > HD(K(B)) − ε >

(1 − η)D(t) − ε. So, since η and ε are arbitrary, HD(k−1(−∞, t)) ≥ D(t). Now, if

w ∈ k−1(−∞, t)), we have lim supn→∞(αn(w)+βn(w)) = k(w) < t, so there is n0 ∈ N such

that n ≥ n0 =⇒ αn(w) + βn(w) < t. This implies that k−1(−∞, t)) ⊂
⋃
n∈N(g−n(Kt)),

where g is the Gauss map, so HD(k−1(−∞, t)) ≥ D(t). On the other hand,

D(t) = HD(k−1(−∞, t)) ≤ HD(k−1(−∞, t]) ≤ lim
s→t+

HD(k−1(−∞, s))

= lim
s→t+

D(s) = D(t).

Then HD(k−1(−∞, t]) = HD(k−1(−∞, t)) = D(t), and we conclude that d(t) =

min{2HD(k−1(−∞, t)), 1} = min{2HD(k−1(−∞, t]), 1}
Now let us show that d(t) is a continuous function: if we have N(t, r) = |C(t, r)| as in

the proof of Lemma 1, and for each t > t0, r large, logN(t,r)
r

> D(t0) + η we would have
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D(t0) ≥ D(t0) + η, contradiction (indeed C(t, r) ⊂ C(s, r) for t ≤ s, and, by compacity,

C(t0, r) =
⋂
t>t0

C(t, r)).

In order to conclude, we notice that, since, for each positive integer m,

Σ({212m2, 212m+22} ⊂ Σ3+2−m , so D(3 + ε) > 0 for every ε > 0 and, since Σ√12 = {1, 2}Z,

HD(K√12) = HD(K({1, 2})) = 0, 5312... > 1/2, so we have d(
√

12) = 1.

Proof of Theorem 2: Given m ≥ 2, let Cm = {α = [0; a1, a2, a3, ...] ∈ [0, 1]; ak ≤
m,∀k ≥ 1}. M. Hall proved in [H] that C4 +C4 = {α+β;α, β ∈ C4} = [

√
2−1, 4(

√
2−1)].

On the other hand, we have limm→∞HD(Cm) = 1. In fact, Jarńık proved in [J] that

HD(Cm) > 1− 1
m·log 2

, ∀m > 8.

Let now t ≥ 6 be given. Let m = btc − 2. There are an integer n ∈ {m + 1,m + 2}
and α = [0; a1, a2, a3, ...], β = [0; b1, b2, b3, ...] ∈ C4 such that t = n + α + β. For each

r ≥ 1, let τ̃ (r) be the sequence (br, br−1, ..., b2, b1, n, a1, a2, ..., ar). Consider now the map

h̃ : Cm → [0, 1] given by

h̃(z) = h̃([0; c1, c2, c3, ...]) = [0; c1!, τ̃
(1), c2!, τ̃

(2), c3, c4, c5, c3!, τ̃
(3),

c7, c8, . . . , c4!, τ̃
(4), c25, . . . , c5!, τ

(5), . . . , cr!, τ̃
(r), cr!+1, . . . ].

It is easy to see that k(h̃(z)) = t for every z ∈ Cm. On the other hand, given any

ρ > 0, we have |z−z′| = O(|h̃(z)− h̃(z′)|1−ρ) for |z−z′| small, so HD(k−1(t)) ≥ HD(Cm),

and, since limm→∞HD(Cm) = 1, we are done.

Proof of Theorem 3: Let x ∈ L′. Consider a sequence xn converging to x, xn ∈ L,

xn 6= x. Chose θ(n) ∈ Σ such that xn = `(θ(n)). We have θ(n) = (b
(n)
j )j∈Z (we will

assume b
(n)
j ≤ 4, ∀ j, ∀n, since me may assume that the xn are not in Hall’s ray). We

have xn = lim supj→∞(α
(n)
j + β

(n)
j ). Given δ > 0, ∃n0 ∈ N large such that n ≥ n0 ⇒

|`(θ(n)) − x| < δ and there are infinitely many j ∈ N such that |α(n)
j + β

(n)
j − x| < δ.

Let N = dδ−1e. Given such a pair (j, n) consider the finite sequence with 2N + 1 terms

(b
(n)
j−N , b

(n)
j−N+1, . . . , b

(n)
j , . . . , b

(n)
j+N) =: S(j, n). There is a sequence S such that for infinitely

many values of n, S appears infinitely many times as S(j, n), j ∈ N, i.e., there are

j1(n) < j2(n) < . . . with S(ji(n), n) = S, ∀ i ≥ 1, for all n in some infinite set L ⊂ N.

Consider the sequences β(i, n) for i ≥ 1, n ∈ L given by

β(i, n) = (b
(n)
ji(n)+N+1, b

(n)
ji(n)+N+2, . . . , b

(n)
ji+1(n)+N).
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There are (i1, n1) and (i2, n2) for which there is no sequence γ such that β(i1, n1) and

β(i2, n2) are concatenations of copies of γ, otherwise xn would be constant for n ∈ L.

This implies that, taking B = {β(i1, n1)β(i2, n2), β(i2, n2)β(i1, n1)}, K(B) is a regular

Cantor set, so, as in Lemma 2, `(K(B)) contains a regular Cantor set K̂ with d(x, K̂) ≤ 2δ.
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