
Homework 3

Fabian Prada (Uniandes)

Problem 1( I worked in this problem with Ana Maria Botero):

Let P be a d-polytope which is
(
bd

2
c+ 1

)
- neighborly, lets prove that it is a simplex:

i) First suppouse that P has t > d + 1 vertices. Since P is a d-dimensional polytope, we
can affirm that the vertices of P are contained in a d-dimensional affine subspace, even more, we
can choose v1, v2, ..., vd+1 ∈ V (P ), such that P ⊆ Aff{v1, v2, ..., vd+1}, the affine subspace gener-
ated by v1, v2, ..., vd+1. Let vd+2 ∈ P \ {v1, v2, ..., vd+1}. By the previous observation we get that
vd+2 ∈ Aff{v1, v2, ..., vd+1}, so we can write vd+2 = λ1v1 + λ2v2 + ... + λd+1vd+1, for some λ’s such
that λ1 +λ2 + ...+λd+1 = 1. WLOG, assume that λ1, λ2, ..., λk, k < d+1, are all the negative values
in the set {λ1, λ2, ..., λd+1}, then 1− (λ1 + λ2 + ...+ λk) = λk+1 + λk+2 + ...+ λd+1 ≥ 1. Arranging
terms we get vd+2 − λ1v1 − λ2v2 − ...− λkvk = λk+1vk+1 + λk+2vk+2 + ...+ λd+1vd+1, dividing both
sides by C = 1 − (λ1 + λ2 + ... + λk) = λk+1 + λk+2 + ... + λd+1, we get a convex combination in
both sides. Therefore, we conclude that there exist q ∈ P such that q ∈ conv{v1, v2, ..., , vk, vd+2}
and q ∈ conv{vk+1, vk+2, ..., vd+1}. Observe that at least one of this sets contains at most

(
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2
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)
vertices, so such set will be a face by the

(
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2
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)
- neighborly hypothesis. WLOG, assume that

F := conv{vk+1, vk+2, ..., vd+1} is a face of P . Let c be the direction which is maximized in F (i.e,
Pc = F ), and suppouse ctx = M for all x ∈ F . Since q ∈ F , we know that ctq = M . On the
other hand, since q ∈ conv{v1, v2, ..., , vk, vd+2} and ctvj < M for all vj ∈ {v1, v2, ..., , vk, vd+2} we
get ctq < M . This contradiction proves that P can not have more than d+1 vertices and still being(
bd

2
c+ 1

)
- neighborly.

ii)Now suppouse that P has exactly d + 1 vetices ( if it has less than d + 1, it would not be
d-dimensional). Since P is d-dimensional these vertices must be d-affinely independent (i.e , there
is no d − 1 dimensional affine subspace that contains all of them). Lets prove that it is a simplex
(in the sense that any subset of vertices form a face ) and for this reason it is

(
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2
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)
- neigh-

borly. Observe that if d+ 1 vetices are d-affinely independent then any subset of this set with k+ 1
vertices must be k-affinely independent, i.e , there is no k − 1 dimensional affine subspace that
contains all of them (otherwies, if we have k + 1 vertices that are not k-affinely independent and
we add the other vertices, the affine space we get is the dimension at most d − 1 ). Fix a set of
vertices {v1, v2, ..., vk} and lets prove that they form a face. Lets do it by induction: From the set
{v1, v2, ..., vd+1} remove vd+1 and observe that conv({v1, v2, ..., vd}) form a facet of P , since the d−1
affine space that contain {v1, v2, ..., vd} doesnt contain vd+1. Now remove vd from {v1, v2, ..., vd} and
observe that conv({v1, v2, ..., vd−1}) is a facet of conv({v1, v2, ..., vd}), since the d − 2 affine space
that contain {v1, v2, ..., vd−1} doesnt contain vd. Since the faces of a face of P are also faces of P ,
we conclude that conv({v1, v2, ..., vd−1}) is face of P . Going in this way (constructing a chain of
facets) we get that conv({v1, v2, ..., vk}) is a face of P as I wanted to prove.

Problem 2 (I worked in this problem with Federico Castillo)

Let G be a graph with V vertices and ST (G) its spanning tree polytope
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a) To prove that every xT is a vertex of ST (G), lets start proving that every spanning tree of
G has exactly V − 1 edges: Let H be any conected subgraph of G that contains all the vertex of
G. Select any edge of H, call it e1, and let v1, v2 be the vertices which are joined by e1 . Since H
is conected and contains all the vertex of G, there must be another edge e2 ∈ H that joins v1 or
v2 to a different vertex v3.We can apply the previous argument again to get another edge e3 ∈ H
that joins one of the vertices v1, v2 or v3 to a different vertex v4. Applying this argument V − 1
times we finally get that the set {e1, e2, ..., eV−1} conects all the vertex of G and there is no proper
subset of it that has this property (since each time we add an edge, preserving the connectedness,
we can add at most a vertex). Therefore H must have at least V − 1 edges. Now suppouse H has
more than V − 1 edges. Let e ∈ H \ {e1, e2, ..., eV−1} and suppouse e joins vi and vj, since we know
that there is a path between vi and vj through the edges {e1, e2, ..., eV−1}, then we conclude that
H has cycles. Therefore any connected graph of G that contains all the vertices and no cycles (i.e
a spanning tree), must have exactly V − 1 edges.

By the previous argument we get that χT has exactly V − 1 1’s for every spannig tree T of
G. Now observe that V − 1 = χtTχT > χtTχR, whenever R is a spanning tree of G different to T .
Therefore χT is a vertex of convex({χR : R is a spanning tree of G}) = ST (G) for every spanning
tree T of G.

b) ⇐: Suppouse that T and T ′ are such that T = T ′ − e ∪ f where e− T ′ and f ∈ T ′ − T are
edeges of G. Then χT and χT ′ differ only at the components associated to e and f . Let c ∈ RE be
defined as follows: (c)i = 1 if (χT )i = (χT ′)i = 1, (c)i = 0 if exactly one between (χT )i, (χT ′)i is 1,
and (c)i = −1 otherwise. By the construction of c and knowing that all χR ∈ ST (G) are vectors
with V − 1 1’s (and the rest 0’s), we can easily check that ctχT = ctχT = V − 2 and ctχR < V − 2
for all R different to T and T ′. Then we conclude that χT and χT ′ are adjacent vertices of SP (G).

⇒ I am going to prove that if T ′ and T differ in at least two edges, then χT and χT ′ can not be
adjacent in ST (G).

Suppouse T ′ ∩ T = {e1, e2, ..., ek} with k < V − 2. Let {gk+1, gk+2, ..., gV−1} = T \ T ′ and
{g′k+1, g

′
k+2, ..., g

′
V−1} = T ′ \ T . Whenever we eliminate an edge from a spanning tree, we get two

connected components of G. If we eliminate another edge, we divide one of the previous connected
components getting two connected components from it.Therefore, we can prove inductively that
if we eliminate t edges of a spannig tree we get t + 1 connected components of G. Then the set
T ′ ∩ T = {e1, e2, ..., ek}, corresponds to V − k connected components of G (since it is obtained
by eliminating V − 1 − k edges from T or T ′). Name these V − k connected components as
D1, D2, ..., DV−k. Now I will consider two cases:

i) Suppouse that there exists Di and Dj which are ”directly conected” in T and T ′, i.e, there
exists gh ∈ {gk+1, gk+2, ..., gV−1}, and g′l ∈ {g′k+1, g

′
k+2, ..., g

′
V−1} such that gh connects Di and Dj

and g′l also do it. Then observe that we can replace gh by g′l in T , and it remains as a spanning
tree of G (since both edges play the same role as connectors of the same connected components),
and we can also replace g′l by gh in T ′, and it remains as a spanning tree of G. Then we get that
T1 := T − gh ∪ g′l and T ′1 = T ′ − g′l ∪ gh are spannig trees. WLOG,let gh be asociated to the first
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coordinate in ST (G) and g′l be associated with the second coordinate. Suppouse c is a direction
which is maximized only at χT and χT ′ . Observe that we must have ctχT − ctχT1 = c1− c2 > 0 and
ctχT ′ − ctχT ′1 = c2 − c1 > 0, that is a contradition. Then we conclude that in this case χT and χT ′
can not be adjacent.

ii)Suppouse there are no Di and Dj which are ”directly conected” in both T and T ′. The pre-
vious situation can be interpreted in the following way: if we consider the connected components
D1, D2, ..., DV−k as vertices of a graph (call it H) then the set of edges TH = T \T ′ and T ′H = T ′ \T
represent disjoint spaning trees in H:

Since the sets TH and T ′H are disjoint and contains V − 1 − k edges each one, we get that the
set TH ∪ T ′H contains 2(V − 1 − k) edges. Define eDi the number of edges of TH ∪ T ′H adjacent to
Di, we know that eDi ≥ 2 (since at each Di there is at least one adjacent edge from TH and one
from T ′H), and eD1 + eD2 + ... + eDV−k = 4(V − 1 − k). By the previous results we get that there
exists some i such that 2 ≤ eDi ≤ 3:

∗ If eDi = 2, this means that at Di it arrives exactly one edge from TH (say gh) and one from
T ′H (say g′l). Observe that TH − gh ∪ g′l and T ′H − g′l ∪ gh are spannig trees in H (since TH − gh and
T ′H − g′l are ”connectively equivalent”), and similarly we get that T − gh ∪ g′l and T ′ − g′l ∪ gh are
spannig trees of G. Now , if we define T1 := T − gh ∪ g′l and T ′1 = T ′ − g′l ∪ gh as in part i) and
apply the same arguments, we show that T and T ′ are not adjacent.

∗ If eDi = 3, we can assume, WLOG, that at Di it arrives exactly two edges from TH (say gh
and gj) and one from T ′H (say g′l). Since TH is a tree in H, we observe that TH − gh − gj has three
coneccted components,say Ch, Cj and the vertex Di, similarly T ′H − g′l has two coneccted compo-
nents, say Cl and the vertex Di. Let g′l joins Di with Dm, and assume, WLOG, that Dm ∈ Ch,
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then TH − gh ∪ g′l is a an spannig tree of H and T ′H − g′l ∪ gh is also a spannig tree of H. Therefore
T − gh ∪ g′l and T ′ − g′l ∪ gh are spannig trees of G, and applying the same arguments of the part
i),we show that T and T ′ are not adjacent.

c)Let T and T ′ be any two spannig trees of G. Suppouse T = {e1, e2, ..., eV−1} and T ′ =
{l1, l2, ..., lV−1} are the edges of T ′. WLOG asume that T and T ′ have exactly k common edges and
e1 = l1, e2 = l2, ..., ek = lk. Since T is an spanning tree, T − ek+1 has exactly 2 connected compo-
nents C0 and C1 which are joint through ek+1. Now observe that (T − ek+1)∪{lk+1, lk+2, ..., lV−1} is
connected since T ′ ⊂ (T −ek+1)∪{lk+1, lk+2, ..., lV−1}, therefore there must be li, k+1 ≤ i ≤ V −1,
that joins C0 and C1. For such li, we get that T1 := T − ek+1 ∪ li is a tree, observe that T1 and
T ′ have exactly k + 1 common edges. By the result in b) we get that χT and χT1 are adjacents in
ST (G). We can apply the previos argument, now using T1 instead of T , to get a new tree T2 such
that χT1 and χT2 are adjacents in ST (G), and T2 and T ′ have exactly k+ 2 common edges. Since T
and T ′ differ in at most V − 1 edges, we can get from T to T ′ in at most V − 1 steps. This implies
that we can get from χT to χT ′ in at most V −1 steps, going through adjacent vertices in each step.
Therefore we conclude that diameter of ST (G) is less than V .

Problem 3: (I worked in this problem with Ana Maria Botero and Federico Castillo)

LetP be a d-politope with n facets and assume n < 2d.

a)In order to prove that any two vertices lie in a common facet, it will be sufficient to show that
each vertex belongs to at least d facets. If we prove this condition, then by the box principle (and
using that there are n < 2d facets in P ), we get that for any two vertices in P there is at least one
common facet. We can prove that each vertex in a d-polytope belongs to at least d facets using the
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Shuffling Flags result of the previous homework: Let v be any vertex of P and let F be any flag
such that v = F (0).We know by the previous homework that T−s(F (d − 1)) 6= T−r(F (d − 1)) for
0 ≤ r < s ≤ d (this is not exactly what we proved, but it is equivalent since T is bijective), also we
know that F (0) ⊂ T−k(F (k)) ⊂ T−k(F (d− 1)) for k = 0, 1, ..., d− 1 (just by definition of T ), so we
can conlude that v belongs to d different facets. This completes the proof.

b)Let v, u be any vertices in P . By the result in a) we know that u, v ∈ F for some F facet
of P . We know that F is a d − 1-polytope, and now we are going to prove that it has at most
n − 1 facets. Lets argue by contradiction: suppouse F has t > n − 1 facets, since each of these t
facets of F belong to at least 2 facets of P (because the t facets of F are d − 2 dimensional faces
of P ), we get by the box principle (using that t > n − 1) that there is F ′ facet of P (distinct to
F ) and G1,G2 facets of F such that G1,G2 are also facets of F ′. The previous situation contradicts
the existence of a unique join for G1,G2 in the poset of P . Then, we conclude that F has at most
n − 1 facets. Since F is d − 1-polytope with n − k facets (for some k ≥ 1), and u, v ∈ F we get
that Distance(u, v) ≤ ∆(d− 1, n− k) ≤ maxk≥1∆(d− 1, n− k). The previous result holds for any
u, v ∈ P , so we can afirm ∆(d, n) ≤ maxk≥1∆(d− 1, n− k)

Now we lets check that ∆(d− 1,m) ≤ ∆(d− 1,m+ 1) for any value of m at which ∆(d− 1,m)
is well defined: Let R be a d − 1 polytope with m facets. Define R′ in the following way: Fix a
vertex v0 of R, remove from R a vertex polytope V P0 associated to v0, and define R′ := R \ V P0:

The idea is to check that Diam(R′) ≥ Diam(R). Let c be the direcction which is maximized at
v0 and give to the edges of R the orientation induced by c. The vertices adjacent to v0, are those
that go to v0 in a single step, let v1, ..., vs be such vertices. If ctv0 = M we can get R′ by taking
R′ = R∩ ctx ≤M − ε for some ε > 0. Observe that in each edge [vi, v0] there exists a unique point,

5



say v0i, such that ctv0i = M − ε. We can prove that the set {v01, v02, ..., v0s} are all the vertex in
V (R′) \ V (R), they form a new facet, and each v0i is adjacent to vi. Therefore what we have done
is adding a new facet by eliminating v0 and adding new vertices {v01, v02, ..., v0s}. Observe that
{v1, v2, ..., vs} are all the vertices in R′ that are adjacents to any vertex in {v01, v02, ..., v0s}(because
of the directed graph induced by c), and also observe that the adjacency relations for the rest of
vertices of R is the same at R′. Then any path in R′ can be replicated in R when we identify the
set {v01, v02, ..., v0s} with v0. So we get Diam(R′) ≥ Diam(R), and since this is true for any d− 1
dimensional polytope with m facets we get ∆(d− 1,m) ≤ ∆(d− 1,m+ 1).

By the previos result we conclude that maxk≥1∆(d− 1, n− k) = ∆(d− 1, n− 1), so ∆(d, n) ≤
∆(d− 1, n− 1)

c)Asume n < 2d and observe that n−k < 2(d−k) ⇐⇒ k < 2d−n, so we have n−k < 2(d−k)
for k = 0, 1, , , 2d− n− 1. Since n < 2d the result in b) implies ∆(d, n) ≤ ∆(d− 1, n− 1). Assume
that we have proved ∆(d, n) ≤ ∆(d−k, n−k) ≤ ∆(d−k−1, n−k−1) until some 0 ≤ k < 2d−n−1.
Since k < 2d−n−1 I get that that k+1 < 2d−n so n−(k+1) < 2(d−(k+1)). Therefore I can use b)
again to get ∆(d−(k+1), n−(k+1)) ≤ ∆(d−(k+2), n−(k+2)) then by the hipothesis asumption
I get ∆(d, n) ≤ ∆(d− (k+ 1), n− (k+ 1)) ≤ ∆(d− (k+ 2), n− (k+ 2)). Observe I can do this until
k+ 1 = 2d−n−1,in that case we get ∆(d, n) ≤ ∆(d− (2d−n), n− (2d−n)) = ∆((n−d), 2(n−d))
that is what we wanted to prove.

Problem 4:

b)Let P be a d-polytope with n > 2d facets. Lets construct a d+ 1-polytope Q with n+ 1 facets
in the following way:

i)Fix a facet F of P , and assume {u1, u2, ..., , us} = V (F ). Let c0 be the direction such that
Pc0 = F and M := ct0x for all x ∈ F (i.e, the linear functional is maximized in F and has value M).

ii)WLOG, asume that P ”lives” in Rd and embed it in an hyperplane of Rd+1 in the following
way: P → (P, 0).

iii) Suppouse {v1, v2, ..., , vk} = V (P ) \ V (F ). Define c1 := (c0, 1), and for all i ∈ {1, 2, ..., , k},
define wi = (vi, ζi), such that ct1wi = M (since ct0vi < M , we get ζi > 0, for all i ).

iv) Define Q := conv((P, 0) ∪ {w1, w2, ..., , wk}).
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Lets prove that Q is d+ 1 -polytope with n+ 1 facets :

Clearly Q is a d + 1 dimensional polytope becauese (P, 0) is a d-polytope and each wi is not
contained in the d-dimensional affine subspace defined by (P, 0) (since Q ”lives” in Rd+1, we know
that its dimension is not higher to d+ 1). Now lets see why Q has n+ 1 facets. To do this I divide
the problem in 3 cases, according the direcition of maximization:

i) Suppouse c ∈ Rd+1 is a direction that points downward (i.e, the last coordinate is negative).
Such direction (interpreted as a functional) can only be maximized in vertices of (P, 0) (remenber
that each wi = (vi, ζi), with ζi > 0), so if Qc is a facet it must be contained in (P, 0). However (P, 0)
is itself a facet (which is maximized by the functional given by (0, 0, ..., 0,−1)) and since any facet
cannot be contained in any other facet, we conclude that the only facet that is associated with a
direction c that points downward is the facet (P, 0).

ii) Suppouse c ∈ Rd+1 is a direction with last coordinate 0, so we can write c = (ĉ, 0). Observe
that the vertices of Q that are maximized by c, are those associated to the vertices of P maximized
by ĉ, i.e,(vi, 0), wi are maximized by c ⇐⇒ vi is maximized by ĉ, and (uj, 0) is maximized by c
⇐⇒ uj is maximized by ĉ. In order to have Qc as a facet of Q, Pĉ must be facet of P , and Qc must
contains vertices outside (P, 0) (i.e, it must contains at least one wi), otherwise the dimension of Qc

would be lower to d. The previos conditions are satisfied iff we take take c = (ĉ, 0), in such a way
that Pĉ = G, where G is any facet of P distinct to the fixed facet F (since vi ∈ G for some i, then
wi ∈ Qc, and Qc ⊂ conv((G, 0) ∪ wi), which is d dimensional). Observe that if we take c = (c0, 0)
were c0 is the direction such that Pc0 = F , then we get Qc = (F, 0) which is a d − 1-dimensional
face of Q, an for this reason is not a facet. Therefore we conclude that given c ∈ Rd+1, a direction
with last coordinate 0, we can generate exactly n − 1 facets that are associated to the facets of P
different to F .
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iii)Suppouse c ∈ Rd+1 is a direction that points upward. Then the points that are maximized
by c belong to the set (F, 0) ∪ {w1, w2, ..., , wk}) (since for such c we have ctwi > ctvi). Therefore
if Qc is a facet it must be contained in conv((F, 0) ∪ {w1, w2, ..., , wk}). However the previous set is
by construction a facet of Q which is maximized by the vector c1 := (c0, 1)
(since Proy(conv((F, 0) ∪ {w1, w2, ..., , wk})) = (P, 0), and AffDim((P, 0)) = d,we get that
AffDim(conv((F, 0) ∪ {w1, w2, ..., , wk})) ≥ d, and we conclude that is is exactly d since it belong
to an hyperplane of Rd+1 ). Therefore the only facet that can be associated to a vector c pointing
upward is conv((F, 0) ∪ {w1, w2, ..., , wk}).

We have completed the proof that Q has n+1 facets.Now lets check which vertices are adyacent
in Q:

i)(vi, 0) is adjacent to (vk, 0) ⇐⇒ vi is adjacent to vk (take c = (ĉ,−1), where ĉ is the direction
maximized by vi, vk).

ii) wi is adjacent to wk ⇐⇒ vi is adjacent to vk (take c = c1 + (ĉ, 0),where ĉ is the direction
maximized by vi, vk).

iii)wi and (vk, 0) are adjacent ⇐⇒ i = k: If i = k then c =(vi, 0) is maximized only in wi and
(vi, 0), therefore they are adjacent. If i 6= k and c is a any direction such that ctwi = ct(vk, 0), we
observe that (c)d+1 > 0 implies ctwk > ct(vk, 0), (c)d+1 < 0 implies ct(vi, 0) > ctwi, and (c)d+1 = 0
implies ctwk = ct(vk, 0) = ct(vi, 0) = ctwi, so we conclude that wi and (vk, 0) are not adjacent
whenever i 6= k.

iv)(uj, 0) is adjacent to (ul, 0) ⇐⇒ uj is adjacent to ul (is analogous to case i))

v)(vi, 0) is adjacent to (uj, 0) ⇐⇒ vi is adjacent to uj (is analogous to case i)).

vi) wiis adjacent to (uj, 0) ⇐⇒ vi is adjacent to uj (is analogous to case ii)).

Observe that P and the facet F1 := (P, 0) = conv(((F, 0) ∪ {(v1, 0), (v2, 0), ..., , (vk, 0)})), have
an identical edge-verticies composition if we associate (vi, 0) with vi for all i. Also, observe that the
facets F1 and F2 = conv((F, 0) ∪ {w1, w2, ..., , wk}) have an identical edge-verticies composition if
we associate (vi, 0) with wi for all i, even more, the only way to go from F1 to F2 is from (vi, 0) to
wi or throughout (F, 0) (and vice versa). By the previous observations, we can show that for every
path between (vi, 0) and (vj, 0) in Q there exists a shorter or equal path between vi and vj in P . Let
S be the path in Q , lets construct S ′ in the following way: if you move from (vh, 0) to (vl, 0) in S,
move from vh to vl in S ′; if you move from (vh, 0) to (us, 0) (or vice versa), move from vh to us (or
vice versa); if you move from (vh, 0) to wh (or vice versa) stay in the same place (i.e vh);if you move
from wh to (us, 0)(or vice versa), move from vh to us(or vice versa). By the previous construction
if you start at (vi, 0) and end at (vj, 0) in S, then S ′ will start at vi and end at vk, and will do it
in at most the same amount of movements. A similar result holds if you start at (ui, 0) and end
at (uj, 0) or if you move between (ui, 0) and (vj, 0). Since V (P ) = {u1, u2, ..., , us, v1, v2, ..., vk}, the
previous results indicates that diam(Q) ≥ diam(P ). Since P is any d-polytope with n facets and
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Q is a d+ 1-polytope with n+ 1 facets built from P , we conclude that ∆(d, n) ≤ ∆(d+ 1, n+ 1)
as we wanted to prove.

c)The induction prove is analogous to the one done in 3.c:
Asume n > 2d and observe that n+ k > 2(d+ k) ⇐⇒ k < n− 2d, so we have n+ k < 2(d+ k)

for k = 0, 1, , , n− 2d− 1. Since n > 2d the result in b) implies ∆(d, n) ≤ ∆(d+ 1, n+ 1). Assume
that we have proved ∆(d, n) ≤ ∆(d+k, n+k) ≤ ∆(d+k+1, n+k+1) until some 0 ≤ k < n−2d−1.
Since k < n−2d−1 I get that that k+1 < n−2d so n+(k+1) < 2(d+(k+1)), therefore I can use b)
again to get ∆(d+(k+1), n+(k+1)) ≤ ∆(d+(k+2), n+(k+2)) then by the hipothesis asumption
I get ∆(d, n)∆(d+ (k + 1), n+ (k + 1)) ≤ ∆(d+ (k + 2), n+ (k + 2)). Observe I can do this until
k+ 1 = 2d−n− 1,in that case we get ∆(d, n) ≤ ∆(d+ (n− 2d), n+ (n− 2d)) = ∆(n− d), 2(n− d))
that is what we wanted to prove.

Problem 5 (I worked in this problem with Federico Castillo and Diego Cifuentes):

Let m1 = (a11, a12, ..., a1n),m2 = (a21, a22, ..., a2n), ...,mn = (an1, an2, ..., ann) be the vectors
of preferences of the males,i.e, aij represents the amount of money that the male i is willing to
pay (or must we pay) to date with the female j. Similarly, define f1 = (b11, b12, ..., b1n), f2 =
(b21, b22, ..., b2n), ..., fn = (bn1, bn2, ..., bnn) the vectors of preferences of the females, i.e, bij represents
the amount of money that the female i is willing to pay (or must we pay) to date with the male j.
Using the previos notation, and knowing that we must arrange n disjoint dates with the objetive

of maximize profit, what we are looking for is: maxσ∈Sn

n∑
i=1

aiσ(i) + bσ(i)i. Let c ∈ Rn2
,

c = (a11+b11, a12+b21, ..., a1n+bn1, a21+b12, a22+b22, ..., a2n+bn2, ..., an1+b1n, an2+b2n, ..., ann+bnn),
(i.e., (c)n(i−1)+j = aij + bji for all i, j ∈ {1, 2, ..., n}). Now for each σ ∈ Sn let vσ ∈ Rn2

be de-
fined as follows: (vσ)n(i−1)+j = 1 if σ(i) = j and (vσ)n(i−1)+j = 0 otherwise, that is, in the first n
entries I set 1 in the σ(1) position and 0 in the rest, in the second n entries I set 1 in the σ(2)
position and 0 in the rest,..., in the last n entries I set 1 in the σ(n) position and 0 in the rest.
Using the previous notation the problem can be written as max{vσ :σ∈Sn}c

tvσ. Defining the poly-
tope P = convex{vσ : σ ∈ Sn}(V -description) and knowing that the max of a linear functional in
a polytope always is attained at least in a vertex, the original problem is equivalent to max{x∈P}c

tx.

Now lets find the H − description of P . To simplify the situation, lets consider the vectors
x ∈ Rn2

as n × n real matrices, where the first n coordinates of x are represented at the first
row of the matrix,the second n coordinates are in the second row of the matrix, and so on. Using
this represesentation we can observe that the vertices of P are the permutation matrices. Now I
am going to prove that P (i.e the convex hull of the permutation matrices ) is the set of doubly
stochastic matrices. The set of doubly stochastic matrices can be viewed as the polytope in the
space of n× n matrices given by the restrictions:

i) The entries of M must be nonnegative.

ii) The sum of the eantries at each row is 1.
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iii) The sum of the eantries at each colum is 1.

The permutation matrices are vertices of this polytope, since if we regard them as vectors again,
each of them is the only maximun of the linear functional associated to a vector that is equal to
themselves (for instance, (010100001) is a vertex since it is the only maximun asociated with the
functional given by c = (010100001) ).

Now lets check that this polytope can not have more vertices:

Let M be a doubly stochastic matrix different to any permutation. Then we can find an entry
m1 of M such that m1 ∈ (0, 1). Let m2 be an entry in the same row of m1 such that m2 ∈ (0, 1).
Let m3 be an entry in the same column of m2 such that m3 ∈ (0, 1). We can continue in this
way, going through rows and columns in consecutive steps, and taking entries with values in (0, 1).
Since there are finitely many entries we must repeat entries in this proccess, asume WLOG that
m1 is the first entry we repeat in the procces, and we return to it at step n, i.e, mn = m1. Define
ε = min{mi, 1 −mi : i = 1, ..., n}, so 0 ≤ mi − ε < mi < mi + ε ≤ 1 for i = 1, 2, ..., n. We must
consider two cases according to the value of n:

∗ If n is odd ,define M+ from M by changing the entries m1,m2, ...,mn−1 to m1 = m1 + ε,
m2 = m2 − ε,m3 = m3 + ε,...,mn−1 = mn−1 − ε, and the other entries of M remain equal. Ob-
serve that M+ is doubly stochastic since all the entries are nonnegative (by the election of ε) and
the sum in rows and columns is not changed. Now define M− from M by changing the entries
m1,m2, ...,mn−1 to m1 = m1− ε,m2 = m2 + ε,m3 = m3− ε,...,mn−1 = mn−1− ε and the other entries
remain equal, so M− is doubly stochastic. Since M = 1

2
M+ + 1

2
M− we conclude that M is not a

vertex of the polytope of doubly stochastic matrices.

∗ If n is even we get an analogous result to the previos one: setting M+ from M by changing
the entries m2,m3, ...,mn−1 to m2 = m2 + ε,m3 = m3 − ε,...,mn−1 = mn−1 − ε and M− from M by
changing the entries m2, ...,mn−1 to m2 = m2 − ε,m3 = m3 + ε,...,mn−1 = mn−1 + ε , we get two
DS, such that M = 1

2
M+ + 1

2
M− so we conclude that M is not a vertex of the polytope of doubly

stochastic matrices.

Therefore if M is any dobly stochastic matrix different to a permutation matrix,it can not be
a vertiex of the polytope of doubly stochastic matrices . So we conclude that conv{Mσ : Mσis a
permutation matrix } = doubly stochastic matrices.

Returning to the vetor notation, we can transform the matrix restriction that define DS matri-
ces, to the vector restrictions that define the polytope P in this way: x ∈ P ⇐⇒ :

i) (00...011..100...0) · x ≤ 1 (where the 1’s are in the positions kn+ 1 to (k + 1)n for some k)

ii)(00...0− 1− 1..− 100...0) · x ≤ −1 (where the −1’s are in the positions kn+ 1 to (k+ 1)n for
some k)

iii)(0...010...010...010...0) · x ≤ 1 (where the 1’s are in the positions kn+ i to for a fixed i )
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iv)(0...0−10...0−10...0−10...0)·x ≤ −1 (where the−1’s are in the positions kn+i to for a fixed i )

v)(00...00− 100....00) · x ≤ 0 (where the −1 is in any position k)
.

The previous inequalities give the H description of P .

Problem 6:
a) In a simplex all the vertices are adjacent: Let ei, ej ∈ Rd be vertices of ∆d−1. Define c = ei+ej,

then the functional associated to c is maximized only in the vertices ei and ej, this prove that they
are adjacent. Therefore the diameter of ∆d−1 is 1. Since ∆d−1 has d facets,in this case the expresion
n−d(estimation of diameter by Hirsch conjecture) is d−(d−1) = 1 = diam(∆d−1), then the Hirshc
conjecture holds in this case.

b) In the cube Cd, two vertices are adjacent ⇐⇒ they differ in exactly one coordinate: Let v1

and v2 vertices that differ in exactly one coordinate, define c ∈ Rd in the following way: (c)i = (v1)i if
(v1)i = (v2)i, and (c)i = 0 if (v1)i 6= (v2)i. Then ctv1 = ctv2 = d−1 and for any v ∈ V (Cd)\{v1, v2},
ctv < d − 2 since (c)j(v)j = −1 for at least one j ∈ {1, 2, ..., d},therefore v1 and v2 are adja-
cent. Now suppouse that u1 and u2 are vertices that differ in at least two coordinates. WLOG
write u1 = (1 − 1û1), and u2 = (−11û2). If (c)1 > 0 then ct(11û2) > ctu2, if (c)1 < 0 then
ct(−1 − 1û1) > ctu1, and if (c)1 = 0 then ct(−1 − 1û1) = ctu1, therefore there is no c that is max-
imized only at u1, u2, so they can not be adjacent. By the previous observation ,we conclude that
the distance between two vertices is equivalent to the amount of coordinates they differ. Therefore
the greatest distance is d, that occurs for instance, between (−1,−1, ...,−1,−1) and (1, 1, ..., 1, 1).
So diameter of Cd = d. Since the dual of Cd is ♦d we easily get that Cd has 2d facets (the number
of vertices of ♦d), therefore the expresion n − d in this case is 2d − d = d = diam(Cd), so Hirsch
conjecture holds in this case.

c)In a crosspolytope ♦d all the vertices are adjacent except for the couples (ei,−ei): observe that
for ±ei and ±ek with i 6= k, if we define c = ±ei+±ek , the only two vertices of ♦d that maximize c
are ±ei and ±ek (in the previous sentence the sign of ei and ek remains the same in all expressions),
therefore they are adjacent. Now suppouse there is c which maximized only at ei and −ei, then
ctei = ct(−ei),and this implies ctei = 0. However for any c and k 6= i, ctek ≥ 0 or ct(−ek) ≥ 0, so ei
and −ei are not the only points of maximization of c, and we can conclude that they aren’t adjacent.
Therefore the greatest distance between to vertices of ♦d is 2 (for instance,going from (1, 0, 0, ..., 0)
to (−1, 0, 0, ..., 0) can be done just passing through (0, 1, 0, ...0)), so diameter of ♦d is 2. Using that
♦d is dual to Cd we get that ♦d has 2d facets (amount of vertices in Cd), so n − d in this case is
2d−d, since 2d−d ≥ 2 = diam(♦d) for d ≥ 2 (and for d = 1, we have n−d = 2−1 = 1 = diam♦1),
we conclude the Hish conjecture holds in this case.

d) As we can observe in the following picture the diameter of a dodecahedron is 5, and this
distance is achieved when the vertices are taken at opposite faces. Since n−d is equal to 12−3 = 9
and n− d = 9 > 5 = diam(dodecahedron) we get that Hirsh conjecture holds.
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e) As we can observe in the following pictuares the diameter of the icosahedron is 3, and this
distance is achieved when we take opposite vetices of the icosahedron. Since n − d is equal to
20− 3 = 17 and n− d = 17 > 3 = diam(icosahedron) we get that Hirsh conjecture holds.
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