
Homework 4

Fabian Prada (Uniandes)

Problem 1 (I worked with Federico Castillo):

Lets prove that the polytope Pn−1 = ∆n−1 ×∆1:

a)Has n! triangulations
b)These triangulations are induced by the triangulations of ∆n−2×∆1 and the selection of a vertex
of Pn−1.
c) These triangulations are regular.

Define ∆n−1 = ∆n−1 × (1, 0) and ∆n−1 = ∆n−1 × (0, 1). Let {v1, v2, ..., vn} = V (∆n−1) and

{w1, w2, ..., wn} = V (∆n−1), and suppouse these sets of vertices are pairwise related.

For any S : {S1, S2, ..., Sn} triangulation of Pn−1, the following statements holds:

i) ∆n−1 is a facet of exactly one Si:

Let p be any point in the ”interior” of ∆n−1 (I mean, p is not contained in any proper face
of ∆n−1). Observe that p can be written only as a convex combination of all the vertex in
∆n−1. Since p must be contained in some Si (because Pn−1 = ∪Si), such Si must contain all
∆n−1. WLOG asume that ∆n−1 ⊆ S1. Since S1 is a n-dimensional simplex and ∆n−1 is a n − 1-

dimensional simplex, there exists wi vertex of ∆n−1 which is also vertex of S1; WLOG assume
that w1 is such vertix. Therefore we get that S1 = conv(∆n−1 ∪ {w1}). Now suppouse that
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∆n−1 ⊆ Sk 6= S1. Then Sk = conv(∆n−1 ∪ {wj}), where wj 6= w1. Observe that the point

q = 1
2n
w1 + 1

2n
v1 + 1

n
v2 + 1

n
v3 + ... + 1

n
vn = 1

n
v1 + 1

n
v2 + ... + 1

2n
wj + 1

2n
vj + ... 1

n
vn,is such that

q ∈ Int(S1) ∩ Int(Sk). Therefore S1 ∩ Sk would not be a face, and S would not be a triangulation.
So we conclude that ∆n−1 is only contained at S1.

ii) w1 is vertex of all Si’s: Observe that for any Si, at least one between v1, w1 must belong to
Si (otherwise, Si would not be n-dimensional).Therefore, it will be sufficient to show that S1 is the
only division which contains v1. To prove this, observe that S1 contains all the adjacent edges of
v1, so the cone centered at v1 and generated by these edges cover all Pn−1. Then, any ray between
v1 and any vertex wj ∈ ∆n−1 \ w1, must interesct the interior of S1. This implies that for any
wj ∈ ∆n−1 \ w1, the vertices wj and v1 can not lie in any division. Therefore we conclude that S1

is the only division that contains v1, so w1 is vertex of all Si’s.

Now define Pn−2 = conv(V (Pn−1) \ {v1, w1}) (observe that Pn−2 is combinatorially equivalen to
∆n−2 ×∆1 ).

iii) The divisions S2, ..., Sn induces a triangulation of Pn−2:

Define Ti = conv(V (Si)\w1) for all i = 2, 3, ..., n. Observe that ∪n
i=2Ti = (∪n

i=2Si)∩Pn−2 = Pn−2

(because S1, S2..., Sn is a triangulation of Pn−1 and S1 does not contains ”interior” points of Pn−2).
Also observe that Ti ∩ Tj = (Si ∩ Sj)∩Pn−2 is a face of both Ti, Tj, because Si and Sj are divisions
of a triangulation. Therefore T : {T2, T3, ..., Tn} is a triangulation of Pn−2.

We have proven that any triangulation of Pn−1 = ∆n−1 × ∆1 induces a triangulation of Pn−2

(which is combinatorially equivalent to ∆n−2 ×∆1). We can get a converse result in the following
way:
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Fix a vertex w1 ∈ ∆n−1 and a triangulation T ′ : {T ′2, ..., T ′n} of ∆n−2 × ∆1. Identify the train-
gulation T ′ of ∆n−2 × ∆1 with a triangulation T : {T2, ..., Tn} of Pn−2 in a natural way (this can
be done by the combatorially equivalence). Define a triangulation S : {S1, S2, ..., Sn}of ∆n−1 ×∆1,
induced by w1 and T , in the folloing way:

i)S1 = conv(∆n−1 ∪ {w1}). This makes that S1 is the only division which contains v1

ii) For 2 ≤ i ≤ n, let Si = conv(Ti ∪ {w1}).

Now, we are able to identify a bijection between {Triangulations of ∆n−1 ×∆1} and
{Vertices of ∆n−1} × {Triangulations of ∆n−2 ×∆1}. Applying induction to the previous result we
get: |{ Triangulations of ∆n−1 ×∆1}| = n!

Since we have shown that any triangulation of ∆n−1 ×∆1 can be constructed from a triangula-
tion of ∆n−2×∆1, I tried to prove by induction that all the triangulations of ∆n−1×∆1 are regular:

(the following proof is not complete)

i) The base case n = 2 is easy to check.

ii) Suppouse he have proved the case n − 1, i.e, that all the triangulations of ∆n−2 × ∆1 are
regular. Then for any triangulation T ′ of ∆n−2×∆1 there exists a function h′ : V (∆n−2×∆1)→ R
such that the projection of the lower faces of Q′ = conv({(ui, h

′(ui)) : ui ∈ V (∆n−2×∆1)}) induces
T ′.

Now suppouse S : {S1, S2, ..., Sn} is a triangulation of ∆n−1 × ∆1 with vertix at w1 and such
that {S2, S3, ..., Sn} induces a triangulation T : {T2, T3, ..., Tn} at Pn−2. Since Pn−2 is combinato-
rially equivalent to ∆n−2 × ∆1, we can apply the induction hypothesis to get h : V (Pn−2) → R
such that Q = conv({(ui, h

′(ui)) : ui ∈ V (Pn−2)}) induces T . Now we must define h(w1), h(v1) in
such a way we get the triangulation S. Consider v1 = (1 0 0... 1 0) and w1 = (1 0 0... 0 1), and
(vi)1 = (wi)1 = 0 for all i 6= 1. Let F1, F2, ..., Fn−1 be the lower facets of Q (these facets are associ-
ated to T2, T3, ..., Tn) and let ci be the direction which maximimizes Fi (i.e, Qci

= Fi and the last
coordinate of ci is negative). Now I would try to construct a set of directions d1, d2, ..., dn,
which depends on c1, ..., cn−1, h(w1), h(v1) and such that:

i)di is maximized at conv((w1, h(w1)) ∪ Fi) for i = 1, ..., n− 1.
ii)dn is maximized at conv((w1, h(w1)) ∪ (v1, h(v1)) ∪ (v2, h(v2))... ∪ (vn, h(vn)))
iii) The last component of each di is negative for i = 1, ..., n.

Then the lower facects of conv((w1, h(w1)) ∪ (v1, h(v1)) ∪ Q) wolud be conv((w1, h(w1)) ∪ Fi)
for i = 1, ..., n− 1 and conv((w1, h(w1)) ∪ (v1, h(v1)) ∪ (v2, h(v2))... ∪ (vn, h(vn))). In that case the
triangulation induced by projection of the lower facets conv((w1, h(w1))∪(v1, h(v1))∪Q) would be S.

Problem 2:

I will prove inductively that for any positive integer d we have:
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∑
t≥0

(t+ 1)dzt =
A(d, 1)z0 + ...+ A(d, d)zd−1

(1− z)d+1

Where A(d, k) is defined by:
i)A(1, 1) = 1
ii)A(d, k) = 0 , if k ≤ 0 or k ≥ d+ 1
iii) A(d, k) = (d− k + 1)A(d− 1, k − 1) + kA(d− 1, k)

Case d = 1:

Observe that
∑
t≥0

(t + 1)zt = (
∑
t≥0

zt+1)′ = (
∑
t≥1

zt)′ = (
1

1− z
− 1)′ =

1

(1− z)2
. Then we conclude

that the condition holds for d = 1.

Assume we have the desired result for the case d− 1, i.e, we have∑
t≥0

(t+ 1)d−1zt =
A(d− 1, 1)z0 + ...+ A(d− 1, d− 1)zd−2

(1− z)d

Now lets prove that we can get the case d:

∑
t≥0

(t+ 1)dzt = (
∑
t≥0

(t+ 1)d−1zt+1)′ = (z
∑
t≥1

(t+ 1)d−1zt)′ =
∑
t≥0

(t+ 1)d−1zt + z(
∑
t≥0

(t+ 1)d−1zt)′ =

A(d− 1, 1)z0 + ...+ A(d− 1, d− 1)zd−2

(1− z)d
+ z
(A(d− 1, 1)z0 + ...+ A(d− 1, d− 1)

zd−2

)′
=

A(d− 1, 1)z0 + ...+ A(d− 1, d− 1)zd−2

(1− z)d
+

A(d− 1, 2)z1 + 2A(d− 1, 3)z2 + ...+ (d− 2)A(d− 1, d− 1)zd−2

(1− z)d
+

dA(d− 1, 1)z1 + dA(d− 1, 2)z2 + ...+ dA(d− 1, d− 1)zd−1

(1− z)d+1
=

A(d− 1, 1)z0 +
(
(d− 1)A(d− 1, 1) + 2A(d− 1, 2)

)
z1 +

(
(d− 2)A(d− 1, 2) + 3A(d− 1, 3)

)
z2 + ...

(1− z)d+1

...+
(
(d− k + 1)A(d− 1, k − 1) + kA(d− 1, k)

)
zk−1 + ...+ A(d− 1, d− 1)zd−1

(1− z)d+1
=

A(d, 1)z0 + A(d, 2)z1...+ A(d, k)zk−1 + ....+ A(d, d)zd−1

(1− z)d+1

By the way we define A(d, k), we have A(d, 1) = dA(d − 1, 0) + A(d − 1, 1) = A(d − 1, 1) and
A(d, d) = A(d− 1, d− 1) + dA(d− 1, d) = A(d− 1, d− 1) so we were allowed to change A(d− 1, 1)
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by A(d, 1), and A(d− 1, d− 1) by A(d, d), as we did in the last equation.

Finally we conclude: ∑
t≥0

(t+ 1)dzt =
A(d, 1)z0 + ...+ A(d, d)zd−1

(1− z)d+1

for all positive integers d.

Problem 3:

Lets prove that E(d, k), the number of permutations of [d] having exactly k − 1 descents, 1 ≤
k ≤ d, satisfies the formula :

E(d, k) = (d− k + 1)E(d− 1, k − 1) + kE(d− 1, k)

Let pd be any permutation of [d] and consider it as a row vector. If we remove d from the
vector pd, we get a vector associated to a unique permutation of [d − 1]. Similarly, if we have a
permutation pd−1 of [d− 1], and we consider it as a row vetor, we can get d diferent permutations
of [d], by inserting d to pd−1, at any of d possible positions (before the first coordinate, between the
fisrt and the second coordinate,..., after the last coordinate).Therefore we get a bijection between
{ permutations of [d]} and { permutations of [d− 1]} × {d positions to insert d}

Let pd−1 = (a1, a2, ..., ad−1) be any permutation of [d−1], and assume pd−1 has m descents. Lets
consider 3 cases:

i) pd := (d, a1, a2, ..., ad−1) will have m + 1 descents since d > a1 and the other order relations
remain the same.

ii)pd := (a1, a2, ..., ai, d, ai+1.., ad−1). If we introduce d at a descent position (i,e ai > ai+1), the
number of total descents remain m. If we introduce d at a non-descent position (i,e ai < ai+1), the
number of total descents increases by 1, so we get m+ 1 descents.

iii) pd := (a1, a2, ..., ad−1, d). Since ad−1 < d, the number of descents is m.

By the previous observations we conclude that we can get pd, a permutation of [d] with k − 1
descents, in any of the following ways:

i)Fix pd−1 a a permutation of [d− 1] with k − 2 descents. Insert d before the first coordinate of
pd−1, or in any of the

(
d− 2− (k − 2)

)
non-desecent positions of pd−1. So we can get pd from pd−1

by inserting d at d− k + 1 possible positions.

ii) Fix pd−1 a a permutation of [d− 1] with k − 1 descents. Insert d after the last coordinate of
pd−1, or in any of the k− 1 descents positions of pd−1. So we can get pd from pd−1 by inserting d at
k possible positions.
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Finally we conclude that E(d, k) = (d− k + 1)E(d− 1, k − 1) + kE(d− 1, k), for all 1 ≤ k ≤ d.

Since E(1, 1) = 1 ; E(d, k) = 0 , if k ≤ 0 or k ≥ d+ 1; and E(d, k) = (d−k+ 1)E(d−1, k−1) +
kE(d − 1, k), for all 1 ≤ k ≤ d; we conclude that the numbers E(d, k) and A(d, k) shares exactly
the same recursive definition, so we get E(d, k) = A(d, k) for all 1 ≤ k ≤ d.

Therefore, if we want to prove A(d, k) = A(d, d+ 1− k), it will be sufficinet to show E(d, k) =
E(d, d + 1 − k), in other words, that the number of permutations of [d] with k − 1 descents is
equal to the number of permutation with d − k descents. Define the function R : [d] → [d] that
reflects any permutation, for instance if p = (1342) ⇒ R(p) = (2431).Let pd be any permutation
of [d] and obvserve that: pd has k − 1 descents ⇐⇒ pd has d − k ascents ⇐⇒ R(pd) has d − k
descents. Then R is a bijection between permutation of k− 1 descents and those of d− k descents,
so E(d, k) = E(d, d+ 1− k).

Problem 4 :

Given f : N→ N such that
∑
t≥0

f(t)zt =
g(z)

(1− z)d+1
, lets prove that the following are equivalent:

i) f is a polynomila of degree d
ii)g is a polynomial of degree at most d such that g(1) 6= 0.

i)⇒ ii): Observe that the set {1, (t+ 1), (t+ 1)2, ..., (t+ 1)d} is a basis for the set of polynomials
of degree at most d (this is true because each polynomial 1, (t+1), (t+1)2, ..., (t+1)d has a different
degree). Since f is a polynomial of deggre d, we can write

f = ad(t+ 1)d + ad−1(t+ 1)d−1 + ...+ a1(t+ 1) + a0

with ad 6= 0. By the result in Problem 2, we know that∑
t≥0

(t+ 1)mzt =
A(m, 1)z0 + ...+ A(m,m)zm−1

(1− z)m+1

Then ∑
t≥0

f(t)zt =
∑
t≥0

(ad(t+ 1)d + ad−1(t+ 1)d−1 + ...+ a1(t+ 1) + a0)zt =

∑
t≥0

d∑
m=0

am(t+ 1)mzt =
1

1− z
+

d∑
m=1

∑
t≥0

am(t+ 1)mzt =
1

1− z
+

d∑
m=1

A(m, 1)z0 + ...+ A(m,m)zm−1

(1− z)m+1

Defining Pm(z) := A(m, 1)z0 + ...+A(m,m)zm−1 for m = 1, ..., d (polynomial of degree m− 1),

and replacing A(m,1)z0+...+A(m,m)zm−1

(1−z)m+1 by Pm(z)(1−z)d−m

(1−z)d+1 we get that

∑
t≥0

f(t)zt =
(1− z)d

(1− z)d+1
+

d∑
m=1

Pm(z)(1− z)d−m

(1− z)d+1
=

(1− z)d +
d∑

m=1

Pm(z)(1− z)d−m

(1− z)d+1
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Now define g(z) := (1− z)d +
d∑

m=1

Pm(z)(1− z)d−m, and observe that g(z) is a polynomial of degree

d, since (1 − z)d is of degree d, and Pm(z)(1 − z)d−m is of degree d − 1 for m = 1, ..., d. Observe

that g(1) = (1 − 1)d +
d∑

m=1

Pm(1)(1 − 1)d−m = Pd(1) = A(d, 1) + A(d, 2) + ... + A(d, d) 6= 0 (since

A(d, k) > 0 for 1 ≤ k ≤ d) , so we get g(1) 6= 0. Finally we conclude that
∑
t≥0

f(t)zt =
g(z)

(1− z)d+1
,

where g is a polynomial with the desired properties.

ii)⇒ i): Lets start checking that the set

{(1− z)d, (1− z)d−1P1(z), (1− z)d−2P2(z), ..., (1− z)Pd−1(z), Pd(z)}

is basis for the set of polynomial of degree at most d. Since this set has d+ 1 polynomias it will be
sufficient to show that the set is linearly indepemdent. Suppouse

α0(1− z)d + α1(1− z)d−1P1(z) + ...+ αdPd(z) = 0

, and let k be the greatest index such that αk 6= 0, then

α0(1− z)d + α1(1− z)d−1P1(z) + ...+ αk−1(1− z)d−k+1Pk−1(z) = −αk(1− z)d−kPd(k)

Observe that Pk(1) = A(k, 1) + A(k, 2) + ...+ A(k, k) 6= 0, so d− k is the multiplicity of 1 as a
root of the right side. However the multiplicity of 1 as a root of the left side is at least d− k + 1,
this contridiction let us to conclude that

{(1− z)d, (1− z)d−1P1(z), (1− z)d−2P2(z), ..., (1− z)Pd−1(z), Pd(z)}

is basis for the set of polynomial of degree at most d.

Now write g(z) = a0(1 − z)d + a1(1 − z)d−1P1(z) + ... + ad−1(1 − z)Pd−1(z) + adPd(z). Since
g(1) = adPd(1) and Pd(1) 6= 0, we get that the condition g(1) 6= 0 implies ad 6= 0.

Therefore g(z)
(1−z)d+1 = a0

1
1−z

+ a1
P1(z)

(1−z)2
+ ... + ad

Pd(z)
(1−z)d+1 , where ad 6= 0. Since each Pm(z)

(1−z)m+1 =∑
t≥0

(t + 1)mzt, then g(z)
(1−z)d+1 =

∑
t≥0

(
a0 + a1(t + 1) + a2(t + 1)2 + ... + ad(t + 1)d

)
zt. Finally we get

that f(t) = a0 + a1(1 + t) + a2(1 + t)2 + ...+ ad(1 + t)d, with ad 6= 0, i.e., f is a polynomial of degree
d as we wanted to prove.

Problem 5(I worked with Jose Samper and Fabian Latorre):

The image of Pt = conv{(0, 0, 0), (0, 0, 3t), (t, 0, 0), (t, t, 0), (2t, t, 0)(2t, 0, t)} is the following :
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And the inequality description of this polytope, Pt is:

1 −1 −1
0 3 1

1 1 1

−1 1 0

0 −1 0

0 0 −1


xy
z

 ≤



t

3t

3t

0

0

0


Consider a division of the base of the polytope Pt in triangles A,B,C as shown in the figure.

The face above the triangle A is F1 which is defined by 3y + z = 3t. The face above the triangle B
is F2 which is defined by x + y + z = 3t. And the face above the triangle C is F3 which is defined
by x − y + z = t, also, we can see that F2 is over F3. Lets consider the amount of points over a
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point (x, y, 0) in each of these regions:

i) For the face A, the amuont of points over (x, y, 0) is 3t − 3y + 1 ((x, y, 0) is counted). Ob-
serve that A = {(x, y, 0) : 0 ≤ y ≤ t, y ≤ x ≤ 2y}, so the amuont of points in and over A is

t∑
y=0

2y∑
x=y

3t− 3y + 1

ii) For the face B, the amuont of points over (x, y, 0) is 3t − x − y + 1 ((x, y, 0) is counted).
Observe that B \ A = {(x, y, 0) : 0 ≤ y ≤ t, 2y + 1 ≤ x ≤ t + y}, so the amuont of points in and

over B \ A is
t∑

y=0

t+y∑
x=2y+1

3t− x− y + 1

iii) For the face C the amuont of points over (x, y, 0) is (3t−x−y+1)− (x−y− t) = 4t−2x+1
((x, y, 0) is counted). Observe that C \B = {(x, y, 0) : 0 ≤ y ≤ t, t+ y+ 1 ≤ x ≤ 2t} so the amuont

of points in and over C \B is
t∑

y=0

2t∑
x=t+y+1

4t− 2x+ 1

Therefore the Ehrhart polynomial of of this polytope is

P (t) =
t∑

y=0

2y∑
x=y

3t− 3y + 1 +
t∑

y=0

t+y∑
x=2y+1

3t− x− y + 1 +
t∑

y=0

2t∑
x=t+y+1

4t− 2x+ 1

.
Lets compute this:

P (t) =
t∑

y=0

(y + 1)(3t− 3y + 1) + (t− y)(3t− y + 1) + 2(t− y)y − (t− y)(t− y + 1)

2
+

(t− y)(4t+ 1)− 2(t− y)(t+ y)− (t− y)(t− y + 1)

=
t∑

y=0

(y + 1) + (t− y)(
7t− y + 7

2
)

=
t∑

y=0

7

2
t2 − 4yt+

1

2
y2 +

7

2
t− 5

2
y + 1

...

= (t+ 1)(
20t2 + 28t+ 12

12
)

⇒ P (t) =
5

3
t3 + 4t2 +

10

3
t+ 1

In order to find the Ehrhart series of the polytope lets start writing P (t) in the base

{1, (t+ 1), (t+ 1)2, (t+ 1)3 :
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P (t) = (t+1)(
20t2 + 28t+ 12

12
) =

1

12
(t+1)(20(t+1)2−12(t+1)+4) =

1

12
(20(t+1)3−12(t+1)2+4(t+1))

In the second problem we showed that
∑
t≥0

(t+ 1)dzt =
A(d, 1)z0 + ...+ A(d, d)zd−1

(1− z)d+1
.

• For d = 1 then
∑
t≥0

(t+ 1)zt =
1

(1− z)2

• For d = 2 then
∑
t≥0

(t+ 1)2zt =
1 + z

(1− z)3

• For d = 3 then
∑
t≥0

(t+ 1)3zt =
1 + 4z + z2

(1− z)4

Therefore∑
t≥0

P (t)zt =
∑
t≥0

[
1

12
(20(t+ 1)3− 12(t+ 1)2 + 4(t+ 1))]zt = (

5

3
)
1 + 4z + z2

(1− z)4
− 1 + z

(1− z)3
+ (

1

3
)

1

(1− z)2

=
3z2 + 6z + 1

(1− z)4

So we get that 3z2+6z+1
(1−z)4

is the value of the Ehrhart series of the polytope.

Problem 6:

Let ei,fj be the standard unit vectors in Rm,Rn (resp.), vij = ei × fj, and ∆m−1 × ∆n−1 =
conv{vij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Let Γ := { staircase from (1, 1) to (m,n)}, so Γ has
(

m+n−2
m−1

)
. For each S ∈ Γ, define

PS := conv{vij : (i, j) ∈ S}. Lets prove that {PS : S ∈ Γ} is a triangulation of ∆m−1 ×∆n−1:

i)Lets prove that PS is a simplex for all S ∈ Γ:

To prove this is sufficient to show that the m+n− 1 vertices of PS are affinely independent (i.e
they doesn’t lie in a m+n−3-dimensional affine space). Name the vertices of PS, w1, w2, ..., wm+n−1,
according to the order the appear in the staircase, so w1 = v11 and wm+n−1 = vmn. Suppouse we
have λ1w1 + λ2w2 + ...+ λm+n−1wm+n−1 = 0 for some λ’s such that λ1 + λ2 + ...+ λm+n−1 = 1. Let
k be the greatest index such that λk 6= 0, then we can write λ1w1 +λ2w2 + ...+λk−1wk−1 = −λkwk.
If we write w1 = va1b1 , w2 = va2b2 , ..., wk = vakbk

,and remembering that the points w1, w2, ..., wk

are ordered according a staircase, we can conclude that one of the following conditions must hold:
ak > ai for all i < k, or bk > bi for all i < k. WLOG assume ak > ai for all i < k. Then the ak-th
component of the vector wk = vakbk

is 1, while the ak-th component of the vectors wi = vaibi
is 0

for all i < k.Therefore we cannot have the equality λ1w1 + λ2w2 + ... + λk−1wk−1 = −λkwk, where
λk 6= 0. This implies that λ1w1 + λ2w2 + ...+ λm+n−1wm+n−1 = 0 only holds when λi = 0 for all i,
so w1, w2, ..., wm+n−1 are affinely independent.
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ii) Lets prove that ∪{S∈Γ}PS = ∆m−1 ×∆n−1:
For any x ∈ ∆m−1×∆n−1 write x = (α1, α2, ..., αm, β1, β2, ..., βn). Since (α1, α2, ..., αm) ∈ ∆m−1, we
get that αi ≥ 0 for all i, and α1 + α2 + ...+ αm = 1. Similarly, since (β1, β2, ..., βn) ∈ ∆n−1, we get
that βj ≥ 0 for all j, and β1 + β2 + ...+ βn = 1.

Define A1 = α1, A2 = α1 + α2, A3 = α1 + α2 + α3, ..., Am = α1 + α2 + α3 + ... + αm = 1, and
B1 = β1, B2 = β1 + β2, B3 = β1 + β2 + β3, ..., Bn = β1 + β2 + β3 + ... + βn = 1. Observe that
0 ≤ A1 ≤ A2 ≤ ... ≤ Am = 1 and 0 ≤ B1 ≤ B2 ≤ ... ≤ Bn = 1. We can ”mix” the previous se-
quences in a single ordered chain of lenght m+n, for instance if A1 = 0, A2 = 0.6, A3 = 0.8, A4 = 1,
B1 = 0.3, B2 = 0.5, B3 = 1, we get A1 ≤ B1 ≤ B2 ≤ A2 ≤ A3 ≤ B3 ≤ A4. Since 0 ≤ A1 ≤ A2 ≤
... ≤ Am = 1 and 0 ≤ B1 ≤ B2 ≤ ... ≤ Bm = 1, there are exactly

(
m+n−2

m−1

)
classes of chains (I

mean, chains with the identical order of Ai’s and Bi’s, up two the order of Am = Bn = 1 in the
last two places of the chain), that are obtained by selecting the m− 1 positions of A1, A2, ..., Am−1

in the first m + n− 2 places of the chain. For instance A1 ≤ B1 ≤ B2 ≤ A2 ≤ A3 ≤ B3 ≤ A4 and
A1 ≤ B1 ≤ A2 ≤ B2 ≤ A3 ≤ B3 ≤ A4 are diferent classes of chains, but A1 ≤ B1 ≤ B2 ≤ A2 ≤
A3 ≤ B3 ≤ A4 and A1 ≤ B1 ≤ B2 ≤ A2 ≤ A3 ≤ A4 ≤ B3 are the same class.

Therefore the amount of classes of chains is equal to the number of staicases in Γ. Let see the
relation. For a given chain construct a staircase as follows:

0) Start at (1, 1).
1) If the first element of the chain is A1 move to the east, if it is B1 move to the north.
2) If the k-th element of the chain is of the form A move to the east, if it is of the form B move to
the north.

Fix x ∈ ∆m−1 ×∆n−1, let Cx be a chain related to x, and let Sx be the staircaes induced by Cx

using the previous construction. I claim that x ∈ PSx :

Write the chain Cx associated to x in the form C1 ≤ C2 ≤ ... ≤ Cm+n (for instance if
Cx is the chain A1 ≤ B1 ≤ B2 ≤ A2 ≤ A3 ≤ B3 ≤ A4, then we have C1 = A1, C2 =
A2, C3 = B2, ..., C7 = A4). Name the vertices of PSx , w1, w2, ..., wm+n−1, according to the or-
der the appear in the staircase, so w1 = v11 and wm+n−1 = vmn. Now, we can check that
x = C1w1 + (C2 − C1)w2 + ... + (Cm+n−1 − Cm+n−2)wm+n−1. This show that x ∈ PSx since
C1w1 +(C2−C1)w2 + ...+(Cm+n−1−Cm+n−2)wm+n−1 is a convex combination of the vertices of PSx .

For example suppouse x = (α1, α2, α3, α4, β1, β2, β3) = (0, 0.6, 0.2, 0.2, 0.3, 0.2, 0.5) so A1 =
0, A2 = 0.6, A3 = 0.8, A4 = 1, and B1 = 0.3, B2 = 0.5, B3 = 1. Then we can take Cx, the chain
associated to x, as A1 ≤ B1 ≤ B2 ≤ A2 ≤ A3 ≤ B3 ≤ A4. Using the construction of the staircase
from the chain Cx,we get the following order of movements: east,north,north,east,east. This pro-
duces the vertices v1,1, v2,1, v2,2, v2,3, v3,3, v4,3. Writting the chain Cx in the form C1 ≤ C2 ≤ ... ≤ C7,
observe that C1v1,1 + (C2 − C1)v2,1 + ...+ (C6 − C5)v4,3 =

0(1000100) + 0.3(0100100) + 0.2(0100010) + 0.1(0100001) + 0.2(0010001) + 0.2(0001001) =

(0, 0.6, 0.2, 0.2, 0.3, 0.2, 0.5) = x
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iii) Lets prove that PS1 ∩PS2 is a face of both of them. Let {v1, v2, ..., vk} = V (PS1)∩ V (PS2),
I claim that PS1 ∩ PS2 = conv{v1, v2, ..., vk}. To prove this I will argue by contradiction. Suppouse
there exists q ∈ (PS1 ∩ PS2) \ conv{v1, v2, ..., vk}. Then, there exists wh ∈ V (PS1) \ V (PS2) which is
component of q, i.e,if we write q as a convex combination of the vertices of PS1 , then the coefficient
of wh, say λh is greater than 0 (since PS1 is a simplex, the point q can be written in a unique way
as convex combination of the vertices of PS1). Let wh = vij. Since wh /∈ V (PS2), there exists ĵ < j
such that vi,ĵ and vi+1,ĵ belong to V (PS2) (Case 1 ), or there exist î < i such that vî,j and vî,j+1

belong to V (PS2)(Case 2 ) . These two cases are presented below:

a) Case 1: When we write q as a point in PS1 the condition λh > 0 (which is the coefficient of
wh = vij) implies Ai > Bj−1. On the other hand, when we write q as a point in PS2 , the existence
of vi,ĵ and vi+1,ĵ in V (PS2), with ĵ < j, implies Ai ≤ Bĵ ≤ Bj−1. The conditions Ai > Bj−1

and Ai ≤ Bj−1 lead us to a contradiction. Therefore (PS1 ∩ PS2) \ conv{v1, v2, ..., vk} = ∅, so
PS1 ∩ PS2 = conv{v1, v2, ..., vk}. Since PS1 and PS2 are simplexes, then conv{v1, v2, ..., vk} is a face
of both of them.

b)Case 2: This case is analogous to the previous one. It leads to the contradiction ,Bj > Ai−1

and Bj ≤ Ai−1.

7) Para desarrollar el proyecto voy a trabajar con Fabian Latorre. Estamos interesados en tra-
bajar en algun topico de Optimizacion Combinatorica. En especial, nos llama la atencion trabajar
en problemas relacionados a optimizacion de matchings y flujos sobre grafos (tal como el problema
de las parejas de hombres y mujeres que se trato en la tarea anterior), y nuestro objetivo seria com-
prender (o modelar) este tipo de problemas desde el punto de vista de politopos. El libro que hemos
mirado es Combinatorial Optimization de William J. Cook,Cunningham,Pulleyblank, y Schrijver
(es un libro delgado que le mostre cuando vino a Bogota, y que es de introduccion en temas de
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optimizacion combinatorica ). En el capitulo de politopos de este libro, se encuentran teoremas in-
teresantes sobre matchings y perfect matchings asociados a politopos. Si bien el contenido del libro
en este tema no es muy extenso, seguramente podriamos profundizar mas con los libros amarillos de
Schrijver o buscar articulos en el tema. Tambien nos ha parecido interesante el enfoque algoritmico
que da este libro a los problemas, por lo cual proponer o estudiar alguna aplicacion algoritmica a
la solucion de un problema podria hacer parte de nuestro proyecto.

Por otra parte, cuando usted vino a Bogota yo le comente que mi area de interes era analisis
numerico y usted me hablo de unos articulos sobre splines y anillos de polinomios. Tambien me
gustaria mirar estos articulos, pues me podrian ser de utilidad para mi tesis de pregrado en la cual
estoy abordando problemas de interpolacion.
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