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Part I



Piecewise Polinomial Function

I Definition f : R→ R is said piecewise polynomial function if
there exists reals r1 < r2 < . . . < rn+1 and polynomials
p1(x), p2(x) . . . pn(x) , such that supp(f ) = [r1, rn+1], and for
k = 1 . . . n we have f ≡ pk in the interval [rk , rk+1].

I Definition The pair ((r1, . . . , rn+1); (p1, . . . , pn)) will be called
the canonical representation of f .
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Problem Statement

Problem Statement Given f and g piecewise polynomial in
canonical representation, find the canonical representation of f ∗ g .



Polynomials Supports

Question: How many polynomial pieces does f ∗ g have?

It depends on the spacing of polynomial supports...

I If polynomials supports in f and g are uniformly and equally
spaced , f ∗ g will have n + m distinct polynomial pieces.

I If polynomials supports of f and g are in general spacing,
f ∗ g will have n ∗m distinct polynomial pieces.



Polynomials Supports

Question: How many polynomial pieces does f ∗ g have?
It depends on the spacing of polynomial supports...

I If polynomials supports in f and g are uniformly and equally
spaced , f ∗ g will have n + m distinct polynomial pieces.

I If polynomials supports of f and g are in general spacing,
f ∗ g will have n ∗m distinct polynomial pieces.



Polynomials Supports

Question: How many polynomial pieces does f ∗ g have?
It depends on the spacing of polynomial supports...

I If polynomials supports in f and g are uniformly and equally
spaced , f ∗ g will have n + m distinct polynomial pieces.

I If polynomials supports of f and g are in general spacing,
f ∗ g will have n ∗m distinct polynomial pieces.



Polynomials Supports

Question: How many polynomial pieces does f ∗ g have?
It depends on the spacing of polynomial supports...

I If polynomials supports in f and g are uniformly and equally
spaced , f ∗ g will have n + m distinct polynomial pieces.

I If polynomials supports of f and g are in general spacing,
f ∗ g will have n ∗m distinct polynomial pieces.



Convolution Strategy

Main Concepts

I Power Step Functions

I Sequence of Impulses



Convolution Strategy

Main Concepts

I Power Step Functions

I Sequence of Impulses



Convolution Strategy

Main Concepts

I Power Step Functions

I Sequence of Impulses



Power Step Functions

Definition: The function,

(x+)n =

{
xn if x > 0

0 if x ≤ 0

will be called the power step function of order n.



A nice property

Proposition Let n and m be nonnegative integers, then

(x+)n ∗ (x+)m =
1(n+m
n

)(x+)n+m+1



Sequence of Impulses

Definition: Given r = (r1, . . . , rn) with r1 < r2 < . . . < rn , and
w = (w1, . . . ,wn) with wk arbitrary, the function,

T (r ,w)(x) =
n∑

k=1

wkδ(x − rk),

will be called the sequence of impulses associated to (r ,w).
The vector r will be called the knots of the sequence, and the
vector w will be called the weights of the sequence.



Example

The Bspline of order n can be easily represented as a convolution
between a sequence of impulses and a power step function. Let:

r =

((
0− n + 1

2

)
,
(

1− n + 1

2

)
, . . . ,

(
n + 1− n + 1

2

))

w =
1

n!

(
(−1)0

(
n + 1

0

)
, (−1)1

(
n + 1

1

)
, . . . , (−1)n+1

(
n + 1

n + 1

))
Then,

βn = T (r ,w) ∗ (x+)n
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Convolved Functions:
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Overview of the convolution algorithm

I Input: f , g in canonical representation.

I 1) Convert f and g to power step representation.

I 2) Convolve f and g in power step representation.

I 3) Convert f ∗ g to canonical representation.

I Output: f ∗ g in canonical representation.
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From Canonical to Power Step

Let

Qk+1(x) = Pk+1(x)− Pk(x) = anx
n + . . .+ a1x + a0,

Then,
Qk+1(x) = Qk+1((x − rk+1) + rk+1)

=
n∑

i=0

ai ((x − rk+1) + rk+1)i

=
n∑

i=0

( ∑
i≤m≤n

am

(
m

i

)
rm−ik+1

)
(x − rk+1)i

Therefore,

wk+1,i =
( ∑

i≤m≤n
am

(
m

i

)
(rk+1)m−i

)



Convolution

Proposition Given f piecewise polynomial of degree n there exists
vectors r ,w0,w1, . . . ,wn such that

f =
n∑

i=0

T (r ,wi ) ∗ (x+)i

Corollary f =
∑n

i=0 T (r ,wi ) ∗ (x+)i , g =
∑n

j=0 T (s, uj) ∗ (x+)j

⇒ f ∗ g =
n+m+1∑
k=0

Tk ∗ (x+)k ,

Where Tk =
∑

i+j=k

1(k
i

)T (r ,wi ) ∗ T (s, uj)
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From Power Step to Canonical

Suppose Pk(x) = anx
x + . . .+ aix

i + . . .+ a0 has already been
calculated, then

Pk+1(x) = Pk(x) +
n∑

i=0

wk+1,i (x − rk+1)i

=
n∑

i=0

(
ai +

∑
i≤m≤n

wk+1,m

(
m

i

)
(−rk+1)m−i

)
x i ,

This last expression gives the values of the coefficients of Pk+1.



Some Results
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Part II



Experiment 1

Input. Texture Function : f
Output. Reconstructed Signal : f̃ = [f ∗ ϕ] ∗ d ∗ ϕ.
Objective. Identify the quality of approximation that f̃ provides to
f for a fixed type filter and some reconstruction methods.
Reconstruction Methods

I Primal: d = δ.

I Cardinal: d = [ϕ]−1.

I Double Cardinal: d = [ϕ]−1 ∗ [ϕ]−1.

I Dual (Orthogonal Projection): d = [ϕ ∗ ϕ∨]−1



Experiment 1. Results 1
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Experiment 2

Input. Texture Function : f
Output. Orthogonal Projection: f̃ = [f ∗ ϕ] ∗ [ϕ ∗ ϕ∨]−1 ∗ ϕ.
Objective. Compare the quality of approximation that f̃ provides
to f for some filters as a function of the sampling resolution.
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Experiment 3

Input. Fundamental Frequency: f
Output. Orthogonal Projection: f̃ = [f ∗ ϕ] ∗ [ϕ ∗ ϕ∨]−1 ∗ ϕ.
Objective. Identify the order of approximation that f̃ provides to
f for some filters as a function of the sampling resolution.



Experiment 3. Results 1
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Experiment 3. Results 3



Experiment 3. Results 4



Experiment 4

Input. Cubic Polynomial: f
Output. Point Sampled Cardinal Reconstruction:
f̃ = [f ] ∗ [ϕ]−1 ∗ ϕ.
Objective. Identify the order of approximation that f̃ provides to
f for some filters as a function of the sampling resolution.
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Experiment 4. Results

Does Bspline3 has the same order of polynomial approximation
than Hat????...

NO!!!

Where is the mistake???.....
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Experiment 4. Results 2 : Error Distribution Cardinal
Bspline3

p(x) = 4x3 − 3x + 1

Sampling Resolution: 32



Experiment 4. Results 3



Experiment 5

Input. Cubic Polynomial: f
Output. Reconstructed Signal : f̃ = [f ∗ ϕ] ∗ d ∗ ϕ.
Objective. Identify the order of approximation that f̃ provides to
f for a fixed type filter and some reconstruction methods.
Reconstruction Methods

I Primal: d = δ.

I Cardinal : d = [ϕ]−1.

I Double Cardinal: d = [ϕ]−1 ∗ [ϕ]−1.

I Dual: d = [ϕ ∗ ϕ∨]−1



Experiment 5. Results 1



Experiment 5. Results 2: Error Distribution
p(x) = 4x3 − 3x + 1

Primal Cardinal

Double Cardinal Orthogonal

Sampling Resolution: 32



Conclusions

I We confirmed Bspline3 and Omoms3 have order of polynomal
approximation 4, Mitchell and Keys have order 3, Hat order 2
and Box order 1.

I We confirmed that any filter is unable to represent frequencies
above Nyquist limit. Instead, such frequencies are transformed
to noise.

I For a general texture, the error of approximation provided by
the orthogonal projection in the filter space, is not visibly
related with the order of polynomial approximation of the
filter. Instead, the error of approximation (as a function of the
sampling resolution) depends on the spectrum of the texture.
Error just decrease as high frequencies go below Nyquist limit.
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Obrigado!


