Direct Triangle Meshes Remeshing using Stellar Operators

Aldo Zang, Fabian Prada

VISGRAF - IMPA

Aldo Zang, Fabian Prada Direct Triangle Meshes Remeshing using Stellar Operators

・ 同 ト ・ ヨ ト ・ ヨ ト …

Remeshing: Mesh quality improvement

- Sampling density.
- Regularity.
- Size.
- Orientation.
- Alignment.
- Shape.

Remeshing Algorithms

- Variational Remeshing.
- Incremental Remeshing.

ヘロト 人間 とくほ とくほ とう

1

Problem Statement

Propouse a remeshing strategy based on stellar operators to obtain a mesh that satisfactorially meets the following criterias:

- Uniformity: Equilateral Aspect Triangles
- Regularity: Valence 6 vertices at interior and valence 4 at boundary

Constraints

- Preserve Geometry and Features.
- Maintain Resolution.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Papers used for our approach

- A remeshing approach to multiresolution modeling. Mario Botsch, Leif Kobbelt.
- Multiresolution shape deformations for meshes with dynamic vertex connectivity. Leif Kobbelt, Thilo Bareuther, Hans-Peter Seidel.
- Stellar mesh simplification using probabilistic optimization. Antônio Wilson Vieira et al.
- Difusion tensor weighted harmonic fields for feature classification. Shengfa Wang et al.
- *Hierarchical feature subspace for structure-preserving deformation.* Submited to GMP 2012

ヘロト 人間 とくほ とくほ とう

Remeshing pipeline

Remeshing algorithm

Get a edge target length /

Aldo Zang, Fabian Prada Direct Triangle Meshes Remeshing using Stellar Operators

イロト イポト イヨト イヨト

ъ

Remeshing pipeline

Remeshing algorithm

- Get a edge target length /
- 2 Split all edges that are longer than $\frac{4}{3}$ at their midpoint

くロト (調) (目) (目)

- Get a edge target length /
- 2 Split all edges that are longer than $\frac{4}{3}$ / at their midpoint
- Solution Collapse all edges shorter than $\frac{4}{5}I$ into their midpoint (or collapse over the vertex with higher valence)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Get a edge target length /
- 2 Split all edges that are longer than $\frac{4}{3}$ / at their midpoint
- Solution Collapse all edges shorter than $\frac{4}{5}I$ into their midpoint (or collapse over the vertex with higher valence)
- Flip edges in order to minimize the deviation from valence
 6 (or 4 on boundaries)

・聞き ・ヨト ・ヨト

- Get a edge target length /
- 2 Split all edges that are longer than $\frac{4}{3}$ / at their midpoint
- Solution Collapse all edges shorter than $\frac{4}{5}I$ into their midpoint (or collapse over the vertex with higher valence)
- Flip edges in order to minimize the deviation from valence
 6 (or 4 on boundaries)
- Selocate vertices on the surface by tangential smoothing

・ 同 ト ・ ヨ ト ・ ヨ ト

- Get a edge target length /
- 2 Split all edges that are longer than $\frac{4}{3}$ / at their midpoint
- Solution Collapse all edges shorter than $\frac{4}{5}I$ into their midpoint (or collapse over the vertex with higher valence)
- Flip edges in order to minimize the deviation from valence
 6 (or 4 on boundaries)
- Selocate vertices on the surface by tangential smoothing
- Repeat steps (2)-(5) until satisfy the stop criteria (good edges ratio)

ヘロト ヘアト ヘビト ヘビト

- Get a edge target length /
- 2 Split all edges that are longer than $\frac{4}{3}$ / at their midpoint
- Solution Collapse all edges shorter than $\frac{4}{5}I$ into their midpoint (or collapse over the vertex with higher valence)
- Flip edges in order to minimize the deviation from valence
 6 (or 4 on boundaries)
- Relocate vertices on the surface by tangential smoothing
- Repeat steps (2)-(5) until satisfy the stop criteria (good edges ratio)
- Apply area based tangential smoothing to equalize triangles areas

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

1- Get the edge target length /

We compute some statistics for the mesh and set the target length as:

$$\label{eq:length} \begin{split} \textit{I} &=\textit{Mean}(\textit{edges lenght}) - \lambda\textit{Deviation}(\textit{edges lenght}) \\ \text{with } \lambda \in [0,1]. \end{split}$$

イロト イポト イヨト イヨト 一臣

2- Split edges

All edges wich are longer than $\frac{4}{3}I$ are split by inserting a new vertex at its midpoint. The two adjacent triangles are bisected accordingly. The upper and lower bound on the edges lenght are only comptatible if $\epsilon_{max} > 2\epsilon_{min}$.

Figure: Left: original edge (u, v); Right: Split of (u, v) inserting vertex w.

ヘロン 人間 とくほ とくほ とう

3- Collapse edges

All edges wich are shorter than $\frac{4}{5}$ / are removed by collapsing the two-end vertices. We collpase that-end vertex with lower valence into the one with higher. This prevent accumulation of edges collapses.

Figure: Left: original mesh; Center: Accumulation of edges collapses; Right: Collapses over the higher valence vertex.

ヘロト ヘアト ヘヨト ヘヨト

4- Flip edges

We perform edge-flipping in order to regularize the connectivity. For every two neighboring triangles $\Delta(A, B, C)$ and $\Delta(C, B, D)$ we maximize the number of vertices with valence six by flipping the diagonal \overline{BC} if the total valence excess is reduced.

$$V(e) = \sum_{p \in A, B, C, D} (valence(p) - 6)^2$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Remeshing algorithm: step by step

Figure: Left: Initial valence condition $V(e) = 2^2 + 1 = 5$; Right: Valence condition after flipping edge V(e) = 1 + 1 + 1 = 3.

イロト イポト イヨト イヨト

Edge-Flip

Edge-Flip: This operation consists in transforming a two-face cluster into another two-face cluster by swapping its common edge.

Figure: Left: input mesh; Right: result after flipping (u, v) to (s, t).

Edge-Split operator

Edge-Split: This operation consists in transforming a two-face cluster into a four-face cluster by inserting a vertex in the interior edge of the cluster.

Figure: Split of the edge (u, v) by inserting a midpoint vertex w.

ヘロト 人間 とくほ とくほ とう

Edge-Flip operator

Lemma (Flip Condition): Let **S** a combinatorial 2-manifold. The *flip* of an interior edge that replaces $\mathbf{e} = (\mathbf{u}, \mathbf{v}) \in \mathbf{S}$ by (\mathbf{s}, \mathbf{t}) preserves the topology of **S** if an only if $(\mathbf{s}, \mathbf{t}) \notin \mathbf{S}$.

Figure: The edge (u, v) do not satisfies the flip condition because the new edge (s, t) already exists in the mesh.

• • • • • • • • • • • • •

Edge-Collapse

Edge-Collapse: This operator consists in removing an edge $\mathbf{e} = (\mathbf{u}, \mathbf{v}) \in \mathbf{S}$, identifying its vertices to a unique vertex $\bar{\mathbf{v}}$. From a combinatorial viewpoint, this operator will remove 1 vertex, 3 edges, and 2 faces from the original mehs, thus preserving its Euler characteristic.

Figure: The edge (u, v) is collpased removing the vertex u from the mesh.

イロト イポト イヨト イヨト

Edge-Collapse

Lemma (Collapse Condition): Let *S* be a combinatorial 2-manifold . The collapse of an edge $\mathbf{e} = (\mathbf{u}, \mathbf{v}) \in \mathbf{S}$ preserves the topology of **S** if the followin conditions are satisfied:

- $link(\mathbf{u}) \cap link(\mathbf{v}) = link(\mathbf{e});$
- if u and v are both boundary vertices, e is a boundary edge;
- S has more than 4 vertices if neither **u** nor **v** are boundary vertices, or S has more than 3 vertices if either **u** or **v** are boundary vertices.

ヘロン 人間 とくほ とくほ とう

Stellar operators theory

Edge-Collapse condition

Figure: Left: (u, v) satisfies the edge-collpase condition; Right: (u, v) do not satisfies the edge-collpase condition because $s \in link(\mathbf{u}) \cap link(\mathbf{v})$ and $s \notin link((\mathbf{u}, \mathbf{v}))$;

Figure: (s, t) do not satisfies the edge-collpase condition because (s, t) is interior edge but *s* and *t* are boundary vertices.

Edge-Weld operator

Edge-Weld: This operation consists in transforming a four-face cluster into a two-face cluster by removing its central vertex. **Corollary:** Given a combinatorial 2-manifold **S**, and a interior vertex $\mathbf{v} \in \mathbf{S}$ with valence 4. The removal of the vertex \mathbf{v} by the Edge-Weld operation (along (\mathbf{u}, \mathbf{w})) preserves the topology of **S** if and only if there is no edge in **S** connecting \mathbf{u} to \mathbf{w} .

Figure: Edge-weld by removing midpoint vertex w.

・ロト ・四ト ・ヨト ・ヨト

Edge-Collapse using basic stellar operators (edge-flip and edge-weld)

Figure: Edge (u, v) is collpased using 2 edges flips ((u, s) and (u, t)) and one edge-weld for edge (u, v).

Basic operators

- o flip(halfedge_type *h);
- face_weld(halfedge_type *h1, halfedge_type *h2, halfedge_type *h3);
- o edge_weld(halfedge_type *h1, halfedge_type *h2);
- edge_split(halfedge_type *h);
- face_split(face_type *f);

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

New operator and condition tests

- void edge_collapse(halfedge_type *h);
- bool can_edge_collapse(halfedge_type *h);
- bool can_edge_flip(halfedge_type *h);

イロト イポト イヨト イヨト 一日

Halfedges Set data structure

```
class RmSetComp {
   public:
        bool operator() ( halfedge_type *hi, halfedge_type *hj ) const {
        if ( hi->l < hj->l )
            return true;
        else if ( hj->l < hi->l )
        return false;
        else return hi < hj;
        }
    };
   typedef std::set<halfedge type *, RmSetComp> HalfedgeSet;
```

イロン イボン イヨン イヨン

æ

Halfedges Set insert and remove functions

```
void remove_from_HSet( HalfedgeSet &RmSet, halfedge_type *he ) {
    if( he > he->opposite() )
        RmSet.erase( he );
    else
        RmSet.erase( he->opposite() );
}
void insert_to_HSet( HalfedgeSet &RmSet, halfedge_type *he ) {
    if( hcurr > hcurr->opposite() )
        RmSet.insert( hcurr );
    else
        RmSet.insert( hcurr->opposite() );
}
```

ヘロト 人間 とくほ とくほ とう

1

Step 1: Unconstrained Vertex Displacement

New position for each vertex is calculated as a weighted sum of its neighbours positions:

$$\hat{p}_i \leftarrow \frac{1}{\sum_{p_j \in N(p_i)} w_j} \Big(\sum_{p_j \in N(p_i)} w_j p_j\Big)$$

Neighbours Weights

• Uniform: $w_i = 1$.

• One Ring Area:
$$w_j = \sum_{f:p_j \in f} A(f)$$
.

ヘロト 人間 とくほ とくほ とう

Step 2: Reprojection

• Projection on the tangent plane:

$$p_i \leftarrow p_i + (I - n_i n_i^T)(\hat{p}_i - p_i).$$

• Projection on the lowest curvature direction:

$$p_i \leftarrow p_i + \gamma_{min} \gamma_{min}^T (\hat{p}_i - p_i).$$

ヘロト 人間 ト くほ ト くほ トー

Lowest Curvature Direction

• Discrete Curvature Tensor Estimation:

$$T(p) = \frac{1}{|B|} \sum_{e} \beta(e) |e \cap B| e e^{T}.$$

 Lowest curvature direction is the eigenvector associated to the largest eigenvalue of T(p).

・ 同 ト ・ ヨ ト ・ ヨ ト

Min Curvatures Estimation: 1 Ring

Min Curvatures Estimation: 3 Ring

Min Curvatures Estimation: 5 Ring

Remeshing Sequence : input mesh

Remeshing Sequence : 1- Split edges

Remeshing Sequence : 2- Collapse edges

Remeshing Sequence: 3- Flip edges

Remeshing Sequence: 4- Vertex reallocation

Remeshing iterations : input mesh

Figure: Input mesh.

Aldo Zang, Fabian Prada Direct Triangle Meshes Remeshing using Stellar Operators

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Figure: Random remeshing using tangential area smoothing.

ヘロン 人間 とくほ とくほ とう

э

Figure: Sequential remeshing using tangential area smoothing.

Aldo Zang, Fabian Prada Direct Triangle Meshes Remeshing using Stellar Operators

ヘロン 人間 とくほど くほとう

э

Figure: Input mesh

Aldo Zang, Fabian Prada Direct Triangle Meshes Remeshing using Stellar Operators

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Figure: Sequential remeshing using tangential area smoothing.

ヘロン 人間 とくほ とくほ とう

Figure: Input mesh.

Aldo Zang, Fabian Prada Direct Triangle Meshes Remeshing using Stellar Operators

ヘロト 人間 とくほとくほとう

æ

Figure: Sequential remeshing using tangential area smoothing.

Aldo Zang, Fabian Prada Direct Triangle Meshes Remeshing using Stellar Operators

▲圖 ▶ ▲ 理 ▶ ▲ 理 ▶ …

э

Figure: Input mesh.

Aldo Zang, Fabian Prada Direct Triangle Meshes Remeshing using Stellar Operators

◆□ > ◆□ > ◆臣 > ◆臣 > ○

ъ

Figure: Sequential remeshing using tangential area smoothing.

E → < E → </p>

э

Figure: Input mesh.

Aldo Zang, Fabian Prada Direct Triangle Meshes Remeshing using Stellar Operators

ヘロト ヘワト ヘビト ヘビト

Figure: Sequential remeshing using tangential area smoothing.

Aldo Zang, Fabian Prada Direct Triangle Meshes Remeshing using Stellar Operators

Difusion tensor

$$T(\mathbf{v}_i) = \sum_{t_j \in N_t(\mathbf{v}_i)} \mu_j \mathbf{n}_{t_j} \mathbf{n}_{t_j}^T$$

where t_j is a triangle, $N_t(v_i)$ denote the set of neighboring triangles of v_i , n_{t_j} is the normal of triangle t_j , and μ_j is the weight coefficient (we use $\mu = 1$).

Difusion tensor

For each vertex of the mesh, $\lambda_1, \lambda_2, \lambda_3 \ge 0$ are eigenvalues of the corresponding structure tensor, then the feature analysis is documented as

- Face: if $\lambda_1 > 0.1, \lambda_2 < 0.02$
- Corner: if λ₃ > 0.1
- Strong: if λ₂ > 0.1, λ₃ < 0.02

• Weak: if $\lambda_1 > 0.1, 0.1 \ge \lambda_1 \ge 0.02, \lambda_3 < 0.02$

The eigenvector corresponding to λ_3 is the difusion direction, used to define the neighboring vertex coincidence (NVC) condition.

イロト イポト イヨト イヨト 一日

Aldo Zang, Fabian Prada Direct Triangle Meshes Remeshing using Stellar Operators

(本間) (本語) (本)

э

Features guided remeshing

Remeshing without using features constraints

Features guided remeshing

Remeshing using features constraints

THANKS!

Aldo Zang, Fabian Prada Direct Triangle Meshes Remeshing using Stellar Operators

・ロト ・回ト ・ヨト ・ヨト