Homework 4

Fabian Prada (Uniandes)
Problem 1 (I worked with Federico Castillo):
Lets prove that the polytope $P_{n-1}=\Delta_{n-1} \times \Delta_{1}$:
a)Has n ! triangulations
b) These triangulations are induced by the triangulations of $\Delta_{n-2} \times \Delta_{1}$ and the selection of a vertex of P_{n-1}.
c) These triangulations are regular.

Define $\Delta_{n-1}=\Delta_{n-1} \times(1,0)$ and $\overline{\Delta_{n-1}}=\Delta_{n-1} \times(0,1)$. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=V\left(\Delta_{n-1}\right)$ and $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}=V\left(\overline{\Delta_{n-1}}\right)$, and suppouse these sets of vertices are pairwise related.

For any $S:\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ triangulation of P_{n-1}, the following statements holds:
i) Δ_{n-1} is a facet of exactly one S_{i} :

Let p be any point in the "interior" of Δ_{n-1} (I mean, p is not contained in any proper face of Δ_{n-1}). Observe that p can be written only as a convex combination of all the vertex in $\underline{\Delta_{n-1}}$. Since p must be contained in some S_{i} (because $P_{n-1}=\cup S_{i}$), such S_{i} must contain all $\overline{\Delta_{n-1}}$. WLOG asume that $\Delta_{n-1} \subseteq S_{1}$. Since S_{1} is a n-dimensional simplex and Δ_{n-1} is a $n-1$ dimensional simplex, there exists w_{i} vertex of $\overline{\Delta_{n-1}}$ which is also vertex of S_{1}; WLOG assume that w_{1} is such vertix. Therefore we get that $S_{1}=\operatorname{conv}\left(\Delta_{n-1} \cup\left\{w_{1}\right\}\right)$. Now suppouse that
$\Delta_{n-1} \subseteq S_{k} \neq S_{1}$. Then $S_{k}=\operatorname{conv}\left(\Delta_{n-1} \cup\left\{w_{j}\right\}\right)$, where $w_{j} \neq w_{1}$. Observe that the point $\overline{q=} \frac{1}{2 n} w_{1}+\frac{1}{2 n} v_{1}+\frac{1}{n} v_{2}+\frac{1}{n} v_{3}+\ldots+\frac{1}{n} v_{n}=\frac{1}{n} v_{1}+\frac{1}{n} v_{2}+\ldots+\frac{1}{2 n} w_{j}+\frac{1}{2 n} v_{j}+\ldots \frac{1}{n} v_{n}$, is such that $q \in \operatorname{Int}\left(S_{1}\right) \cap \operatorname{Int}\left(S_{k}\right)$. Therefore $S_{1} \cap S_{k}$ would not be a face, and S would not be a triangulation. So we conclude that Δ_{n-1} is only contained at S_{1}.
ii) w_{1} is vertex of all S_{i} 's: Observe that for any S_{i}, at least one between v_{1}, w_{1} must belong to S_{i} (otherwise, S_{i} would not be n-dimensional).Therefore, it will be sufficient to show that S_{1} is the only division which contains v_{1}. To prove this, observe that S_{1} contains all the adjacent edges of v_{1}, so the cone centered at v_{1} and generated by these edges cover all P_{n-1}. Then, any ray between v_{1} and any vertex $w_{j} \in \overline{\Delta_{n-1}} \backslash w_{1}$, must interesct the interior of S_{1}. This implies that for any $w_{j} \in \overline{\Delta_{n-1}} \backslash w_{1}$, the vertices w_{j} and v_{1} can not lie in any division. Therefore we conclude that S_{1} is the only division that contains v_{1}, so w_{1} is vertex of all S_{i} 's.

Now define $P_{n-2}=\operatorname{conv}\left(V\left(P_{n-1}\right) \backslash\left\{v_{1}, w_{1}\right\}\right)$ (observe that P_{n-2} is combinatorially equivalen to $\left.\Delta_{n-2} \times \Delta_{1}\right)$.
iii) The divisions S_{2}, \ldots, S_{n} induces a triangulation of P_{n-2} :

Define $T_{i}=\operatorname{conv}\left(V\left(S_{i}\right) \backslash w_{1}\right)$ for all $i=2,3, \ldots, n$. Observe that $\cup_{i=2}^{n} T_{i}=\left(\cup_{i=2}^{n} S_{i}\right) \cap P_{n-2}=P_{n-2}$ (because $S_{1}, S_{2} \ldots, S_{n}$ is a triangulation of P_{n-1} and S_{1} does not contains "interior" points of P_{n-2}). Also observe that $T_{i} \cap T_{j}=\left(S_{i} \cap S_{j}\right) \cap P_{n-2}$ is a face of both T_{i}, T_{j}, because S_{i} and S_{j} are divisions of a triangulation. Therefore $T:\left\{T_{2}, T_{3}, \ldots, T_{n}\right\}$ is a triangulation of P_{n-2}.

We have proven that any triangulation of $P_{n-1}=\Delta_{n-1} \times \Delta_{1}$ induces a triangulation of P_{n-2} (which is combinatorially equivalent to $\Delta_{n-2} \times \Delta_{1}$). We can get a converse result in the following way:

Fix a vertex $w_{1} \in \overline{\Delta_{n-1}}$ and a triangulation $T^{\prime}:\left\{T_{2}^{\prime}, \ldots, T_{n}^{\prime}\right\}$ of $\Delta_{n-2} \times \Delta_{1}$. Identify the traingulation T^{\prime} of $\Delta_{n-2} \times \Delta_{1}$ with a triangulation $T:\left\{T_{2}, \ldots, T_{n}\right\}$ of P_{n-2} in a natural way (this can be done by the combatorially equivalence). Define a triangulation $S:\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of $\Delta_{n-1} \times \Delta_{1}$, induced by w_{1} and T, in the folloing way:
i) $S_{1}=\operatorname{conv}\left(\Delta_{n-1} \cup\left\{w_{1}\right\}\right)$. This makes that S_{1} is the only division which contains v_{1} ii) For $2 \leq i \leq n$, let $S_{i}=\operatorname{conv}\left(T_{i} \cup\left\{w_{1}\right\}\right)$.

Now, we are able to identify a bijection between $\left\{\right.$ Triangulations of $\left.\Delta_{n-1} \times \Delta_{1}\right\}$ and $\left\{\right.$ Vertices of $\left.\overline{\Delta_{n-1}}\right\} \times\left\{\right.$ Triangulations of $\left.\Delta_{n-2} \times \Delta_{1}\right\}$. Applying induction to the previous result we get: $\mid\left\{\right.$ Triangulations of $\left.\Delta_{n-1} \times \Delta_{1}\right\} \mid=n$!

Since we have shown that any triangulation of $\Delta_{n-1} \times \Delta_{1}$ can be constructed from a triangulation of $\Delta_{n-2} \times \Delta_{1}$, I tried to prove by induction that all the triangulations of $\Delta_{n-1} \times \Delta_{1}$ are regular:

(the following proof is not complete)

i) The base case $n=2$ is easy to check.
ii) Suppouse he have proved the case $n-1$, i.e, that all the triangulations of $\Delta_{n-2} \times \Delta_{1}$ are regular. Then for any triangulation T^{\prime} of $\Delta_{n-2} \times \Delta_{1}$ there exists a function $h^{\prime}: V\left(\Delta_{n-2} \times \Delta_{1}\right) \rightarrow \mathbb{R}$ such that the projection of the lower faces of $Q^{\prime}=\operatorname{conv}\left(\left\{\left(u_{i}, h^{\prime}\left(u_{i}\right)\right): u_{i} \in V\left(\Delta_{n-2} \times \Delta_{1}\right)\right\}\right)$ induces T^{\prime}.

Now suppouse $S:\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ is a triangulation of $\Delta_{n-1} \times \Delta_{1}$ with vertix at w_{1} and such that $\left\{S_{2}, S_{3}, \ldots, S_{n}\right\}$ induces a triangulation $T:\left\{T_{2}, T_{3}, \ldots, T_{n}\right\}$ at P_{n-2}. Since P_{n-2} is combinatorially equivalent to $\Delta_{n-2} \times \Delta_{1}$, we can apply the induction hypothesis to get $h: V\left(P_{n-2}\right) \rightarrow \mathbb{R}$ such that $Q=\operatorname{conv}\left(\left\{\left(u_{i}, h^{\prime}\left(u_{i}\right)\right): u_{i} \in V\left(P_{n-2}\right)\right\}\right)$ induces T. Now we must define $h\left(w_{1}\right), h\left(v_{1}\right)$ in such a way we get the triangulation S. Consider $v_{1}=\left(\begin{array}{lllll}1 & 0 & 0\end{array}\right)$ and $w_{1}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$ $\left(v_{i}\right)_{1}=\left(w_{i}\right)_{1}=0$ for all $i \neq 1$. Let $F_{1}, F_{2}, \ldots, F_{n-1}$ be the lower facets of Q (these facets are associated to $T_{2}, T_{3}, \ldots, T_{n}$) and let c_{i} be the direction which maximimizes F_{i} (i.e, $Q_{c_{i}}=F_{i}$ and the last coordinate of c_{i} is negative). Now I would try to construct a set of directions $d_{1}, d_{2}, \ldots, d_{n}$, which depends on $c_{1}, \ldots, c_{n-1}, h\left(w_{1}\right), h\left(v_{1}\right)$ and such that:
i) d_{i} is maximized at $\operatorname{conv}\left(\left(w_{1}, h\left(w_{1}\right)\right) \cup F_{i}\right)$ for $i=1, \ldots, n-1$.
ii) d_{n} is maximized at $\operatorname{conv}\left(\left(w_{1}, h\left(w_{1}\right)\right) \cup\left(v_{1}, h\left(v_{1}\right)\right) \cup\left(v_{2}, h\left(v_{2}\right)\right) \ldots \cup\left(v_{n}, h\left(v_{n}\right)\right)\right)$
iii) The last component of each d_{i} is negative for $i=1, \ldots, n$.

Then the lower facects of $\operatorname{conv}\left(\left(w_{1}, h\left(w_{1}\right)\right) \cup\left(v_{1}, h\left(v_{1}\right)\right) \cup Q\right)$ wolud be $\operatorname{conv}\left(\left(w_{1}, h\left(w_{1}\right)\right) \cup F_{i}\right)$ for $i=1, \ldots, n-1$ and $\operatorname{conv}\left(\left(w_{1}, h\left(w_{1}\right)\right) \cup\left(v_{1}, h\left(v_{1}\right)\right) \cup\left(v_{2}, h\left(v_{2}\right)\right) \ldots \cup\left(v_{n}, h\left(v_{n}\right)\right)\right)$. In that case the triangulation induced by projection of the lower facets $\operatorname{conv}\left(\left(w_{1}, h\left(w_{1}\right)\right) \cup\left(v_{1}, h\left(v_{1}\right)\right) \cup Q\right)$ would be S.

Problem 2:

I will prove inductively that for any positive integer d we have:

$$
\sum_{t \geq 0}(t+1)^{d} z^{t}=\frac{A(d, 1) z^{0}+\ldots+A(d, d) z^{d-1}}{(1-z)^{d+1}}
$$

Where $A(d, k)$ is defined by:
i) $A(1,1)=1$
ii) $A(d, k)=0$, if $k \leq 0$ or $k \geq d+1$
iii) $A(d, k)=(d-k+1) A(d-1, k-1)+k A(d-1, k)$

Case $d=1$:
Observe that $\sum_{t \geq 0}(t+1) z^{t}=\left(\sum_{t \geq 0} z^{t+1}\right)^{\prime}=\left(\sum_{t \geq 1} z^{t}\right)^{\prime}=\left(\frac{1}{1-z}-1\right)^{\prime}=\frac{1}{(1-z)^{2}}$. Then we conclude that the condition holds for $d=1$.

Assume we have the desired result for the case $d-1$, i.e, we have

$$
\sum_{t \geq 0}(t+1)^{d-1} z^{t}=\frac{A(d-1,1) z^{0}+\ldots+A(d-1, d-1) z^{d-2}}{(1-z)^{d}}
$$

Now lets prove that we can get the case d :

$$
\begin{gathered}
\sum_{t \geq 0}(t+1)^{d} z^{t}=\left(\sum_{t \geq 0}(t+1)^{d-1} z^{t+1}\right)^{\prime}=\left(z \sum_{t \geq 1}(t+1)^{d-1} z^{t}\right)^{\prime}=\sum_{t \geq 0}(t+1)^{d-1} z^{t}+z\left(\sum_{t \geq 0}(t+1)^{d-1} z^{t}\right)^{\prime}= \\
\frac{A(d-1,1) z^{0}+\ldots+A(d-1, d-1) z^{d-2}}{(1-z)^{d}}+z\left(\frac{A(d-1,1) z^{0}+\ldots+A(d-1, d-1)}{z^{d-2}}\right)^{\prime}= \\
\frac{A(d-1,1) z^{0}+\ldots+A(d-1, d-1) z^{d-2}}{(1-z)^{d}}+ \\
\frac{A(d-1,2) z^{1}+2 A(d-1,3) z^{2}+\ldots+(d-2) A(d-1, d-1) z^{d-2}}{(1-z)^{d}}+ \\
\frac{d A(d-1,1) z^{1}+d A(d-1,2) z^{2}+\ldots+d A(d-1, d-1) z^{d-1}}{(1-z)^{d+1}}= \\
\frac{A(d-1,1) z^{0}+((d-1) A(d-1,1)+2 A(d-1,2)) z^{1}+((d-2) A(d-1,2)+3 A(d-1,3)) z^{2}+\ldots}{(1-z)^{d+1}} \\
\frac{\ldots+((d-k+1) A(d-1, k-1)+k A(d-1, k)) z^{k-1}+\ldots+A(d-1, d-1) z^{d-1}}{(1-z)^{d+1}}= \\
\frac{A(d, 1) z^{0}+A(d, 2) z^{1} \ldots+A(d, k) z^{k-1}+\ldots+A(d, d) z^{d-1}}{(1-z)^{d+1}}
\end{gathered}
$$

By the way we define $A(d, k)$, we have $A(d, 1)=d A(d-1,0)+A(d-1,1)=A(d-1,1)$ and $A(d, d)=A(d-1, d-1)+d A(d-1, d)=A(d-1, d-1)$ so we were allowed to change $A(d-1,1)$
by $A(d, 1)$, and $A(d-1, d-1)$ by $A(d, d)$, as we did in the last equation.
Finally we conclude:

$$
\sum_{t \geq 0}(t+1)^{d} z^{t}=\frac{A(d, 1) z^{0}+\ldots+A(d, d) z^{d-1}}{(1-z)^{d+1}}
$$

for all positive integers d.

Problem 3:

Lets prove that $E(d, k)$, the number of permutations of $[d]$ having exactly $k-1$ descents, $1 \leq$ $k \leq d$, satisfies the formula :

$$
E(d, k)=(d-k+1) E(d-1, k-1)+k E(d-1, k)
$$

Let p_{d} be any permutation of $[d]$ and consider it as a row vector. If we remove d from the vector p_{d}, we get a vector associated to a unique permutation of $[d-1]$. Similarly, if we have a permutation p_{d-1} of $[d-1]$, and we consider it as a row vetor, we can get d diferent permutations of [d], by inserting d to p_{d-1}, at any of d possible positions (before the first coordinate, between the fisrt and the second coordinate,..., after the last coordinate). Therefore we get a bijection between $\{$ permutations of $[d]\}$ and $\{$ permutations of $[d-1]\} \times\{d$ positions to insert $d\}$

Let $p_{d-1}=\left(a_{1}, a_{2}, \ldots, a_{d-1}\right)$ be any permutation of $[d-1]$, and assume p_{d-1} has m descents. Lets consider 3 cases:
i) $p_{d}:=\left(d, a_{1}, a_{2}, \ldots, a_{d-1}\right)$ will have $m+1$ descents since $d>a_{1}$ and the other order relations remain the same.
ii) $p_{d}:=\left(a_{1}, a_{2}, \ldots, a_{i}, d, a_{i+1} . ., a_{d-1}\right)$. If we introduce d at a descent position (i,e $\left.a_{i}>a_{i+1}\right)$, the number of total descents remain m. If we introduce d at a non-descent position (i,e $a_{i}<a_{i+1}$), the number of total descents increases by 1 , so we get $m+1$ descents.
iii) $p_{d}:=\left(a_{1}, a_{2}, \ldots, a_{d-1}, d\right)$. Since $a_{d-1}<d$, the number of descents is m.

By the previous observations we conclude that we can get p_{d}, a permutation of $[d]$ with $k-1$ descents, in any of the following ways:
i)Fix p_{d-1} a a permutation of $[d-1]$ with $k-2$ descents. Insert d before the first coordinate of p_{d-1}, or in any of the $(d-2-(k-2))$ non-desecent positions of p_{d-1}. So we can get p_{d} from p_{d-1} by inserting d at $d-k+1$ possible positions.
ii) Fix p_{d-1} a a permutation of $[d-1]$ with $k-1$ descents. Insert d after the last coordinate of p_{d-1}, or in any of the $k-1$ descents positions of p_{d-1}. So we can get p_{d} from p_{d-1} by inserting d at k possible positions.

Finally we conclude that $E(d, k)=(d-k+1) E(d-1, k-1)+k E(d-1, k)$, for all $1 \leq k \leq d$.
Since $E(1,1)=1 ; E(d, k)=0$, if $k \leq 0$ or $k \geq d+1$; and $E(d, k)=(d-k+1) E(d-1, k-1)+$ $k E(d-1, k)$, for all $1 \leq k \leq d$; we conclude that the numbers $E(d, k)$ and $A(d, k)$ shares exactly the same recursive definition, so we get $E(d, k)=A(d, k)$ for all $1 \leq k \leq d$.

Therefore, if we want to prove $A(d, k)=A(d, d+1-k)$, it will be sufficinet to show $E(d, k)=$ $E(d, d+1-k)$, in other words, that the number of permutations of $[d]$ with $k-1$ descents is equal to the number of permutation with $d-k$ descents. Define the function $R:[d] \rightarrow[d]$ that reflects any permutation, for instance if $p=(1342) \Rightarrow R(p)=(2431)$. Let p_{d} be any permutation of $[d]$ and obvserve that: p_{d} has $k-1$ descents $\Longleftrightarrow p_{d}$ has $d-k$ ascents $\Longleftrightarrow R\left(p_{d}\right)$ has $d-k$ descents. Then R is a bijection between permutation of $k-1$ descents and those of $d-k$ descents, so $E(d, k)=E(d, d+1-k)$.

Problem 4:

Given $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\sum_{t \geq 0} f(t) z^{t}=\frac{g(z)}{(1-z)^{d+1}}$, lets prove that the following are equivalent:
i) f is a polynomila of degree d
ii) g is a polynomial of degree at most d such that $g(1) \neq 0$.
i) \Rightarrow ii): Observe that the set $\left\{1,(t+1),(t+1)^{2}, \ldots,(t+1)^{d}\right\}$ is a basis for the set of polynomials of degree at most d (this is true because each polynomial $1,(t+1),(t+1)^{2}, \ldots,(t+1)^{d}$ has a different degree). Since f is a polynomial of deggre d, we can write

$$
f=a_{d}(t+1)^{d}+a_{d-1}(t+1)^{d-1}+\ldots+a_{1}(t+1)+a_{0}
$$

with $a_{d} \neq 0$. By the result in Problem 2, we know that

$$
\sum_{t \geq 0}(t+1)^{m} z^{t}=\frac{A(m, 1) z^{0}+\ldots+A(m, m) z^{m-1}}{(1-z)^{m+1}}
$$

Then

$$
\begin{gathered}
\sum_{t \geq 0} f(t) z^{t}=\sum_{t \geq 0}\left(a_{d}(t+1)^{d}+a_{d-1}(t+1)^{d-1}+\ldots+a_{1}(t+1)+a_{0}\right) z^{t}= \\
\sum_{t \geq 0} \sum_{m=0}^{d} a_{m}(t+1)^{m} z^{t}=\frac{1}{1-z}+\sum_{m=1}^{d} \sum_{t \geq 0} a_{m}(t+1)^{m} z^{t}=\frac{1}{1-z}+\sum_{m=1}^{d} \frac{A(m, 1) z^{0}+\ldots+A(m, m) z^{m-1}}{(1-z)^{m+1}}
\end{gathered}
$$

Defining $P_{m}(z):=A(m, 1) z^{0}+\ldots+A(m, m) z^{m-1}$ for $m=1, \ldots, d$ (polynomial of degree $m-1$), and replacing $\frac{A(m, 1) z^{0}+\ldots+A(m, m) z^{m-1}}{(1-z)^{m+1}}$ by $\frac{P_{m}(z)(1-z)^{d-m}}{(1-z)^{d+1}}$ we get that

$$
\sum_{t \geq 0} f(t) z^{t}=\frac{(1-z)^{d}}{(1-z)^{d+1}}+\sum_{m=1}^{d} \frac{P_{m}(z)(1-z)^{d-m}}{(1-z)^{d+1}}=\frac{(1-z)^{d}+\sum_{m=1}^{d} P_{m}(z)(1-z)^{d-m}}{(1-z)^{d+1}}
$$

Now define $g(z):=(1-z)^{d}+\sum_{m=1}^{d} P_{m}(z)(1-z)^{d-m}$, and observe that $g(z)$ is a polynomial of degree d, since $(1-z)^{d}$ is of degree d, and $P_{m}(z)(1-z)^{d-m}$ is of degree $d-1$ for $m=1, \ldots, d$. Observe that $g(1)=(1-1)^{d}+\sum_{m=1}^{d} P_{m}(1)(1-1)^{d-m}=P_{d}(1)=A(d, 1)+A(d, 2)+\ldots+A(d, d) \neq 0$ (since $A(d, k)>0$ for $1 \leq k \leq d)$, so we get $g(1) \neq 0$. Finally we conclude that $\sum_{t \geq 0} f(t) z^{t}=\frac{g(z)}{(1-z)^{d+1}}$, where g is a polynomial with the desired properties.
ii) \Rightarrow i): Lets start checking that the set

$$
\left\{(1-z)^{d},(1-z)^{d-1} P_{1}(z),(1-z)^{d-2} P_{2}(z), \ldots,(1-z) P_{d-1}(z), P_{d}(z)\right\}
$$

is basis for the set of polynomial of degree at most d. Since this set has $d+1$ polynomias it will be sufficient to show that the set is linearly indepemdent. Suppouse

$$
\alpha_{0}(1-z)^{d}+\alpha_{1}(1-z)^{d-1} P_{1}(z)+\ldots+\alpha_{d} P_{d}(z)=0
$$

, and let k be the greatest index such that $\alpha_{k} \neq 0$, then

$$
\alpha_{0}(1-z)^{d}+\alpha_{1}(1-z)^{d-1} P_{1}(z)+\ldots+\alpha_{k-1}(1-z)^{d-k+1} P_{k-1}(z)=-\alpha_{k}(1-z)^{d-k} P_{d}(k)
$$

Observe that $P_{k}(1)=A(k, 1)+A(k, 2)+\ldots+A(k, k) \neq 0$, so $d-k$ is the multiplicity of 1 as a root of the right side. However the multiplicity of 1 as a root of the left side is at least $d-k+1$, this contridiction let us to conclude that

$$
\left\{(1-z)^{d},(1-z)^{d-1} P_{1}(z),(1-z)^{d-2} P_{2}(z), \ldots,(1-z) P_{d-1}(z), P_{d}(z)\right\}
$$

is basis for the set of polynomial of degree at most d.
Now write $g(z)=a_{0}(1-z)^{d}+a_{1}(1-z)^{d-1} P_{1}(z)+\ldots+a_{d-1}(1-z) P_{d-1}(z)+a_{d} P_{d}(z)$. Since $g(1)=a_{d} P_{d}(1)$ and $P_{d}(1) \neq 0$, we get that the condition $g(1) \neq 0$ implies $a_{d} \neq 0$.

Therefore $\frac{g(z)}{(1-z)^{d+1}}=a_{0} \frac{1}{1-z}+a_{1} \frac{P_{1}(z)}{(1-z)^{2}}+\ldots+a_{d} \frac{P_{d}(z)}{(1-z)^{d+1}}$, where $a_{d} \neq 0$. Since each $\frac{P_{m}(z)}{(1-z)^{m+1}}=$ $\sum_{t \geq 0}(t+1)^{m} z^{t}$, then $\frac{g(z)}{(1-z)^{d+1}}=\sum_{t \geq 0}\left(a_{0}+a_{1}(t+1)+a_{2}(t+1)^{2}+\ldots+a_{d}(t+1)^{d}\right) z^{t}$. Finally we get that $f(t)=a_{0}+a_{1}(1+t)+a_{2}(1+t)^{2}+\ldots+a_{d}(1+t)^{d}$, with $a_{d} \neq 0$, i.e., f is a polynomial of degree d as we wanted to prove.

Problem 5(I worked with Jose Samper and Fabian Latorre):
The image of $P_{t}=\operatorname{conv}\{(0,0,0),(0,0,3 t),(t, 0,0),(t, t, 0),(2 t, t, 0)(2 t, 0, t)\}$ is the following :

And the inequality description of this polytope, P_{t} is:

$$
\left(\begin{array}{ccc}
1 & -1 & -1 \\
0 & 3 & 1 \\
1 & 1 & 1 \\
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \leq\left(\begin{array}{c}
t \\
3 t \\
3 t \\
0 \\
0 \\
0
\end{array}\right)
$$

Consider a division of the base of the polytope P_{t} in triangles A, B, C as shown in the figure. The face above the triangle A is F_{1} which is defined by $3 y+z=3 t$. The face above the triangle B is F_{2} which is defined by $x+y+z=3 t$. And the face above the triangle C is F_{3} which is defined by $x-y+z=t$, also, we can see that F_{2} is over F_{3}. Lets consider the amount of points over a
point $(x, y, 0)$ in each of these regions:
i) For the face A, the amuont of points over $(x, y, 0)$ is $3 t-3 y+1((x, y, 0)$ is counted). Observe that $A=\{(x, y, 0): 0 \leq y \leq t, y \leq x \leq 2 y\}$, so the amuont of points in and over A is $\sum_{y=0}^{t} \sum_{x=y}^{2 y} 3 t-3 y+1$
ii) For the face B, the amuont of points over $(x, y, 0)$ is $3 t-x-y+1((x, y, 0)$ is counted). Observe that $B \backslash A=\{(x, y, 0): 0 \leq y \leq t, 2 y+1 \leq x \leq t+y\}$, so the amuont of points in and over $B \backslash A$ is $\sum_{y=0}^{t} \sum_{x=2 y+1}^{t+y} 3 t-x-y+1$
iii) For the face C the amuont of points over $(x, y, 0)$ is $(3 t-x-y+1)-(x-y-t)=4 t-2 x+1$ $((x, y, 0)$ is counted). Observe that $C \backslash B=\{(x, y, 0): 0 \leq y \leq t, t+y+1 \leq x \leq 2 t\}$ so the amuont of points in and over $C \backslash B$ is $\sum_{y=0}^{t} \sum_{x=t+y+1}^{2 t} 4 t-2 x+1$

Therefore the Ehrhart polynomial of of this polytope is

$$
P(t)=\sum_{y=0}^{t} \sum_{x=y}^{2 y} 3 t-3 y+1+\sum_{y=0}^{t} \sum_{x=2 y+1}^{t+y} 3 t-x-y+1+\sum_{y=0}^{t} \sum_{x=t+y+1}^{2 t} 4 t-2 x+1
$$

Lets compute this:

$$
\begin{gathered}
P(t)=\sum_{y=0}^{t}(y+1)(3 t-3 y+1)+(t-y)(3 t-y+1)+2(t-y) y-\frac{(t-y)(t-y+1)}{2}+ \\
(t-y)(4 t+1)-2(t-y)(t+y)-(t-y)(t-y+1) \\
=\sum_{y=0}^{t}(y+1)+(t-y)\left(\frac{7 t-y+7}{2}\right) \\
=\sum_{y=0}^{t} \frac{7}{2} t^{2}-4 y t+\frac{1}{2} y^{2}+\frac{7}{2} t-\frac{5}{2} y+1 \\
=(t+1)\left(\frac{20 t^{2}+28 t+12}{12}\right) \\
\Rightarrow P(t)=\frac{5}{3} t^{3}+4 t^{2}+\frac{10}{3} t+1
\end{gathered}
$$

In order to find the Ehrhart series of the polytope lets start writing $P(t)$ in the base

$$
\left\{1,(t+1),(t+1)^{2},(t+1)^{3}:\right.
$$

$$
P(t)=(t+1)\left(\frac{20 t^{2}+28 t+12}{12}\right)=\frac{1}{12}(t+1)\left(20(t+1)^{2}-12(t+1)+4\right)=\frac{1}{12}\left(20(t+1)^{3}-12(t+1)^{2}+4(t+1)\right)
$$

In the second problem we showed that $\sum_{t \geq 0}(t+1)^{d} z^{t}=\frac{A(d, 1) z^{0}+\ldots+A(d, d) z^{d-1}}{(1-z)^{d+1}}$.

- For $d=1$ then $\sum_{t \geq 0}(t+1) z^{t}=\frac{1}{(1-z)^{2}}$
- For $d=2$ then $\sum_{t \geq 0}(t+1)^{2} z^{t}=\frac{1+z}{(1-z)^{3}}$
- For $d=3$ then $\sum_{t \geq 0}(t+1)^{3} z^{t}=\frac{1+4 z+z^{2}}{(1-z)^{4}}$

Therefore

$$
\begin{aligned}
\sum_{t \geq 0} P(t) z^{t}=\sum_{t \geq 0}\left[\frac { 1 } { 1 2 } \left(20(t+1)^{3}-12(t+1)^{2}\right.\right. & +4(t+1))] z^{t}=\left(\frac{5}{3}\right) \frac{1+4 z+z^{2}}{(1-z)^{4}}-\frac{1+z}{(1-z)^{3}}+\left(\frac{1}{3}\right) \frac{1}{(1-z)^{2}} \\
= & \frac{3 z^{2}+6 z+1}{(1-z)^{4}}
\end{aligned}
$$

So we get that $\frac{3 z^{2}+6 z+1}{(1-z)^{4}}$ is the value of the Ehrhart series of the polytope.

Problem 6:

Let e_{i}, f_{j} be the standard unit vectors in $\mathbb{R}^{m}, \mathbb{R}^{n}$ (resp.), $v_{i j}=e_{i} \times f_{j}$, and $\Delta_{m-1} \times \Delta_{n-1}=$ $\operatorname{conv}\left\{v_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$.

Let $\Gamma:=\{$ staircase from $(1,1)$ to $(m, n)\}$, so Γ has $\binom{m+n-2}{m-1}$. For each $S \in \Gamma$, define $P_{S}:=\operatorname{conv}\left\{v_{i j}:(i, j) \in S\right\}$. Lets prove that $\left\{P_{S}: S \in \Gamma\right\}$ is a triangulation of $\Delta_{m-1} \times \Delta_{n-1}$:
i)Lets prove that P_{S} is a simplex for all $S \in \Gamma$:

To prove this is sufficient to show that the $m+n-1$ vertices of P_{S} are affinely independent (i.e they doesn't lie in a $m+n$ - 3 -dimensional affine space). Name the vertices of $P_{S}, w_{1}, w_{2}, \ldots, w_{m+n-1}$, according to the order the appear in the staircase, so $w_{1}=v_{11}$ and $w_{m+n-1}=v_{m n}$. Suppouse we have $\lambda_{1} w_{1}+\lambda_{2} w_{2}+\ldots+\lambda_{m+n-1} w_{m+n-1}=0$ for some λ 's such that $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{m+n-1}=1$. Let k be the greatest index such that $\lambda_{k} \neq 0$, then we can write $\lambda_{1} w_{1}+\lambda_{2} w_{2}+\ldots+\lambda_{k-1} w_{k-1}=-\lambda_{k} w_{k}$. If we write $w_{1}=v_{a_{1} b_{1}}, w_{2}=v_{a_{2} b_{2}}, \ldots, w_{k}=v_{a_{k} b_{k}}$, and remembering that the points $w_{1}, w_{2}, \ldots, w_{k}$ are ordered according a staircase, we can conclude that one of the following conditions must hold: $a_{k}>a_{i}$ for all $i<k$, or $b_{k}>b_{i}$ for all $i<k$. WLOG assume $a_{k}>a_{i}$ for all $i<k$. Then the a_{k}-th component of the vector $w_{k}=v_{a_{k} b_{k}}$ is 1 , while the a_{k}-th component of the vectors $w_{i}=v_{a_{i} b_{i}}$ is 0 for all $i<k$. Therefore we cannot have the equality $\lambda_{1} w_{1}+\lambda_{2} w_{2}+\ldots+\lambda_{k-1} w_{k-1}=-\lambda_{k} w_{k}$, where $\lambda_{k} \neq 0$. This implies that $\lambda_{1} w_{1}+\lambda_{2} w_{2}+\ldots+\lambda_{m+n-1} w_{m+n-1}=0$ only holds when $\lambda_{i}=0$ for all i, so $w_{1}, w_{2}, \ldots, w_{m+n-1}$ are affinely independent.
ii) Lets prove that $\cup_{\{S \in \Gamma\}} P_{S}=\Delta_{m-1} \times \Delta_{n-1}$:

For any $x \in \Delta_{m-1} \times \Delta_{n-1}$ write $x=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$. Since $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right) \in \Delta_{m-1}$, we get that $\alpha_{i} \geq 0$ for all i, and $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{m}=1$. Similarly, since $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right) \in \Delta_{n-1}$, we get that $\beta_{j} \geq 0$ for all j, and $\beta_{1}+\beta_{2}+\ldots+\beta_{n}=1$.

Define $A_{1}=\alpha_{1}, A_{2}=\alpha_{1}+\alpha_{2}, A_{3}=\alpha_{1}+\alpha_{2}+\alpha_{3}, \ldots, A_{m}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\ldots+\alpha_{m}=1$, and $B_{1}=\beta_{1}, B_{2}=\beta_{1}+\beta_{2}, B_{3}=\beta_{1}+\beta_{2}+\beta_{3}, \ldots, B_{n}=\beta_{1}+\beta_{2}+\beta_{3}+\ldots+\beta_{n}=1$. Observe that $0 \leq A_{1} \leq A_{2} \leq \ldots \leq A_{m}=1$ and $0 \leq B_{1} \leq B_{2} \leq \ldots \leq B_{n}=1$. We can "mix" the previous sequences in a single ordered chain of lenght $m+n$, for instance if $A_{1}=0, A_{2}=0.6, A_{3}=0.8, A_{4}=1$, $B_{1}=0.3, B_{2}=0.5, B_{3}=1$, we get $A_{1} \leq B_{1} \leq B_{2} \leq A_{2} \leq A_{3} \leq B_{3} \leq A_{4}$. Since $0 \leq A_{1} \leq A_{2} \leq$ $\ldots \leq A_{m}=1$ and $0 \leq B_{1} \leq B_{2} \leq \ldots \leq B_{m}=1$, there are exactly $\binom{m+n-2}{m-1}$ classes of chains (I mean, chains with the identical order of A_{i} 's and B_{i} 's, up two the order of $A_{m}=B_{n}=1$ in the last two places of the chain), that are obtained by selecting the $m-1$ positions of $A_{1}, A_{2}, \ldots, A_{m-1}$ in the first $m+n-2$ places of the chain. For instance $A_{1} \leq B_{1} \leq B_{2} \leq A_{2} \leq A_{3} \leq B_{3} \leq A_{4}$ and $A_{1} \leq B_{1} \leq A_{2} \leq B_{2} \leq A_{3} \leq B_{3} \leq A_{4}$ are diferent classes of chains, but $A_{1} \leq B_{1} \leq B_{2} \leq A_{2} \leq$ $A_{3} \leq B_{3} \leq A_{4}$ and $A_{1} \leq B_{1} \leq B_{2} \leq A_{2} \leq A_{3} \leq A_{4} \leq B_{3}$ are the same class.

Therefore the amount of classes of chains is equal to the number of staicases in Γ. Let see the relation. For a given chain construct a staircase as follows:
0) Start at $(1,1)$.

1) If the first element of the chain is A_{1} move to the east, if it is B_{1} move to the north.
2) If the k-th element of the chain is of the form A move to the east, if it is of the form B move to the north.

Fix $x \in \Delta_{m-1} \times \Delta_{n-1}$, let C_{x} be a chain related to x, and let S_{x} be the staircaes induced by C_{x} using the previous construction. I claim that $x \in P_{S_{x}}$:

Write the chain C_{x} associated to x in the form $C_{1} \leq C_{2} \leq \ldots \leq C_{m+n}$ (for instance if C_{x} is the chain $A_{1} \leq B_{1} \leq B_{2} \leq A_{2} \leq A_{3} \leq B_{3} \leq A_{4}$, then we have $C_{1}=A_{1}, C_{2}=$ $\left.A_{2}, C_{3}=B_{2}, \ldots, C_{7}=A_{4}\right)$. Name the vertices of $P_{S_{x}}, w_{1}, w_{2}, \ldots, w_{m+n-1}$, according to the order the appear in the staircase, so $w_{1}=v_{11}$ and $w_{m+n-1}=v_{m n}$. Now, we can check that $x=C_{1} w_{1}+\left(C_{2}-C_{1}\right) w_{2}+\ldots+\left(C_{m+n-1}-C_{m+n-2}\right) w_{m+n-1}$. This show that $x \in P_{S_{x}}$ since $C_{1} w_{1}+\left(C_{2}-C_{1}\right) w_{2}+\ldots+\left(C_{m+n-1}-C_{m+n-2}\right) w_{m+n-1}$ is a convex combination of the vertices of $P_{S_{x}}$.

For example suppouse $x=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \beta_{1}, \beta_{2}, \beta_{3}\right)=(0,0.6,0.2,0.2,0.3,0.2,0.5)$ so $A_{1}=$ $0, A_{2}=0.6, A_{3}=0.8, A_{4}=1$, and $B_{1}=0.3, B_{2}=0.5, B_{3}=1$. Then we can take C_{x}, the chain associated to x, as $A_{1} \leq B_{1} \leq B_{2} \leq A_{2} \leq A_{3} \leq B_{3} \leq A_{4}$. Using the construction of the staircase from the chain C_{x}, we get the following order of movements: east,north,north,east,east. This produces the vertices $v_{1,1}, v_{2,1}, v_{2,2}, v_{2,3}, v_{3,3}, v_{4,3}$. Writting the chain C_{x} in the form $C_{1} \leq C_{2} \leq \ldots \leq C_{7}$, observe that $C_{1} v_{1,1}+\left(C_{2}-C_{1}\right) v_{2,1}+\ldots+\left(C_{6}-C_{5}\right) v_{4,3}=$

$$
\begin{gathered}
0(1000100)+0.3(0100100)+0.2(0100010)+0.1(0100001)+0.2(0010001)+0.2(0001001)= \\
(0,0.6,0.2,0.2,0.3,0.2,0.5)=x
\end{gathered}
$$

iii) Lets prove that $P_{S_{1}} \cap P_{S_{2}}$ is a face of both of them. Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}=V\left(P_{S_{1}}\right) \cap V\left(P_{S_{2}}\right)$, I claim that $P_{S_{1}} \cap P_{S_{2}}=\operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. To prove this I will argue by contradiction. Suppose there exists $q \in\left(P_{S_{1}} \cap P_{S_{2}}\right) \backslash \operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Then, there exists $w_{h} \in V\left(P_{S_{1}}\right) \backslash V\left(P_{S_{2}}\right)$ which is component of q, ie, if we write q as a convex combination of the vertices of $P_{S_{1}}$, then the coefficient of w_{h}, say λ_{h} is greater than 0 (since $P_{S_{1}}$ is a simplex, the point q can be written in a unique way as convex combination of the vertices of $\left.P_{S_{1}}\right)$. Let $w_{h}=v_{i j}$. Since $w_{h} \notin V\left(P_{S_{2}}\right)$, there exists $\hat{j}<j$ such that $v_{i, \hat{j}}$ and $v_{i+1, \hat{j}}$ belong to $V\left(P_{S_{2}}\right)$ (Case 1), or there exist $\hat{i}<i$ such that $v_{\hat{i}, j}$ and $v_{\hat{i}, j+1}$ belong to $V\left(P_{S_{2}}\right)($ Case 2). These two cases are presented below:

a) Case 1: When we write q as a point in $P_{S_{1}}$ the condition $\lambda_{h}>0$ (which is the coefficient of $w_{h}=v_{i j}$) implies $A_{i}>B_{j-1}$. On the other hand, when we write q as a point in $P_{S_{2}}$, the existence of $v_{i, \hat{j}}$ and $v_{i+1, \hat{j}}$ in $V\left(P_{S_{2}}\right)$, with $\hat{j}<j$, implies $A_{i} \leq B_{\hat{j}} \leq B_{j-1}$. The conditions $A_{i}>B_{j-1}$ and $A_{i} \leq B_{j-1}$ lead us to a contradiction. Therefore $\left(P_{S_{1}} \cap P_{S_{2}}\right) \backslash \operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}=\emptyset$, so $P_{S_{1}} \cap P_{S_{2}}=\operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Since $P_{S_{1}}$ and $P_{S_{2}}$ are simplexes, then $\operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a face of both of them.
b) Case 2: This case is analogous to the previous one. It leads to the contradiction,$B_{j}>A_{i-1}$ and $B_{j} \leq A_{i-1}$.
7) Para desarrollar el proyecto voy a trabajar con Fabian Latorre. Estamos interesados en rabajar en algin topico de Optimizacion Combinatorica. En especial, nos llama la atencion trabajar en problemas relacionados a optimization de matchings y flujos sobre grafos (bal como el problem de las parejas de hombres y mujeres que se rato en la tare anterior), y nuestro objetivo seria comprender (o modelar) este tipo de problemas desde el pinto de vista de politopos. El libra que hemos mirado es Combinatorial Optimization de William J. Cook,Cunningham,Pulleyblank, y Schrijver (es un libro delgado que le mostre cuando vino a Bogota, y que es de introduction en temas de
optimizacion combinatorica). En el capitulo de politopos de este libro, se encuentran teoremas interesantes sobre matchings y perfect matchings asociados a politopos. Si bien el contenido del libro en este tema no es muy extenso, seguramente podriamos profundizar mas con los libros amarillos de Schrijver o buscar articulos en el tema. Tambien nos ha parecido interesante el enfoque algoritmico que da este libro a los problemas, por lo cual proponer o estudiar alguna aplicacion algoritmica a la solucion de un problema podria hacer parte de nuestro proyecto.

Por otra parte, cuando usted vino a Bogota yo le comente que mi area de interes era analisis numerico y usted me hablo de unos articulos sobre splines y anillos de polinomios. Tambien me gustaria mirar estos articulos, pues me podrian ser de utilidad para mi tesis de pregrado en la cual estoy abordando problemas de interpolacion.

