Homework 4

Fabian Prada (Uniandes)
Problem 1 (I worked with Federico Castillo):
Lets prove that the polytope P, 1 = A,_1 X Ay:

a)Has n! triangulations

b)These triangulations are induced by the triangulations of A, _s x A; and the selection of a vertex
of P,_;.

c¢) These triangulations are regular.

Define A,y = A, x (1,0) and A,—; = A,—1 x (0,1). Let {vy,v9,...,v,} = V(A,_1) and

{wy, ws, ...,w,} = V(A,_1), and suppouse these sets of vertices are pairwise related.
For any S : {S1, S, ..., Sy} triangulation of P, 4, the following statements holds:

i) A,_; is a facet of exactly one S;:

w D_(n-1) X {(0, 1}
[ ]
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Vi ¢ D_(n-1) X {(1,0)}

Let p be any point in the ”interior” of A, _; (I mean, p is not contained in any proper face
of A,_1). Observe that p can be written only as a convex combination of all the vertex in
A,_1. Since p must be contained in some S; (because P, ; = US;), such S; must contain all
A,_;. WLOG asume that A,,_; C S;. Since S; is a n-dimensional simplex and A,_; is a n — 1-

dimensional simplex, there exists w; vertex of A,_; which is also vertex of S;; WLOG assume
that w; is such vertix. Therefore we get that S; = conv(A,—1 U {w;:}). Now suppouse that



A,y € Sp # S1. Then Sy = conv(A,—1 U {w,;}), where w; # w;. Observe that the point
q = %wl + %vl + %vz + %03 + ...+ %vn = %Ul + %vg + ...+ %wj + %vj + ...%vn,is such that
q € Int(Sy) N Int(Sk). Therefore Sy N Sy would not be a face, and S would not be a triangulation.
So we conclude that A, _; is only contained at .S;.

ii) wy is vertex of all S;’s: Observe that for any S;, at least one between vy, w; must belong to
S; (otherwise, S; would not be n-dimensional).Therefore, it will be sufficient to show that S; is the
only division which contains v;. To prove this, observe that S; contains all the adjacent edges of
v1, so the cone centered at v; and generated by these edges cover all P, ;. Then, any ray between
v; and any vertex w; € A1 \ wi, must interesct the interior of S;. This implies that for any
wj € A1 \ wy, the vertices w; and v, can not lie in any division. Therefore we conclude that S
is the only division that contains vy, so w; is vertex of all S;’s.

Now define P,y = conv(V (P,-1) \ {v1,w1}) (observe that P, is combinatorially equivalen to
An_g X Al )

iii) The divisions S, ..., S, induces a triangulation of P, ,:

Define T; = conv(V (S;)\wy) for all i = 2,3, ...,n. Observe that U!_,T; = (U"S;) NP2 = Py
(because 51, Ss..., Sy is a triangulation of P,_; and S; does not contains ”interior” points of P,_s).
Also observe that T; N T; = (S; N .S;) N P,_2 is a face of both T}, T}, because S; and S; are divisions
of a triangulation. Therefore T : {T5, T3, ..., T, } is a triangulation of P, _s.

We have proven that any triangulation of P,_; = A,,_; X A; induces a triangulation of P,_o
(which is combinatorially equivalent to A,_5 x A;). We can get a converse result in the following
way:



Fix a vertex w; € A,,_; and a triangulation 7" : {T, ..., T"'} of A,_2 x A;. Identify the train-
gulation 7" of A, _» x A; with a triangulation T' : {T5,...,T,} of P, 5 in a natural way (this can
be done by the combatorially equivalence). Define a triangulation S : {S, Ss, ..., Spof A, 1 x Ay,
induced by w; and 7', in the folloing way:

1)S1 = conv(A,—1 U {w,}). This makes that S; is the only division which contains vy
ii) For 2 <i <mn, let S; = conv(T; U {w}).

Now, we are able to identify a bijection between {Triangulations of A, _; x A;} and
{Vertices of A,,_1} x {Triangulations of A, _s x A;}. Applying induction to the previous result we
get: |{ Triangulations of A, 1 x A;}| = n!

Since we have shown that any triangulation of A,,_; x A; can be constructed from a triangula-
tion of A,,_o x Ay, I tried to prove by induction that all the triangulations of A,,_; x Ay are regular:

(the following proof is not complete)
i) The base case n = 2 is easy to check.

ii) Suppouse he have proved the case n — 1, i.e, that all the triangulations of A, 5 x A; are
regular. Then for any triangulation 7" of A, _5 X A; there exists a function b’ : V(A,_ 2 x A1) = R
such that the projection of the lower faces of Q" = conv({(u;, h'(w;)) : w; € V(A,_2 x Aq)}) induces
T

Now suppouse S : {51, 59, ..., 5.} is a triangulation of A, _; x A; with vertix at w; and such
that {Ss, S5, ..., S,} induces a triangulation T : {T5,T3,...,T,,} at P,_5. Since P,_» is combinato-
rially equivalent to A,,_5 X Aj, we can apply the induction hypothesis to get h : V(P,_2) — R
such that Q = conv({(u;, V' (w;)) : u; € V(P,—2)}) induces T. Now we must define h(w,), h(vy) in
such a way we get the triangulation S. Consider v; = (1 0 0... 1 0) and wy = (1 0 0... 0 1), and
(v;))1 = (w;)1 =0 for all i # 1. Let Fy, Fy, ..., F,,_1 be the lower facets of @) (these facets are associ-
ated to 15, T3, ..., T,,) and let ¢; be the direction which maximimizes F; (i.e, Q., = F; and the last
coordinate of ¢; is negative). Now I would try to construct a set of directions d;,ds, ..., d,,
which depends on ¢y, ..., ¢, 1, h(wy), h(v1) and such that:

i)d; is maximized at conv((wy, h(wy)) U F;) fori=1,...,n — 1.

ii)d,, is maximized at conv((wy, h(wy)) U (vy, h(v1)) U (ve, h(v2))... U (vp, h(vy)))
iii) The last component of each d; is negative for i = 1,...,n.

Then the lower facects of conv((wy, h(wy)) U (vi, h(v1)) U Q) wolud be conv((wy, h(wy)) U F;)
fori=1,...,n —1 and conv((wy, h(wy)) U (v1, h(v1)) U (v, h(v2))... U (v, h(vy,))). In that case the
triangulation induced by projection of the lower facets conv((wy, h(wy))U (v, h(v1))UQ) would be S.

Problem 2:

I will prove inductively that for any positive integer d we have:
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E:@+D%“:Awﬂpﬁh”+Au@p*1

= (1 _ Z)d—i—l

Where A(d, k) is defined by:

)A(1,1) =1

i)A(d, k) =0,ifk<Oork>d+1

iii) A(d, k) = (d—k+1)A(d— 1,k —1) + EA(d — 1, k)

Case d = 1:
Observe that Z(t +1)z" = (Z 2 = (Z 2 = (

>0 >0 t>1
that the condition holds for d = 1.

1

Assume we have the desired result for the case d — 1, i.e, we have

1

T Vg

Sy AL 5 A 10 )

(1—-2)

t>0

Now lets prove that we can get the case d:

Then we conclude

Z(t + 1)dZt _ (Z(t + 1)d—12t+1)/ _ (ZZ(t + 1>d—lzt)/ _ Z(t + 1)d—lzt + Z(Z(t + 1)d—lzt)/ _

t>0 >0 t>1 >0

t>0

Ad—1,1)2+ ...+ A(d — 1,d — 1)z972 N Z<A(d— LD+ ..+ Ad—1,d— 1)>/ B

(1—2)
Ad—=1,1)2+ ..+ A(d — 1,d — 1)2472

(1—-2)

A(d—1,2)2' +2A(d — 1,3)22 + ...+ (d — 2)A(d — 1,d — 1)24~2

(1—-2)

dA(d —1,1)z' + dA(d — 1,2)2% + ... + dA(d — 1,d — 1)2¢1

(1 — z)dt1

_|_

A(d—1,1)2°+ ((d — 1)A(d — 1,1) + 2A(d — 1,2)) 2" + ((d — 2)A(d — 1,2) + 3A(d — 1,3)) 2% + ...

(1 — z)dtt

oA ((d=k+1D)Ad -1,k —1)+ kA(d — 1,k))z* 1+ .+ A(d— 1,d — 1)29!

(1 — z)dt1

A(d,1)2° + A(d, 2)2" ... + A(d, k)25t + .+ A(d, d) 2071

(1= 2)dit

By the way we define A(d, k), we have A(d,1) = dA(d —1,0) + A(d — 1,1) = A(d — 1,1) and
A(d,d) = A(d—1,d—1)+dA(d—1,d) = A(d—1,d — 1) so we were allowed to change A(d —1,1)



by A(d,1), and A(d — 1,d — 1) by A(d,d), as we did in the last equation.

Finally we conclude:

E:@+D%h:AwJpWh“+AMJV“1

- (1 — z)d+

for all positive integers d.
Problem 3:

Lets prove that E(d, k), the number of permutations of [d] having exactly k — 1 descents, 1 <
k < d, satisfies the formula :

Bdk)=d—k+1Ed—1,k—1)+kE(d—1,k)

Let pg be any permutation of [d] and consider it as a row vector. If we remove d from the
vector pg, we get a vector associated to a unique permutation of [d — 1]. Similarly, if we have a
permutation pg_; of [d — 1], and we consider it as a row vetor, we can get d diferent permutations
of [d], by inserting d to ps_1, at any of d possible positions (before the first coordinate, between the
fisrt and the second coordinate,..., after the last coordinate).Therefore we get a bijection between
{ permutations of [d|} and { permutations of [d — 1]} x {d positions to insert d}

Let pg_1 = (a1, as, ..., aqg_1) be any permutation of [d — 1], and assume p;_; has m descents. Lets
consider 3 cases:

i) pq := (d,aq,as,...,aq-1) will have m + 1 descents since d > a; and the other order relations
remain the same.

i)pg = (a1, az,...,a;,d,a;y1..,aq-1). If we introduce d at a descent position (i,e a; > a;11), the
number of total descents remain m. If we introduce d at a non-descent position (i,e a; < a;41), the
number of total descents increases by 1, so we get m + 1 descents.

iii) pg := (a1, az, ...,aq-1,d). Since ag_1 < d, the number of descents is m.

By the previous observations we conclude that we can get py, a permutation of [d] with k£ — 1
descents, in any of the following ways:

1)Fix pg—1 a a permutation of [d — 1] with k£ — 2 descents. Insert d before the first coordinate of
Pa—1, or in any of the (d —2— (k- 2)) non-desecent positions of py_1. So we can get py from py_,
by inserting d at d — k + 1 possible positions.

ii) Fix ps_1 a a permutation of [d — 1] with k£ — 1 descents. Insert d after the last coordinate of
Pa—1, or in any of the k — 1 descents positions of p;_1. So we can get p; from py_; by inserting d at
k possible positions.



Finally we conclude that E(d,k) = (d—k+1)E(d—1,k—1)+kE(d—1,k), forall 1 <k <d.

Since E(1,1) =1; E(d,k) =0,ifk<0ork>d+1;and E(d, k) = (d—k+1)E(d—1,k—1)+
kE(d — 1,k), for all 1 < k < d; we conclude that the numbers F(d, k) and A(d, k) shares exactly
the same recursive definition, so we get F(d, k) = A(d, k) for all 1 < k < d.

Therefore, if we want to prove A(d, k) = A(d,d + 1 — k), it will be sufficinet to show E(d, k) =
E(d,d + 1 — k), in other words, that the number of permutations of [d] with & — 1 descents is
equal to the number of permutation with d — k descents. Define the function R : [d] — [d] that
reflects any permutation, for instance if p = (1342) = R(p) = (2431).Let py be any permutation
of [d] and obvserve that: py has k — 1 descents <= p, has d — k ascents <= R(py) has d — k

descents. Then R is a bijection between permutation of k — 1 descents and those of d — k descents,
so E(d,k)=E(d,d+1—k).

Problem 4 :

Given f : N — N such that Z f(t)' = L)dl, lets prove that the following are equivalent:
e (1 —z)d+

i) f is a polynomila of degree d
ii)g is a polynomial of degree at most d such that g(1) # 0.

i)= ii): Observe that the set {1, (t+1),(t+1)2, ..., (t +1)%} is a basis for the set of polynomials
of degree at most d (this is true because each polynomial 1, (t+1), (t+1)?%, ..., (t+1)? has a different
degree). Since f is a polynomial of deggre d, we can write

f=agt + D) +ag (t+ 1)+ +a(t+1)+ao
with aq # 0. By the result in Problem 2, we know that
Am, 1)+ ...+ A m-1
St +1)mat = (m,1)z" + .. + Alm, m)z

= (1 _ z)m-i—l
Then
D ) =) (aat+ 1) +aga(t+ )"+ Far(t+1) +ag)z’ =
t>0 t>0
d m—
S an(t+1) am(t+1)"2" = m1”++ﬁ7mzl
>0 m=0 m=1 t>0 1-2)

Defining P,,(z) := A(m,1)2° + ... + A(m, m)z™"1 for m = 1, ..., d (polynomial of degree m — 1),

and replacing A0 1)20(45 ;);3(;; EDEGI Pm<(1><1z)—dz+>j*” we get that
d
d (1= 2+ 3 Pale)(1 = )
B 1—2 Po(z)(1—2)4m ot
Zf d+1 + Z 1 _ z d+1 - (1 — z)d+l
t>0 m=1



Now define g(z) := (1 —2)?+ Z P (2)(1 —2)%™ and observe that g(z) is a polynomial of degree
d, since (1 — z)? is of degree d and Pn(2)(1 — 2)4™ is of degree d — 1 for m = 1,...,d. Observe

that g(1) = (1 — 1)* + Z P,(1)(1 =1 = Py(1) = A(d,1) + A(d,2) + ... + A(d,d) # 0 (since

A(d, k) > 0 for 1 <k <d), sowe get g(1) # 0. Finally we conclude that Zf(t)zt = —g(z)d -,
= (1 —z)d+

where ¢ is a polynomial with the desired properties.
ii)= i): Lets start checking that the set

{(1—=2)% (1 =2 P(2), (1 — 2)72Py(2), ..., (1 — 2) Pi_1(2), Py(2)}

is basis for the set of polynomial of degree at most d. Since this set has d 4+ 1 polynomias it will be
sufficient to show that the set is linearly indepemdent. Suppouse

ao(1 = 2)"+a(1 —2)"7 P (2) + ... + agPy(2) = 0
, and let k be the greatest index such that oy # 0, then
ap(l—2) +ar(1 —2)7 Py(2) + o+ a1 (1 — 2)7 P 1 (2) = —aw(1 — 2)7F Py(k)

Observe that P,(1) = A(k,1) + A(k,2) + ... + A(k, k) # 0, so d — k is the multiplicity of 1 as a
root of the right side. However the multiplicity of 1 as a root of the left side is at least d — k + 1,
this contridiction let us to conclude that

{(1- z)d, (1-— z)d_lPl(z), (1-— z)d_ng(z), vy (L =2)Py_1(2), Pa(2)}

is basis for the set of polynomial of degree at most d.

Now write g(z) = ao(1 — 2)? + a1(1 — 2)¥ P (2) + ... + ag_1(1 — 2)Py_1(2) + agPy(z). Since
g(1) = aqPy(1) and P4(1) # 0, we get that the condition g(1) # 0 implies aq # 0.

Therefore % = qg 112 + a; (1131_(22))2 + ...+ ad%, where a; # 0. Since each (11_372)(2)“ =

D (1), then 7259 =3 " (ag + ar(t + 1) + as(t + 1)° + ... + aq(t + 1)) 2", Finally we get
>0 >0

that f(t) = ap+ a1 (1+1t) +ag(1+1)2+... +aq(1+¢)?, with ag # 0, i.e., f is a polynomial of degree
d as we wanted to prove.

Problem 5(I worked with Jose Samper and Fabian Latorre):

The image of P, = conv{(0,0,0), (0,0, 3t), (£,0,0), (¢,¢,0), (2t,,0)(2¢,0,t)} is the following :



(0,0,3t)

(2t,0,t)

“““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““

-""ll(zt,o,O) (2t,1,0)

And the inequality description of this polytope, P, is:

1 -1 -1 t
0 3 1 3t
1 1 1 & 3¢
11 o |[|Y]=

1 0 N

0 -1

Consider a division of the base of the polytope P, in triangles A, B, C' as shown in the figure.
The face above the triangle A is F} which is defined by 3y + z = 3t. The face above the triangle B
is Iy which is defined by x + y + z = 3t. And the face above the triangle C' is F3 which is defined
by x —y + z = t, also, we can see that Fy is over Fj. Lets consider the amount of points over a
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point (z,y,0) in each of these regions:

i) For the face A, the amuont of points over (z,y,0) is 3t — 3y + 1 ((z,y,0) is counted). Ob-
serve that A = {(z,9,0) : 0 < y < t,y < z < 2y}, so the amuont of points in and over A is

t 2y
D> Bt-3y+1

y=0 z=y

ii) For the face B, the amuont of points over (x,y,0) is 3t — 2 —y + 1 ((z,y,0) is counted).

Observe that B\ A = {(z,y,0) : 0 <y <¢,2y+ 1 <z < t+ y}, so the amuont of points in and
t t+y

overB\AisZ Z Jt—xr—y+1

y=0 x=2y+1
iii) For the face C' the amuont of points over (z,y,0) is (3t—x—y+1)—(z—y—t) =4t -2z +1
((x,y,0) is counted). Observe that C'\ B = {(z,9,0): 0 <y <t,t+y+1 < x <2t} so the amuont
t 2t

of points in and over C'\ B is Z Z 4t —2x + 1

y=0 z=t+y+1

Therefore the Ehrhart polynomial of of this polytope is

t 2 t t+ t 2t
P(t)zzzy?)t—&y—i—l +Z Zy Jt—r—y+1 +Z Z 4t —2x 4+ 1
y=0 z=y y=0 z=2y+1 y=0 z=t+y+1

Lets compute this:

(t—y)t—y+1)
5 +

P(t)=) (y+1)(Bt =3y + 1)+ (t—y)(Bt —y+ 1)+ 2(t —y)y —
(t—y)dt+1)—20t—y)t+y) - -yl —-y+1)

7t—y—|—7)
2

~+

=> (y+1)+ -y

1 7 5
2 —dyt+ =+ —t— —y+1
y+2y +2 2y+

20t2 + 28t + 12

=(t+1
(t+ ()
10

5
:>P(t):§t3+4t2+§t+1

In order to find the Ehrhart series of the polytope lets start writing P(t) in the base

{1,t4+1),t+ 12 (t+1)3:



20t + 28t + 12 1

P(t) = (t+1)( ) = 5 (201~ 12(-H1)44) =  (0(-+1P~12(-+1)44(1+1))

12
A(d, 1)2° 4+ ... + A(d, d) 2?1
In the second problem we showed that ;(t + l)d,zt = (d, 1)z J_ ;)_d+1( ,d)z _
e For d =1 then Z(t+1)zt: .
= (1—2)
1
e For d =2 then Z(t—{—l)ta: +23
= (1—2)
1+4 2
e For d = 3 then Z(t + 1)32;1t = %

>0
Therefore

¢ 1 3 9 ¢ 5.1 +4z+ 22 142 1 1
D PM =) [S0(t+1)* =12(t+1)* +4(t+1)))" = (3) 0o -2 3a-e

t>0 t>0

3224 62+1
(=2
32246
1—=z

So we get that (—Z)Il is the value of the Ehrhart series of the polytope.
Problem 6:

Let e;,f; be the standard unit vectors in R™,R™ (resp.), v;; = €; X fj, and A1 X A, =
conv{v;; 1 1 <i<m,1<j<n}.

Let ' := { staircase from (1,1) to (m,n)}, so I' has (™" ). For each S € I, define
Pg := conv{v;j : (i,7) € S}. Lets prove that {Ps : S € I'} is a triangulation of A,,_1 X A,,_;:

i)Lets prove that Ps is a simplex for all S € I':

To prove this is sufficient to show that the m +n — 1 vertices of Pg are affinely independent (i.e
they doesn’t lie in a m+n—3-dimensional affine space). Name the vertices of Pg, wy, wa, ..., Wy 1n_1,
according to the order the appear in the staircase, so w; = vy; and Wy, p—1 = Umn. SUppouse we
have A\jwy + Aows + ... + Mt 1Wimin—1 = 0 for some \'s such that Ay + Ao + ... + A1 = 1. Let
k be the greatest index such that A\ # 0, then we can write A\jw; + Agws + ... + A\ _1wr_1 = — AWy
If we write w1 = Uaypy, W2 = Vagbys ---» Wk = Vq,p,, ,and remembering that the points wy, ws, ..., wy
are ordered according a staircase, we can conclude that one of the following conditions must hold:
ay > a; for all @« < k, or by, > b; for all + < k. WLOG assume a;, > a; for all © < k. Then the a;-th
component of the vector wy = vg,p, is 1, while the az-th component of the vectors w; = vg,p, is 0
for all i < k.Therefore we cannot have the equality A\jw; + Aows + ... + A\p_1wi_1 = —Apwy, where
Ax # 0. This implies that A\jw; + Asws + ... + Ayn_1Wmin_1 = 0 only holds when \; = 0 for all 4,
SO W1, Wy, ..., Wy in_1 are affinely independent.

10



ii) Lets prove that Ugsery Py = Aymy X Ay
For any © € A, 1 X A, write x = (a1, Qa, ..., A, B1, B2,y .oy Pn). Since (ag, g, ..., @) € Apy_1, We
get that a; > 0 for all 4, and oy + ag + ... + o, = 1. Similarly, since (04, B, ..., Bn) € Ap_1, we get
that 3; > 0 for all j, and 5y + B2+ ... + B, = 1.

Define A; = a1, A3 = a1 + a9, A3 = a3 +as +az,...., A, = a1 +as +az+ ... + a,,, = 1, and
By, = 31,By = 01+ 32,Bs = 31+ o+ B3,....8B, = b1+ P+ B3+ ...+ 3, = 1. Observe that
0<A <A <..<A,=1land0< By < By <..<B,=1 We can "mix” the previous se-
quences in a single ordered chain of lenght m + n, for instance if A; =0, Ay = 0.6, A3 =0.8, Ay =1,
Bl = 0.3,32 = 05783 = 1, we get Al S Bl S BQ S A2 S Ag § Bg é A4. Since 0 S Al S AQ §
W< A,=1land 0 < By < By < .. < B,, =1, there are exactly (m;;ff) classes of chains (I
mean, chains with the identical order of A;’s and B;’s, up two the order of A,, = B, = 1 in the
last two places of the chain), that are obtained by selecting the m — 1 positions of Ay, As, ..., Ap_y
in the first m + n — 2 places of the chain. For instance A; < By < By < Ay < A3 < B3 < A, and
A < By < Ay < By < A3 < By < Ay are diferent classes of chains, but A1 < B} < By < Ay <
A3 < B3 < Ajand A; < By < By < Ay < A3 < Ay < By are the same class.

Therefore the amount of classes of chains is equal to the number of staicases in I'. Let see the
relation. For a given chain construct a staircase as follows:

0) Start at (1,1).

1) If the first element of the chain is A; move to the east, if it is By move to the north.

2) If the k-th element of the chain is of the form A move to the east, if it is of the form B move to
the north.

Fix x € A,,_1 X A,_1, let C, be a chain related to x, and let S, be the staircaes induced by C,
using the previous construction. I claim that x € Pg_:

Write the chain C, associated to x in the form C; < Cy < ... < Cp4, (for instance if
C, is the chain A} < B; < By < Ay, < A3 < By < Ay, then we have C7 = A;,Cy =
Ay, C3 = By, ...,C; = Ay). Name the vertices of Pg,, wy,ws, ..., Wyin—1, according to the or-
der the appear in the staircase, so wy = vy; and Wyin-1 = Umn. Now, we can check that
x = Ciwy + (Cy — C)way + ... + (Crsn1 — Crnsn—2)Wian—1. This show that x € Pg, since
Crwy+(Co—C)wa+ ...+ (Cryn—1 — Conen—2) Wi 1n—1 18 a convex combination of the vertices of Pg, .

For example suppouse = = («y, a9, a3, ay, 51, P2, F3) = (0,0.6,0.2,0.2,0.3,0.2,0.5) so A; =
0,A = 0.6,A3 = 08,4, = 1, and By = 0.3, B, = 0.5, B3 = 1. Then we can take C,, the chain
associated to x, as A < By < By < Ay < A3 < By < A4. Using the construction of the staircase
from the chain C,,we get the following order of movements: east,north north,east,east. This pro-
duces the vertices vy,1, V21, V2,2, V23, U3 3, Va 3. Writting the chain C, in the form C) < Cy < ... < (7,
observe that Cyvyq + (Cy — Ci)vgg + ... + (Cs — Cs)vg 3 =

0(1000100) 4 0.3(0100100) 4 0.2(0100010) + 0.1(0100001) + 0.2(0010001) + 0.2(0001001) =

(0,0.6,0.2,0.2,0.3,0.2,0.5) =
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iii) Lets prove that Pg, N Ps, is a face of both of them. Let {vy, vq,...,v0x} = V(Ps,) NV (Ps,),
[ claim that Pg, N Ps, = conv{vy, vy, ..., v }. To prove this I will argue by contradiction. Suppouse
there exists ¢ € (Ps, N Ps,) \ conv{vy,vs, ..., vx}. Then, there exists wy, € V(Ps,) \ V(Ps,) which is
component of g, i.e,if we write ¢ as a convex combination of the vertices of Pg,, then the coefficient
of wy, say A, is greater than 0 (since Ps, is a simplex, the point ¢ can be written in a unique way
as convex combination of the vertices of Ps,). Let wy, = v;;. Since wy, ¢ V(Ps,), there exists j < j
such that v, s and v, ; belong to V(Ps,) (Case 1), or there exist i < i such that v;; and v;

2 -]
belong to V(Ps,)(Case 2) . These two cases are presented below:

w_h=v_jj
w_h=v_jj

Casel
Case 2

a) Case 1: When we write ¢ as a point in Pg, the condition A\, > 0 (which is the coefficient of
wy, = v;;) implies A; > B,_;. On the other hand, when we write ¢ as a point in Ps,, the existence
of v;5 and v;,, 5 in V(Ps,), Withj' < j, implies A; < B; < Bj1. The conditions A > B
and A; < B;_; lead us to a contradiction. Therefore (Ps, N Ps,) \ conv{vy,va,...,vx} = 0, so
Ps, N Ps, = conv{vy, vy, ...,v;}. Since Ps, and Ps, are simplexes, then conv{vy,vs, ..., v} is a face

of both of them.

b)Case 2: This case is analogous to the previous one. It leads to the contradiction ,B; > A;_4
and Bj S Ai—l-

7) Para desarrollar el proyecto voy a trabajar con Fabian Latorre. Estamos interesados en tra-
bajar en algun topico de Optimizacion Combinatorica. En especial, nos llama la atencion trabajar
en problemas relacionados a optimizacion de matchings y flujos sobre grafos (tal como el problema
de las parejas de hombres y mujeres que se trato en la tarea anterior), y nuestro objetivo seria com-
prender (o modelar) este tipo de problemas desde el punto de vista de politopos. El libro que hemos
mirado es Combinatorial Optimization de William J. Cook,Cunningham,Pulleyblank, y Schrijver
(es un libro delgado que le mostre cuando vino a Bogota, y que es de introduccion en temas de
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optimizacion combinatorica ). En el capitulo de politopos de este libro, se encuentran teoremas in-
teresantes sobre matchings y perfect matchings asociados a politopos. Si bien el contenido del libro
en este tema no es muy extenso, seguramente podriamos profundizar mas con los libros amarillos de
Schrijver o buscar articulos en el tema. Tambien nos ha parecido interesante el enfoque algoritmico
que da este libro a los problemas, por lo cual proponer o estudiar alguna aplicacion algoritmica a
la solucion de un problema podria hacer parte de nuestro proyecto.

Por otra parte, cuando usted vino a Bogota yo le comente que mi area de interes era analisis
numerico y usted me hablo de unos articulos sobre splines y anillos de polinomios. Tambien me
gustaria mirar estos articulos, pues me podrian ser de utilidad para mi tesis de pregrado en la cual
estoy abordando problemas de interpolacion.

13



