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Objetive

I ”Derive optimal spline algorithms for the enlargement or
reduction of digital images by arbitrary (non integer) scaling
factors” ∆.

I Optimality is managed by the authors in a least square sense.



Classical Approach: Inteporlation Reconstruction +
Resampling

I ”Standard approaches fit the original data with a continuous
model (image interpolation) and then resample two
dimensional function in a new sample grid”.

[f1]1
Int. Rec.−−−−−→ f1 = [f1]1 ∗ ϕ

Resamp. freq ∆−−−−−−−−−→ [f1]∆ = [[f1] ∗ ϕ]∆

I ”Simple to implement but they tend to produce suboptimal
results because they are not designed to minimize loss
information”.
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Current Size



Inteporlation Reconstruction + Resampling

Current Size Enlargement



Inteporlation Reconstruction + Resampling

Current Size Reduction



Perceptual Results of Inteporlation Reconstruction +
Resampling

I ”In the case of reduction, the situation is analogous to
sampling a signal that has not previously bandlimited, a
process that may induce aliasing errors”.

I Results in the case of magnification have some distortions but
they ”tend to disappear when higher order of splines are
applied”.



Other common approach for Reduction (M2)

Results of reducing an image using IR+R are poor since they do
not suppress high frequencies. A traditional approach for reduction
that performs better is the following:

f∆(k∆) =
1

∆

∑
i∈Z

f1(i)ϕ∆(k∆− i)

where ϕ∆ = ϕ(•/∆).



Other common approach for Reduction (M2)

From the previous expression we get:

f∆(k∆) =
1

∆

∑
i∈Z

f1(i)ϕ∆(k∆− i)

=
1

∆
[[f1] ∗ ϕ∆]∆

= [[f1] ∗ (
1

∆
ϕ∆)]∆

This is quite similar to IR+R:

[[f1] ∗ ϕ]∆

Instead of using ϕ for reconstruction, here we use 1
∆ϕ∆, a ”low

pass version” of it.
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Least Square Approach. Notation

I βn: nth order β-spline.

I Vβn = {c ∗ βn : c ∈ l2}: Subspace of representable signals for
the reconstruction kernel βn.

I βn∆ = βn(•/∆): Kernel scaled to step size ∆.

I Vβn
∆

= {c ∗∆ βn∆ : c ∈ l2}: Subspace of representable signals
for the reconstruction kernel βn∆.



Least Square Approach. Step-Size

Current Size

Enlargement

Reduction



Clarification in notation!!

Wrong:

Right:



Least Square Approach. Problem

Definitions:

I f n1 = c1 ∗ βn: Interp. reconstruction for step size 1.

I f n∆ = c∆ ∗∆ βn∆: Reconstruction for step size ∆.

Statement:

I [f n1 ]1 → Given.

I [f n∆]∆ → To Find!.

I f n∆ ∈ Vβn
∆

is the minimum error approximation of f n1 ∈ Vβn .

I ⇒ f n∆ = PVβn
∆

(f n1 ).



Least Square Approach. Problem

Current Size Reduction



Least Square Approach. Bi-orthogonal Basis

Let {xi}i∈I and {yi}i∈I be a Bi-orthogonal bases for the space V ,
this is:

< xi , yj >=

{
1 if i = j
0 otherwise

Then any v ∈ V can be expressed as:

v =
∑
i∈I

< v , yi > xi

Observe one basis is used for projection an the other for
reconstruction.



Least Square Approach. Constructing Bi-orthogonal pairs

Given the basis Bϕ : {ϕ(• − k)}k∈Z, let’s find it’s bi-orthogonal
pair in Vϕ. Let Bp∗ϕ : {(p ∗ ϕ)(• − k)}k∈Z.
We must satisfy,

< ϕ(• − i), (p ∗ ϕ)(• − j) >= δ(i , j)

Equivalently,

[ϕ ∗ (p ∗ ϕ)∨] = δ

This implies,

p = [ϕ ∗ ϕ∨]−1

The function ϕ̊ := [ϕ ∗ ϕ∨]−1 ∗ ϕ is named the dual.
Then ϕ and ϕ̊ induces Bi-orthogonal basis in Vϕ.



Least Square Approach. Multiples representation of the
same space: Bases



Least Square Approach. Multiples representation of the
same space: Change of Coordinates



Least Square Approach. Orthogonal Projection

I General Sampling Theorem: The orthogonal projection of a
function f ∈ L2 on Vϕ is given by:

fVϕ = [f ∗ (ϕ̊)∨] ∗ ϕ

In the article this is implemented as follows:

f n∆ = PVβn
∆

(f n1 ) = [f n1 ∗ (βn∆)∨]∆ ∗∆ β̊n∆

Remark: Here the projection is done using the dual as
reconstruction basis. In Diego’s article is the opposite.



Least Square Approach. Step 1: Calculating Interpolation
Coefficients c1

”Determine the β-spline coefficients of f n1 that interpolates the
digital signal [f n1 ]1”.

f n1 = c1 ∗ βn ⇒ c1 = [f n1 ]1 ∗ [βn]−1
1

Remark: f n1 can be expressed in terms of the cardinal spline βnint of
order n as follows:

f n1 = [[f n1 ]1 ∗ [βn]−1
1 ]1 ∗ βn = [f n1 ]1 ∗ ([βn]−1

1 ∗ β
n) = [f n1 ]1 ∗ βnint



Least Square Approach. Step 2: Math Derivation of the
Sampling Function ξn∆

f n∆ = [f n1 ∗ (βn∆)∨]∆ ∗∆ β̊n∆

= [(c1 ∗ βn) ∗ (βn∆)∨]∆ ∗∆ β̊n∆

= ∆[c1 ∗
( 1

∆
βn ∗ (βn∆)∨

)
]∆ ∗∆ β̊n∆

= ∆[c1 ∗ ξn∆]∆ ∗∆ β̊n∆

The function ξn∆ = 1
∆β

n ∗ (βn∆)∨ is called the Sampling Function.
It’s important to notice that this function has compact support.
Remark: ξn∆ corresponds to the cross correlation 1

∆aβn,βn
∆

.



Least Square Approach. Take care using the notation!
One would be tempted to write

[c1 ∗ ξn∆]∆ = c1 ∗ [ξn∆]∆,

but that’s a mistake!!. Observe that

[c1 ∗ ξn∆]∆ =
{

(c1 ∗ ξn∆)(k∆)
}
k∈Z

=
{ ∞∑

i=−∞
c1(i)ξn∆(k∆− i)

}
k∈Z

On the other hand,

c1 ∗ [ξn∆]∆ =
{

(c1 ∗ [ξn∆]∆)(k)
}
k∈Z

=
{ ∞∑

i=−∞
c1(i)ξn∆(∆(k − i))

}
k∈Z



Least Square Approach. Step 3: Post Filter q

Resample the signal at a step-size ∆ corresponds to find the
sequence [f n∆]∆.
From the conditions:

f n∆ = ∆[c1 ∗ ξn∆]∆ ∗∆ β̊n∆

f n∆ = [f n∆]∆ ∗∆ (βn∆)int

We get,

[f n∆]∆ = ∆[c1 ∗ ξn∆]∆ ∗ [βn∆ ∗ (βn∆)∨]−1
∆ ∗ [βn∆]∆

= ∆[c1 ∗ ξn∆]∆ ∗ (∆[β2n+1])−1 ∗ [βn]

= [c1 ∗ ξn∆]∆ ∗ q

Remark: The postfilter q = [β2n+1]−1 ∗ [βn] converts from dual to
cardinal spline representation.



Least Square Approach. Diagram Summary



Least Square Approach. Diego’s article generalization
From the condition f n∆ = ∆[c1 ∗ ξn∆]∆ ∗∆ β̊n∆ we get,

f n∆ = ∆[c1 ∗ ξn∆]∆ ∗ [aβn
∆

]−1
∆ ∗∆ βn∆

= [c1 ∗ ξn∆]∆ ∗ [aβn ]−1 ∗∆ βn∆

then,

c∆ = [c1 ∗ ξn∆]∆ ∗ [aβn ]−1

=
1

∆
[c1 ∗ aβn,βn

∆
]∆ ∗ [aβn ]−1

This last expression corresponds to (55) of Diego’s article:

cs =
1

s
[aϕ]−1 ∗ [c ∗ aϕ,ϕs ]s

for the particular case ϕ = βn



Evaluation of the Sampling Kernels. Degree 0



Evaluation of the Sampling Kernels. Degree 1



Evaluation of the Sampling Kernels. General Case

I ”As n increases this function converges to a Gaussian as a
consequence of the Central Limit Theorem”.

I ”We use the fact that the global variance of a convolution is
equal to the sum of the variance of its individual components”.



Article’s Results. Box: Resampling vs Least Squares



Article’s Results. Hat: Resampling vs Least Squares



Article’s Results. Cubic Spline: Resampling vs Least
Squares



Comments from the authors

I ”Our experimental results demonstrate the superiority of least
square scale conversion (LSSC) over interpolative scale
conversion in a consistent fashion. This observation is
specially true for image reduction”.

I ”LSSC1 appears to yield images with better visual quality,
probably because the oscillation near the borders of the
objects are less pronounced than they are for cubic splines”.



Summary of methods discussed

I IR+R → [[f1] ∗ ϕ]∆
I M2 → [[f1] ∗ ( 1

∆ϕ∆)]∆
I LS → [[([f1] ∗ ϕ) ∗ ϕ̊∆]∆ ∗∆ ϕ∆]∆
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Obrigado!


