Homework 1

Fabian Prada (Uniandes)
(I discussed the problem 1 with Fabian Latorre, and the problem 5 with Federico Castillo and Jose Samper. In the problem 5, I followed a post made by Adam in the forum about a hint you gave to this problem)
1)Lets prove that for any 3 - polytope the inequalities $V \leq 2 F-4$ and $F \leq 2 V-4$ hold :

Let $v_{1}, v_{2}, \ldots, v_{V}$ be the vertexes of the polytope, and define $e_{v_{1}}, e_{v_{1}}, \ldots, e_{v_{V}}$ as the vertex degree, that is, $e_{v_{i}}$ is the number of edges adjacent to v_{i}. Since v_{i} is a vertex of a 3 - polytope, we must have $e_{v_{i}} \geq 3$, for all i. We can observe that each edge corresponds to two vertexes, then we get $2 E=e_{v_{1}}+e_{v_{1}}+\ldots+e_{v_{V}} \geq 3 V \Rightarrow E \geq \frac{3}{2} V$. Introducing the previous inequality in Euler's formula $(V-E+F=2)$, we get $V-\frac{3}{2} V+F \geq 2 \Rightarrow 2 F-4 \geq V$, as we wanted to prove.

To get the other inequality, let f_{1}, \ldots, f_{F} to be the faces of the polytope, and define $e_{f_{i}}$ as the number of edges that border the face f_{i}. We can easily observe that $e_{f_{i}} \geq 3$ for all i. In this case each edge belongs to exactly two faces, so $2 E=e_{f_{1}}+e_{f_{1}}+\ldots+e_{f_{F}} \geq 3 F \Rightarrow E \geq \frac{3}{2} F$. If we introduce the previos inequality in Euler's formula we get $V-\frac{3}{2} F+F \geq 2 \Rightarrow 2 V-4 \geq F$, as we wanted to prove.

Now lets prove that for all (V, F) such that the inequalities holds, there exists a polytope with such characteristics. First I explain some constructions:

Suppouse you have two n-agons such that you can put one inside the other and you will have a correspondence of parallel sides (as in the first graph). If you move the interior n-agon to a parallel plane you will construct a polytope with $n+2$ faces (since parallel sides will be in the same face).Now, if you move slightly a vertex producing that a pair of sides are not parallel anymore (see second graph), you will get a new face (since there must be exactly a new edge from opposite vertexes of the sides). I you move slightly a second vertex getting another pair of sides not parallel you will add a new face. Continuing this process you can get a polytope with $2 n+2$ faces.

We can apply a similiar treatment two the case of an n-agon and a $n-1$ agon. We can start with a polytope with $n+2$ faces, and moving slightly a vertex in each step (to loose the parallel condition of a pair of sides) we can finally get one of $2 n+1$.

Lets start with the case V is even. Suppouse $V=2 n$. Then it is posible to construct polytopes with $n+2 \rightarrow 2 n+2$ faces just using two parallel n-agonal faces (as in the first construction). Now pick one of the vertexes from one n-agon and put it over the other:

By the second construction, you can get using the n-agonal and $n-1$ agonal faces, polytopes with $n+2 \rightarrow 2 n+1$ faces, now if you add a vertex over the n-agonal face you will be adding $n-1$ faces more (the one in the top is covered). Therefore we have got polytopes with $2 n+1 \rightarrow 3 n$ faces in this way.
Now take two $n-1$ agonal faces and two vertexes, as in the graph:

Using just the two $n-1$ agonal faces as in the first construction, we can get polytopes from $n+1 \rightarrow 2 n$ faces, and since the two vertexes will add $2 n-4$ faces more, in this way you can construct polytopes with $3 n-3 \rightarrow 4 n-4$ faces. Since $V=2 n$, the inequalities $V \leq 2 F-4$ and $F \leq 2 V-4$, imply $n+2 \leq F \leq 4 n-4$, so we have constructed polytopes for all the posible pairs (V, F) when V is even.

The case $V=2 n-1$ is almost the same. From the construction of an n-agonal and an $n-1$ agonal faces you will get polytopes with $n+2 \rightarrow 2 n+1$ faces. If you consider two $n-1$ agonal faces an a vertex in the top, you will get $2 n \rightarrow 3 n-1$ faces; and if you take a $n-1$ agonal face, a $n-2$ agonal face and two vertexes (one over one below), you can get polytopes with $3 n-4 \rightarrow 4 n-6$ faces. In this case the inequalities implies $n+2 \leq F \leq 4 n-6$, so all the pair (V, F), with V odd can be constructed.
2)We present two polytopes that shares the same number of vertixes, faces and edges but are combinatorially different:

Both polytopes has 7 vertexes, 7 faces, and 12 edges. However the polytope in the left has a face with 6 edges while the polytope in the right doesn't have any face of this type.
3)Lets prove that convex $\{+1,-1\}^{d}=\left\{x \in R^{d}:-1 \leq x_{i} \leq 1\right.$, for all $\left.1 \leq i \leq d\right\}$:

I will check first convex $\{+1,-1\}^{d} \subseteq\left\{x \in R^{d}:-1 \leq(x)_{i} \leq 1\right.$, for all $\left.1 \leq i \leq d\right\}$: Let $v_{1}, v_{2}, \ldots, v_{2^{d}}$ be any order of the points in the set $\{+1,-1\}^{d}$. Let $x \in \operatorname{convex}\{+1,-1\}^{d}$, so we
write $x=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{2^{d}} v_{2^{d}}$, where $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{2^{d}}=1$, and $\lambda_{j} \geq 0$ for all j. Observe that $(x)_{i}=\left(\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{2^{d}} v_{2^{d}}\right)_{i}=\lambda_{1}\left(v_{1}\right)_{i}+\lambda_{2}\left(v_{2}\right)_{i}+\ldots+\lambda_{2^{d}}\left(v_{2^{d}}\right)_{i}$; we know that $\left(v_{k}\right)_{i} \in\{+1,-1\}$ for $1 \leq k \leq 2^{d}$, so its also true that $-1 \leq\left(v_{k}\right)_{i} \leq 1$. Since $\lambda_{k} \geq 0$, using the previous inequality, we get $-\lambda_{k} \leq \lambda_{k}\left(v_{k}\right)_{i} \leq \lambda_{k}$, for all k. Addindg this inequalities we get $-\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{2^{d}}\right) \leq(x)_{i} \leq\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{2^{d}}\right) \Rightarrow-1 \leq(x)_{i} \leq 1$. Since the previous result holds for $1 \leq i \leq d$, we conclude $x \in\left\{x \in R^{d}:-1 \leq(x)_{i} \leq 1\right.$, for all $\left.1 \leq i \leq d\right\}$, so we have completed this part of the proof.

Now lets check $\left\{x \in R^{d}:-1 \leq(x)_{i} \leq 1\right.$, for all $\left.1 \leq i \leq d\right\} \subseteq \operatorname{convex}\{+1,-1\}^{d}$:
Apply induction on d. The base case $d=1$ is obvious, since $[-1,+1]=$ convex $\{+1,-1\}$. Assume that the result its true for $d-1$. Let $v_{1}, v_{2}, \ldots, v_{2^{d-1}}$ be any order of the points in the set $\{+1,-1\}^{d-1}$, now define $u_{1}=\left(v_{1},-1\right), u_{2}=\left(v_{2},-1\right), \ldots, u_{2^{d-1}}=\left(v_{2^{d-1}},-1\right)$, and $w_{1}=$ $\left(v_{1},+1\right), w_{2}=\left(v_{2},+1\right), \ldots, w_{2^{d-1}}=\left(v_{2^{d-1}},+1\right)$, so $u_{1}, u_{2}, \ldots, u_{2^{d-1}}, w_{1}, w_{2} \ldots, w_{2^{d-1}}$ are all the points of the set $\{+1,-1\}^{d}$. Let $x \in\left\{x \in R^{d}:-1 \leq(x)_{i} \leq 1\right.$, for all $\left.1 \leq i \leq d\right\}$, then $x=\left(\hat{x}, x_{d}\right)$, where $\hat{x} \in\left\{x \in R^{d-1}:-1 \leq(x)_{i} \leq 1\right\}$, and $x_{d} \in[-1,+1]$. By induction hypothesis $\hat{x} \in$ convex $\{+1,-1\}^{d-1}$ so $\hat{x}=\lambda_{1} v_{1}+\lambda_{2} v_{2} \ldots+\lambda_{2^{d-1}} v_{2^{d-1}}$, a convex combination. Since $x_{d} \in[-1,+1]$, we know that $x_{d}=-1 \mu+1 \lambda$ a convex combination. Now observe that $\left(\lambda_{k} \mu\right) u_{k}+\left(\lambda_{k} \lambda\right) w_{k}=$ $\lambda_{k}\left(\mu\left(v_{k},-1\right)+\lambda\left(v_{k},+1\right)\right)=\lambda_{k}\left(v_{k}, x_{d}\right)$, for $1 \leq k \leq 2^{d-1}$, so we get that:
$\left(\lambda_{1} \mu\right) u_{1}+\left(\lambda_{1} \lambda\right) w_{1}+\left(\lambda_{2} \mu\right) u_{2}+\left(\lambda_{2} \lambda\right) w_{2}+\ldots+\left(\lambda_{2^{d-1}} \mu\right) u_{2^{d-1}}+\left(\lambda_{2^{d-1}} \lambda\right) w_{2^{d-1}}$
$=\lambda_{1}\left(v_{1}, x_{d}\right)+\lambda_{2}\left(v_{2}, x_{d}\right)+\ldots+\lambda_{2^{d-1}}\left(v_{2^{d-1}}, x_{d}\right)$
$=\left(\lambda_{1} v_{1}+\lambda_{2} v_{2} \ldots+\lambda_{2^{d-1}} v_{2^{d-1}},\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{2^{d-1}}\right) x_{d}\right)$
$=\left(\hat{x}, x_{d}\right)=x$.
Since $\left(\lambda_{1} \mu\right)+\left(\lambda_{1} \lambda\right)+\left(\lambda_{2} \mu\right)+\left(\lambda_{2} \lambda\right)+\ldots+\left(\lambda_{2^{d-1}} \mu\right)+\left(\lambda_{2^{d-1}} \lambda\right)=(\mu+\lambda)\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{2^{d-1}}\right)=1$, and all of them are nonnegative, we conclude that $x \in \operatorname{convex}\{+1,-1\}^{d}$. This complete the proof.
4)The given set of inequalities that define the polygon can be written in the form:
$\left(\begin{array}{c}9-4 x_{2}(A) \\ 2-\frac{1}{2} x_{2}(B) \\ 3 x_{2}-\frac{17}{2}(C) \\ 1-\frac{1}{6} x_{2}(D)\end{array}\right) \leq x_{1} \leq\left(\begin{array}{c}2 x_{2}(X) \\ 4(Y) \\ \frac{11}{2}-\frac{1}{2} x_{2}(Z)\end{array}\right)$
In order to identify for which values of x_{2} there is a value of x_{1} that satisfies all the system , we can start by identifiying for which values of x_{2} there is a value of x_{1} that satisfies each pair of inequalities (taking one from the left column and one from the right column). In the following table I summarize the information obtained by solving each pair of inequalities:

	A	B	C	D
X	$x_{2} \geq \frac{3}{2}$	$x_{2} \geq \frac{4}{5}$	$x_{2} \leq \frac{17}{2}$	$x_{2} \geq \frac{6}{13}$
Y	$x_{2} \geq \frac{5}{4}$	$x_{2} \geq-4$	$x_{2} \leq \frac{25}{6}$	$x_{2} \geq-18$
Z	$x_{2} \geq 1$	$2 \geq \frac{11}{2}$	$x_{2} \leq 4$	$6 \geq 11$

Then we conclude that there is x_{1} that satisfies all the inequalities simultaneously if and only if
$x_{2} \in\left[\frac{3}{2}, 4\right]$. Therefore $\operatorname{proj}_{1}(P)=\left[\frac{3}{2}, 4\right]$.
5)a)Lets start with the following important propositions:
i)Let $P=$ convex $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be a d-polytope, for any point x define $v_{i}=p_{i}-x$ for $1 \leq i \leq n$, so v_{i} is the vector from the point x to the vertex p_{i}.
Then: $x \in \operatorname{Int}(P) \Longleftrightarrow$ cone $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=R^{d}(*)$.

Proof:

Suppouse $x \in \operatorname{Int}(P)$, then there exists $\epsilon>0$ such that $x \pm \epsilon e_{i} \in P$ for $1 \leq i \leq d$. Observe that $P=$ convex $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}=x+$ convex $\left\{p_{1}-x, p_{2}-x, \ldots, p_{n}-x\right\}=x+$ convex $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, so we get $\left\{ \pm \epsilon e_{i}\right\} \subset$ convex $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset$ cone $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Therefore cone $\left\{ \pm \epsilon e_{i}\right\} \subset \operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Since cone $\left\{ \pm \epsilon e_{i}\right\}=R^{d}$ we conclude cone $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=R^{d}$.

Now suppouse that cone $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=R^{d}$. Then we get by Caratheodorys Theorem, that for each $1 \leq i \leq d, e_{i} \in \operatorname{cone}\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{d}^{\prime}\right\}$ for some $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{d}^{\prime}\right\} \subseteq\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then we get that for some $r_{i}>0, r_{i} e_{i} \in \operatorname{convex}\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{d}^{\prime}\right\} \subseteq \operatorname{convex}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\left(\right.$ if $e_{i}=s_{1} v_{1}^{\prime}+\ldots+$ $s_{d} v_{d}^{\prime}$, just take $\left.r_{i}=\frac{1}{s_{1}+\ldots+s_{d}}\right)$. In this way we can get some $\epsilon>0$ such that $\left\{ \pm \epsilon e_{i}, 1 \leq i \leq\right.$ $d\} \subseteq$ convex $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then $\left.\pm \epsilon e_{i}, 1 \leq i \leq d\right\} \subseteq$ convex $\left\{x+v_{1}, x+v_{2}, \ldots, x+v_{n}\right\}=P$. Then convex $\left\{x \pm \epsilon e_{i}, 1 \leq i \leq d\right\} \subseteq P$, therefore x must be an interior point of P.
ii) Given $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset R^{d}$ and $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ linearly independent, Then: cone $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=R^{d} \Longleftrightarrow \operatorname{Int}\left(-\right.$ cone $\left.\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right) \cap \operatorname{cone}\left\{v_{d+1}, v_{d+2}, \ldots, v_{n}\right\} \neq \emptyset(* *)$

Proof:

Suppouse cone $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=R^{d}$, and let $w \in \operatorname{Int}\left(-\operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right)$. By Caratheodorys Theorem the exists $\left\{t_{1}, t_{2}, \ldots, t_{d}\right\} \subseteq\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $w \in \operatorname{cone}\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}$. Then $w=$ $-\lambda_{1} v_{1}-\lambda_{2} v_{2} \ldots-\lambda_{d} v_{d}=\mu_{1} t_{1}+\mu_{2} t_{2}+\ldots+\mu_{d} t_{d}$, for some λ, μ 's positive. Now substract in both sides of the equation all those t_{i} 's that belongs to $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$. This will produce that the left side will be in $\operatorname{Int}\left(-\operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right)$ and the right one in $\operatorname{cone}\left\{v_{d+1}, v_{d+2}, \ldots, v_{n}\right\}$, therefore this element will belong to $\operatorname{Int}\left(-\right.$ cone $\left.\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right) \cap \operatorname{cone}\left\{v_{d+1}, v_{d+2}, \ldots, v_{n}\right\}$.

For the other direction suppouse $w \in \operatorname{Int}\left(-\operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right) \cap \operatorname{cone}\left\{v_{d+1}, v_{d+2}, \ldots, v_{n}\right\}$. Then $-w=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}$ with $\alpha_{i}>0$, for all i. Now take any $y \in R^{d}$, and write it as $y=\beta_{1} v_{1}+\beta_{2} v_{2}+\ldots+\beta_{n} v_{n}$ (we can do this because $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ is linearly independent). Then we can find $M>0$ such that $M \alpha_{i}+\beta_{i}>0$ for all i. Therefore $y-M w \in \operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$, and we conclude that $y \in \operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}, w\right\}$ for all $y \in R^{d}$. Since $w \in \operatorname{cone}\left\{v_{d+1}, v_{d+2}, \ldots, v_{n}\right\}$, we finally assert that cone $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=R^{d}$.

As a corollary of the previous proposition I get:
iii) If cone $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=R^{d}, n \geq 2 d$, then there exists $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{2 d}^{\prime}\right\} \subseteq\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, such
that cone $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{2 d}^{\prime}\right\}=R^{d}(* * *)$

Proof:

Since cone $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=R^{d}$, we can find d linearly independent vectors in $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, WLOG let $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ be linearly independent. By the previous proposition there exists $w \in$ $\operatorname{Int}\left(-\right.$ cone $\left.\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right) \cap$ cone $\left\{v_{d+1}, v_{d+2}, \ldots, v_{n}\right\}$, and by Caratheodorys Theorem we can find $\left\{v_{d+1}^{\prime}, v_{d+2}^{\prime}, \ldots, v_{2 d}^{\prime}\right\} \subseteq\left\{v_{d+1}, v_{d+2}, \ldots, v_{n}\right\}$ such that $w \in \operatorname{cone}\left\{v_{d+1}^{\prime}, v_{d+2}^{\prime}, \ldots, v_{2 d}^{\prime}\right\}$. Therefore $w \in \operatorname{Int}\left(-\operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right) \cap \operatorname{cone}\left\{v_{d+1}^{\prime}, v_{d+2}^{\prime}, \ldots, v_{2 d}^{\prime}\right\}$, so by the previous proposition we get cone $\left\{v_{1}, v_{2}, \ldots, v_{d}, v_{d+1}^{\prime}, v_{d+2}^{\prime}, \ldots, v_{2 d}^{\prime}\right\}=R^{d}$.

Now we can prove the desired result: Suppouse $P=\operatorname{convex}\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}, x \in \operatorname{Int}(P)$, and define $v_{i}=p_{i}-x$ for $1 \leq i \leq n$. By prop $(*) \operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=R^{d}$. Now by prop $(* * *)$, there exists $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{2 d}^{\prime}\right\} \subseteq\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, such that cone $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{2 d}^{\prime}\right\}=R^{d}$. Applying again prop $(*)$, we can conclude that $x \in \operatorname{Int}\left(\operatorname{convex}\left\{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{2 d}^{\prime}\right\}\right)$, where $p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{2 d}^{\prime}$, are the vertixes of P associated to the vectors $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{2 d}^{\prime}$. Therefore the subset $V=\left\{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{2 d}^{\prime}\right\}$ of $2 d$ vertices of P is such that x is in the interior of the convex hull of V.
b)The d-polytopes P that are similar to the cross polytopes, in the sense that we have d pairs of opposite vertixes whose diagonals intersect in a point x, are posible combinations (P, x), for which $2 d$ vertexes are strictly needed to make x to be in the interior of the convex hull. I drew a example of this in dimension 2 and 3.

In c) I prove that for these (P, x) it is true that $2 d$ points are needed, and that these (P, x) are the only ones for which it is true.
c)I am going to prove that the only d-polytopes P and points x for which $2 d$ vertexes are needed in V, are those polytopes that are similar to the d-cross polytope and x is the point of
intersection of the diagonals between opposite vertexes. More specifically, these polytopes are of the form $P=$ convex $\left\{\lambda_{1} u_{1}+x,-\mu_{1} u_{1}+x, \lambda_{2} u_{2}+x,-\mu_{2} u_{2}+x, \ldots, \lambda_{d} u_{d}+x,-\mu_{d} u_{d}+x\right\}$, where $\left\{u_{1}, u_{2}, \ldots, u_{d}\right\}$ is linearly independent, λ 's and μ 's are positives, and x is the "center" of the polytope.

Let P a d-polytope, x an interior point, p_{i} 's the vertexes, and v_{i} 's the vectors form x to the vertexes. As we discussed previously we can assume that $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ is linearly indenpedent. We can get the following observation:
(\star) if we can find $\left\{t_{1}, t_{2}, \ldots, t_{s}\right\} \subseteq\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, s<d$, such that $\operatorname{Int}\left(-\right.$ cone $\left.\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right) \cap$ cone $\left\{t_{1}, t_{2}, \ldots, t_{s}\right\} \neq \emptyset$, then cone $\left\{v_{1}, v_{2}, \ldots, v_{d}, t_{1}, t_{2}, \ldots, t_{s}\right\}=R^{d}$ (by $\left.* *\right)$. Therefore $x \in \operatorname{Int}\left(\right.$ convex $\left.\left\{p_{1}, p_{2}, \ldots, p_{d}, p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{s}^{\prime}\right\}\right)($ by $*)$, which imply that x is in the interior of the convex hull of less than $2 d$ vertexes.

Let $w \in \operatorname{Int}\left(-\right.$ cone $\left.\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right)$, since cone $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=R^{d}$, we can affirm by Caratheodorys Theorem that $w \in \operatorname{cone}\left\{t_{1}, t_{2}, \ldots, t_{d}\right\} \subseteq\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. If $\operatorname{dim}\left(\operatorname{cone}\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}\right)<d$, we can apply Caratheodorys theorem again to find $\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{s}^{\prime}\right\} \subseteq\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, s<d$, such that $w \in$ cone $\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{s}^{\prime}\right\}$. Then $w \in \operatorname{Int}\left(-\operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right) \cap \operatorname{cone}\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{s}^{\prime}\right\}$, and by (\star) x would be in the interior of the convex hull of less than $2 d$ vertexes. Therefore we will asume that $\operatorname{dim}\left(\right.$ cone $\left.\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}\right)=d$, and $w \in \operatorname{Int}\left(\right.$ cone $\left.\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}\right)$.

Now I will prove that $-\operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}=\operatorname{cone}\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}$, is a necesary condition for x to satisfy the particular conditions of the problem. Suppouse -cone $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\} \neq \operatorname{cone}\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}$, so $\operatorname{Int}\left(-\operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right) \neq \operatorname{Int}\left(\operatorname{cone}\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}\right)$. WLOG take $u \in \operatorname{Int}\left(-\right.$ cone $\left.\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right) \backslash \operatorname{Int}\left(\right.$ cone $\left.\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}\right)$. Since $u \notin \operatorname{Int}\left(\right.$ cone $\left.\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}\right)$ and $w \in \operatorname{Int}\left(\right.$ cone $\left.\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}\right)$, we can find r in the segment $[u, w]$ such that $r \in \operatorname{Frontier}\left(\right.$ cone $\left.\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}\right)$, therefore $r \in$ cone $\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{d-1}^{\prime}\right\}$, for some $\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{d-1}^{\prime}\right\} \subset\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}$.
Since $u, w \in \operatorname{Int}\left(-\operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right)$, we get that $r \in \operatorname{Int}\left(-\operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right)$, so we conclude that $\left.r \in \operatorname{Int}\left(-\operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right) \cap \operatorname{cone}\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{d-1}^{\prime}\right\}\right)$, and by $(\star) x$ would be in the interior of the convex hull of less than $2 d$ vertexes. (If take $u \in \operatorname{Int}\left(\right.$ cone $\left.\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}\right) \backslash \operatorname{Int}\left(-\right.$ cone $\left.\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right)$, we get some $r \in \operatorname{Int}\left(-\right.$ cone $\left.\left.\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}\right) \cap \operatorname{cone}\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{d-1}^{\prime}\right\}\right)$, which is again $\left.(\star)\right)$.

We have proved that $-\operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}=\operatorname{cone}\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}$ is a necesary condition. Now observe that the elements in $-\operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ are of the form $-\lambda_{1} v_{1}-\lambda_{2} v_{1} \ldots-\lambda_{d} v_{d}$, with λ 's nonnegatives, in particular, each t_{i} can be written in this way. Similarly, the elements in cone $\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}$ are of the form $\mu_{1} t_{1}+\mu_{1} t_{1}+\ldots+\mu_{d} t_{d}$, with μ 's nonnegatives, so each v_{j} can be written in this way. By the two previous observations and also knowing that $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ and $\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}$ are linearly independent we can conclude (by an easy inspection) that each t_{i} is a negative multiple of a different v_{j}, therefore $\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}=\left\{-\delta_{1} v_{1},-\delta_{2} v_{2}, \ldots,-\delta_{d} v_{d}\right\}$, for δ 's positives.

We have shown that it is necesary for x to be the intersection of the diagonals between d pairs of opposite vertexes of the polytope. Lets prove that this polytope can't have more vertexes: Suppose $p_{2 d+1}$ is another vertex and asume $v_{2 d+1}=\alpha_{1} v_{1}+\ldots+\alpha_{d} v_{d}$, where at less two α 's must be different to 0 (otherwise we would have colineality between x and two vertexes). Let F be a set defined as follows: if $\alpha_{i}>0$ then $-v_{i} \in F$, if $\alpha_{i}<0$ then $v_{i} \in F$, and if $\alpha_{i}=0$ then $v_{i},-v_{i} \in F$. We can check that F must have at most $2 d-2$ elements and $v_{2 d+1} \in \operatorname{Int}(-$ cone $(F))$. Therefore
$\operatorname{Int}(-\operatorname{cone}(F)) \cap \operatorname{cone}\left(v_{2 d+1}\right) \neq \emptyset$, and by the initial propositions, this imply that x belongs to the interior of the convex hull of the vertexes associated to the vectors in F and $p_{2 d+1}$, which are at most $2 d-1$ vertexes.

Finally lets prove that if $P=$ convex $\left\{\lambda_{1} u_{1}+x,-\mu_{1} u_{1}+x, \lambda_{2} u_{2}+x,-\mu_{2} u_{2}+x, \ldots, \lambda_{d} u_{d}+x,-\mu_{d} u_{d}+x\right\}$, where $\left\{u_{1}, u_{2}, \ldots, u_{d}\right\}$ is linearly independent, λ 's and μ 's are positives, then x doesnt belong to the interior of the convex hull of less than $2 d$ vertexes: Just observe that
$\operatorname{Int}\left(-\operatorname{cone}\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}\right) \cap \operatorname{cone}\left\{v_{d+1}, v_{d+2}, \ldots, v_{2 d-1}\right\}=\emptyset$, for any ordering of the vectors from x to the vertexes, then by the initial propositions $x \notin \operatorname{Int}\left(\operatorname{convex}\left\{v_{1}, v_{2}, \ldots, v_{2 d-1}\right\}\right)$.
6)a) In order to show that if $P, Q \subset R^{d}$ are polytopes $\Rightarrow P \cap Q \subset R^{d}$ is a polytope, we can use the H-description of polytopes. Since we can describe $P=\left\{x \in R^{d}: A_{p} x \leq z_{p}\right\}$ and $Q=\left\{x \in R^{d}: A_{q} x \leq z_{q}\right\}$, we can affirm that $P \cap Q=\left\{x \in R^{d}: A_{p} x \leq z_{p}\right.$ and $\left.A_{q} x \leq z_{q}\right\}=\left\{x \in R^{d}:\binom{A_{p}}{A_{q}} x \leq\binom{ z_{p}}{z_{q}}\right\}$, which is a H-description of $P \cap Q$. Since P and Q are bounded, then $P \cap Q$ is also bounded, so we conclude that it is a polytope.
b)Lets prove that $P, Q \subset R^{d}$ polytopes $\Rightarrow P+Q \subset R^{d}$ is a polytope:

Let $P=$ convex $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$, and $Q=\operatorname{convex}\left\{q_{1}, q_{2}, \ldots, q_{m}\right\}$, I claim that $P+Q=\operatorname{convex}\left\{p_{i}+q_{j}\right.$: $1 \leq i \leq n, 1 \leq j \leq m\}$. First observe that $P+Q$ is a convex set: take $x, y \in P+Q$, we can write $x=p_{x}+q_{x}$ and $y=p_{y}+q_{y}$, where $p_{x}, p_{y} \in P$ and $q_{x}, q_{y} \in Q$; then for any convex combination of x and y we get $\lambda x+\mu y=\left(\lambda p_{x}+\mu p_{y}\right)+\left(\lambda q_{x}+\mu q_{y}\right)$, where $\left(\lambda p_{x}+\mu p_{y}\right) \in P$ and $\left(\lambda q_{x}+\mu q_{y}\right) \in Q$, so $\lambda x+\mu y \in P+Q$, then we conclude that $P+Q$ is a convex. Now by definition we check that $\left\{p_{i}+q_{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\} \subset P+Q$ so we can conclude, by the convexity of $P+Q$, that convex $\left\{p_{i}+q_{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\} \subset P+Q$.

Now take any $\hat{x} \in P+Q$, we can write $\hat{x}=\hat{p}+\hat{q}, \hat{p}=\sum_{i=1}^{n} \lambda_{i} p_{i}$ and $\hat{q}=\sum_{j=1}^{m} \beta_{j} q_{j}$ (convex combinations), therefore $\hat{x}=\sum_{i=1}^{n} \lambda_{i} p_{i}+\sum_{j=1}^{m} \beta_{j} q_{j}$. If we write the previous sum as a convex combination of $\left\{p_{i}+q_{j}: 1 \leq i \leq n, 1 \leq j \leq n\right\}$ we are done. To get this define $\mu_{i j}=\lambda_{i} \beta_{j}$, and observe that
$\sum_{i=1}^{n} \sum_{j=1}^{m} \mu_{i j}\left(p_{i}+q_{j}\right)=$
$=\sum_{i=1}^{n} \sum_{j=1}^{m} \mu_{i j} p_{i}+\sum_{i=1}^{n} \sum_{j=1}^{m} \mu_{i j} q_{j}$
$=\sum_{i=1}^{n=1} \sum_{j=1}^{m} \lambda_{i} \beta_{j} p_{i}+\sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_{i} \beta_{j} q_{j}$
$=\sum_{i=1}^{n} \lambda_{i} p_{i}+\sum_{j=1}^{m} \beta_{j} q_{j}=\hat{x}$
Since $\mu_{i j}=\lambda_{i} \beta_{j} \geq 0$ for all i, j, and $\sum_{i=1}^{n} \sum_{j=1}^{m} \mu_{i j}=\left(\sum_{i=1}^{n} \lambda_{i}\right)\left(\sum_{j=1}^{m} \beta_{j}\right)=1$, we conclude that $\hat{x} \in$ convex $\left\{p_{i}+q_{j}: 1 \leq i \leq n, 1 \leq j \leq n\right\}$, so $P+Q \subset \operatorname{convex}\left\{p_{i}+q_{j}: 1 \leq i \leq n, 1 \leq j \leq n\right\}$ and this completes the proof.
c) To prove that $P \subset R^{d}, Q \subset R^{e}$ polytopes $\Rightarrow P \times Q \subset R^{d+e}$ is a polytope we can use the previous result. First, observe that $\phi: R^{d} \rightarrow R^{d+e}$, defined $\phi(x)=\binom{x}{0_{e}}$, sends $P \subset R^{d}$ to a polytope $\phi(P)=\binom{P}{0_{e}} \subset R^{d+e}$ (its easy to check that if $P=\operatorname{convex}\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \Rightarrow \phi(P)=$
convex $\left.\left\{\phi\left(p_{1}\right), \phi\left(p_{2}\right), \ldots, \phi\left(p_{n}\right)\right\}\right)$.Similarly define $\psi: R^{e} \rightarrow R^{d+e}$ by $\psi(y)=\binom{0_{d}}{y}$, which sends the polytope $Q \subset R^{e}$ to a polytope $\psi(Q)=\binom{0_{d}}{Q} \subset R^{d+e}$. By the previous result we now that $\phi(P)+\psi(Q) \subset R^{d+e}$ is a polytope, and it is easy to check that $\phi(P)+\psi(Q)=\{z=\phi(p)+\psi(q)$: $p \in P, q \in Q\}=\left\{z=\binom{p}{q}: p \in P, q \in Q\right\}=P \times Q$. So $P \times Q$ is a polytope.

