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Introduction

Goal: Propose a robust method for object extraction in an RGBD
image.

Tools:
I GrabCut
I Kinect

Approaches:
I First: Region Growing.
I Second: Probabilistic Model.
I Third: Robust Depth Based Seeding
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GraphCut
Image segmentation method originally introduced by Boykov and
Jolly [1].

Assigns to the image a weighted graph structure where each pixel is
represented by a node.There are two additional nodes, source and
sink, which represents Background(BG) and Foreground(FG)
respectively:
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Weighted Graph ⇔ Energy Function

E (x) = U(x , z ,w) + V (x , z)

Data Term: U(x , z ,w). Measures the pixel’s similarity to BG and
FG models.

Smoothness Term: V (x , z). Measures the similarity of neighbours
pixels.
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GrabCut

Based in the principles of GraphCut, Rother, Kolmogorov and Blake
proposed GrabCut [2].

Gasussian Mixture Models are built from the color data of certain
pixels (seeds) to represent the color distribution of FG and BG.

U(x , ωC , z) = −αC

(∑
p

log hBC (zp)[xp = 0] + log hFC (zp)[xp = 1]
)

V (x , z , d) = γC

( ∑
(p,q∈N)

dis(p, q)−1(exp{−βC ||zp − zq||2})[xp 6= xq]
)
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GrabCut

Initial Selection

Further Interaction

Final Result
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First Approach: Region Growing

Main Idea: Extract an object from an image implementing a priority
search algorithm to identify its connected-depth component.Then, apply
GrabCut in the contour of the component to improve the result.
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First Phase

1 Pick an initial pixel in the interior of the FG object.

2 Fix parameters for global depth tolerance ed and depth continuity ec .

3 BFS is implemented to identify the connected component of pixels
satisfying ||d − d0|| < ed and ||dparent − dpixel || < ec .
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Second Phase

1 Define a band around the contour pixels of the component.

2 Pixels in the perimeter of the band belonging to the component are
labelled as FG seeds, and those not belonging as BG seeds.

3 Apply Grabcut on the 8-connected graph associated to the band.
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Results

RGB Depth Graph Result

Depth data must be improved!
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Temporal Filter

Capture depth values for a sequence of frames.

For each pixel set the depth value to the mean of the non-zero
samples.
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Color Based Depth Filter

Compared the depth value of each pixel with 4 near pixels

If there is depth disparity with at least two of them, then compare the
colour values.

Update the depth value of pixel if its colour is similar to pixels with
different depth value, and its colour is different to pixels with similar
depth value.
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Result of Color Based Depth Filter

Filter Previous Result New Result Detail
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Remarks First Approach

Pros:
1 Simple user interaction.
2 Fast running time.
3 Accurate Colour Models

Cons:
1 Vulnerable to depth noise.
2 No useful in the case of object-background adjacency.
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Second Approach: Probabilistic Model

Main Idea: Extend the energy function model implemented in GrabCut to
include the depth data in analogous way to colour. Construct Gaussian
Mixture Models associated to FG and BG depth and use them to define
the seeding.
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Involving depth data in Energy Function

Depth model ωD is constructed from Gaussian Mixtures.

E (x , ωC , ωD , z , d) = U(x , ωC , ωD , z , d) + V (x , z , d)

Parameters αC and αD assigns weight of colour and depth data.

U(x , ωC , ωD , z , d) =−
∑
p

(
αC log hBC (zp) + αD log hBD(dp)

)
[xp = 0]

−
∑
p

(
αC log hFC (zp) + αD log hFD(dp)

)
[xp = 1]

Parameters γC and γD assigns weight of colour and depth
smoothness.

V (x , z , d) =γC

( ∑
(p,q∈N)

dis(p, q)−1exp{−βC ||zp − zq||2}[xp 6= xq]
)

+

γD

( ∑
(p,q∈N)

dis(p, q)−1exp{−βD ||dp − dq||2}[xp 6= xq]
)
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Seeding

1 Construct BG Depth Model (BGDM) from the pixels in the border of
the Selection Rectangle.

2 Construct FG Depth Model (FGDM) from the pixels in the interior of
the Central Rectangle.

3 Discard the Gaussian components of FGDM whose mean value have
the highest probability according to BGDM.

4 Evaluate all pixels in the image respect to these models, and mark
them as FG Seeds or BG Seeds according to the obtain likelihood.

5 Build the definitive FGDM and FGCM from the FG Seeds. Do the
same with BG Seeds.
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Observations 1

Is the Gaussian Mixture Model convenient for depth data?

Probably Not,...

In most cases depth range is greater in BG than FG.
If we consider FGDM and BGDM with the same number of Gaussian
components, the components in BGDM tend to have larger variance.

If we increase the number of components in BGDM we improve in the
variance problem, but we get BG clusters catching FG pixels (specially
if object and background are close).
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Observations 2

How define a good set of Colour and Depth parameters?

According to the depth contrast of the image the parameters require
to be adjusted:

I Low Depth Contrast image ⇒ larger values for colour parameters.
I High Depth Contrast image ⇒ larger values for depth parameters.

Colour Smoothness term improves the results in zones of invalid
depth pixels.

Depth Smoothness term improves connectivity in the final result.
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Remarks Second Approach

The approach seems to be robust but results were not satisfactory.

There is still a lot of work to do in:
1 Define appropriate amount of Gaussian components for the FGDM and

BGFDM.
2 Improve the seeding criteria.
3 Adjusting the parameters involved in the energy function.
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Third Approach: Robust Depth Based Seeding

Main Idea: Implement appropriate criteria about depth data and
object location to deduce good seeding.

In order to define the final seeds, functions W 1
BG ,W 2

BG ,W 3
BG ,and

W 1
FG ,W 2

FG ,W 3
FG will be defined based in the following criteria:

1 Centre is FG, Border is BG.
2 Central and Closest is FG.
3 External and Planar is BG.
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Criteria 1: Centre is FG, Border is BG

1 Let (i , j) be the image coordinates of pixel p.

2 Define dcentre(p) = max( |i−(r/2)|(r/2) , |j−(c/2)(c/2) ).

3 Set W 1
FG (p) = 40dcentre(p).

4 Set W 1
BG (p) = 40(1− dcentre(p)).
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Criteria 2: Central and Closest is Foreground

1 Use K-means to identify n clusters of depth data from the pixels in
the central rectangle.

2 Sort the clusters from closest to farthest. Let d1,2, d2,3, ..., dn−1,n be
the distance between consecutive clusters.

3 Label the closest cluster as FG.

4 If d1,2 < dtol second cluster is labelled FG.

5 If d2,3 < mtold1,2 third cluster is labelled FG.

...

6 If dn−1,n < mtoldn−2,n−1 nth cluster is labelled FG

7 From the pixels belonging to the clusters labelled FG, take the lowest
value of depth minDepthFG and the largest value maxDepthFG.
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Criteria 2: Central and Closest is Foreground

8 For all p set W 2
FG (p) = 1200.

9 Set W 2
BG a stepwise linear function that separates between close

pixels and far pixels respect to FG clusters.
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Criteria 3: External and Planar is Background
1 Calculate the normal at each pixel of the image.
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Criteria 3: External and Planar is Background

2 Take a sample of pixels from the border of the Selection Rectangle
and store them in a queue.

3 Fix parameters for normal tolerance en and color tolerance ec .

4 Pick the first pixel of the queue p and identify the connected set of
pixels around p satisfying ||np − nx || < en and ||cp − cx || < ec . Call
this set of pixels PN(p), and label all these pixels as belong
Component.
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Criteria 3: External and Planar is Background

5 In order to confirm PN(p) as a valid plane the following two
conditions must hold:

I PN(p) is greater than 5% of image size.
I At most 25% of PN(p) belong to the central rectangle.

6 If the previous conditions holds, we label all the pixels in PN(p) as
planar Pixels. Otherwise, we undo the belong Component labelling,
and we start to construct a new component from the next non planar
Pixel in the queue.

7 Set W 3
BG (p) = 0 for all pixels p. Set W 3

FG (p) = 1200 ⇐⇒ p is
planar Pixel.
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Seeding

1 Let WFG := W 1
FG + W 2

FG + W 3
FG and WBG := W 1

BG + W 2
BG + W 3

BG .

2 If WBG (p)−WFG (p) > 160, then p is a FG seed.

3 If WFG (p)−WBG (p) > 450, then p is a BG seed.
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Energy Function

E (x , ωC , z , d) = U(x , ωC , z , d) + V (x , z , d)

U(x , ωC , z , d) =UC (x , ωC , z)→ As GrabCut

+ αD

(∑
p

WBG (dp)[xp = 0] + WFG (dp)[xp = 1]
)
.

V (x , z , d) =VC (x , z)→ As GrabCut

+ γD

( ∑
(p,q∈N)

(
1− (dp − dq)2

600 + (dp − dq)2
)
[xp 6= xq]

)
.
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Results:
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Remarks Third Approach

Pros:
1 Works in object-background adjacency and non adjacency.
2 Stronger to depth noise.

Cons:
1 Parameters still requires calibration for specific cases.
2 Seeding still unstable in the clustering step.
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Conclusions

First Approach propose a simple and effective method for object
extraction in the case of object-background non adjacency. It must
improve in depth noise manipulation.

Second Approach looks for a robust segmentation including data
depth in the probabilistic model of GrabCut, but we didn’t get an
accurate representation of depth distribution from Gaussian Mixture
Model

Third Approach improves the seeding using planar subtraction and
gets good results in general cases. It still requires calibration.
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Further Research: Video Object Extraction

1 Extract the object from the initial frame and define accurate FG and
BG Colour Models.(Use the Third Approach).

2 Construct a contour graph around segmentation result.

3 Apply GrabCut in the next frame just in the pixels belonging to the
contour graph.

4 Update the contour graph from the new segmentation result

5 Return to step 3.
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Further Research: Video Object Extraction

The previous result was obtained using just colour data in the energy
function.

Why not include depth data and optical flow data in the energy
function?. . .
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Thanks to Djalma, Francisco, Leandro, Lucas, and professor Luiz, for
suggestions and support!.
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