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Tridiagonal Systems. Motivation



Serial Solution to Tridiagonal Systems



Parallel solution to linear recurrences

1. First Order No Constant Term:
I x1 is given.
I Find xi = aixi−1 for i = 2 . . . n.

2. First Order With Constant Term:
I x1 is given.
I Find xi = aixi−1 + bi for i = 2 . . . n.

3. Second Order No Constant Term:
I x1, x2 are given.
I Find xi = aixi−1 + bixi−2 for i = 3 . . . n.

4. Second Order With Constant Term:
I x1, x2 are given.
I Find xi = aixi−1 + bi + xi−2 + ci for i = 3 . . . n.
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Problem:

I x1 is given.

I Find xi = aixi−1 for i = 2 . . . n.

Solution:
xi = aiai−1 . . . a2x1

Scan!!
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First Order With Constant Term

Problem:

I x1 is given.

I Find xi = aixi−1 + bi for i = 2 . . . n.

Solution: (
ai bi

0 1

)
︸ ︷︷ ︸

Ai

(
xi−1

1

)
︸ ︷︷ ︸

Xi−1

=

(
xi
1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X1 =
(x1
1

)
given.

I Xi = AiXi−1 for i = 2 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!
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I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 for i = 3 . . . n.
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Xi = AiAi−1 . . .A2X1
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Analysis Parallel Recurrence Computation using Scan

I FN : xi = aixi−1.

I FC : xi = aixi−1 + bi .

I SN : → xi = aixi−1 + bixi−2.

I SC : → xi = aixi−1 + bixi−2 + ci .

FN FC SN SC

Total Steps: log2(n) log2(n) log2(n) log2(n)
Active Threads: n→ n/2 n→ n/2 n→ n/2 n→ n/2
Floaps/Thread/Step: 1 3 12 20
Memory per Thread: 1 2 4 6
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Recursive Doubling (LU Form by Stone(1973))

1) Express A in LU form

A =



1
m2 1

m3 1
. . .

. . .

mn−1 1
mn 1





u1 c1
u2 c2

u3 c3
. . .

. . .

un−1 cn−1

un


I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

I mi = ai
ui−1

for i = 2 . . . n
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for i = 2 . . . n
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The solution to the original system, Ax = LUx = d , is calculated
in two sequential steps:

5) Find y such that Ly = d

6) Find x such that Ux = y
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Recursive Doubling (LU Form by Stone(1973))

5)Find y such that Ly = d

I y1 = d1

I yi = (−mi )yi−1 + di for i = 2 . . . n

First Order With Constant Term!!

6)Find x such that Ux = y

I xn = yn/un

I xi = (− ci
ui

)xi−1 + yi for i = n − 1 . . . 1

First Order With Constant Term!!
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Recursive Doubling (LU Form by Stone(1973))

Summary:

1. Solve Second Order No Constant Term (A=LU)
Total Steps: log2 n. Floaps/Thread/Step: 12

2. Solve First Order With Constant Term (Ly=x)
Total Steps: log2 n. Floaps/Thread/Step: 3

3. Solve First Order With Constant Term (Ux=y)
Total Steps: log2 n. Floaps/Thread/Step: 3
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Recursive Doubling (Scan Form by Egecioglu(1989))

1)Express the system as Second Order Linear Recurrence With
Constant Term:

b1 c1
a2 b2 c2

a3 b3 c3
. . .

. . .
. . .

an−1 bn−1 cn−1

an bn





x1
x2
x3
...

xn−1

xn


=



d1

d2

d3
...

dn−1

dn



xi+1 = −bi

ci
xi −

ai
ci

xi−1 +
di

ci
for i = 2 . . . n − 1

The initial conditions, x1 and x2, are missing!!
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Recursive Doubling (Scan Form by Egecioglu(1989))

2) Transform to an equivalent system with boundary conditions



1 b1 c1
a2 b2 c2

a3 b3 c3
. . .

. . .
. . .

an−1 bn−1 cn−1

an bn 1





x0
x1
x2
x3
...

xn−1

xn
xn+1


=



d1

d2

d3
...

dn−1

dn



s.a. x0 = xn+1 = 0

xi+1 = −bi

ci
xi −

ai
ci

xi−1 +
di

ci
for i = 1 . . . n

Instead of initial conditions we have boundary conditions!!
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Recursive Doubling (Scan Form by Egecioglu(1989))

3)Express the recurrence in multiplicative form:

xi+1

xi
1

 =

−bi
ci
−ai

ci
−di

ci
1 0 0
0 0 1

 xi
xi−1

1


Define Ci = AiAi−1 . . .A1, thenxi+1

xi
1

 = AiAi−1 . . .A1

x1
x0
1

 = Ci

x1
x0
1


4) Compute Ci = AiAi−1 . . .A1 for i = 1 . . . n using Scan!!.
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Could Recursive Doubling be improved?

I Yes!!.

I Instead of computing all the n vectors X1,X2,X3, . . . ,Xn, we
just require half of them!!.

I This can be achieved using the same previous scan structure
but only updating matrix multiplications in even positions.

I If we assign two threads to compute the respective matrix
multiplication at each step, then Floaps/Thread/Step ratio
would reduce from 20 to 10!!.

I This could improve PCR which takes 12 Floaps/Thread/Step,
where 2 of such flops are divisions.
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GPU Implementation

I Five arrays are initially allocated in Global Memory: three for
the matrix diagonals, one for the right hand side, and one to
save the solution.

I The complete system is transferred to shared memory. This
imposed a limit on the size of evaluated systems (up to
512x512).

I For CR and RD active threads were contiguous threads to
reduce divergence.

I Transformations are done in-place to save shared memory.
This produces bank conflicts in CR at the last steps of forward
reduction and first steps of backward substitution.
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Performance Results:Parallel Algorithms in GPU

Hardware Specifications:
I GPU: GTX 280, 30 SM’s, 8 cores per SM, 16kb shared

memory. CUDA 2.0.
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Performance Analysis

I ”We use a differental method to measure the time for each
part of the algorithm. We first comment out the whole code
and uncomment it incrementally in program order and
measure excecution time.”

I ”To estimate shared memory access time, we replaced shared
memory accesses with register accesses, and calculate the
shared memory access time as the difference between this
program and the original program.”



Hybrid Algorithms Performance



Why hybrid algorithms outperform the others?

They achieve a better trade off between number of steps and
amount of work per step.

Intuition:

I In a system with 512 variables 8 warps execute the instruction.

I In system with 256 variables 4 warps execute the instruction.

I Since warp execution is serial in each SM, a system with 256
variables would take half of time per step!!.

I Conclusion: Using CR for the first iterations reduce the per
step time required by PCR or RD to solve the intermediate
system.

PCR and RD are preferred to solve the intermediate system since
they require less steps and are free of bank conflicts.
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Accuracy Experiments

||Ax − b|| error in Tridiagonal Systems



Bibliography

1. Zhang Y.,Cohen J.,Owens J..Fast Tridiagonal Solvers on th
GPU, 2010.

2. Stone H..An Efficient Parallel Algorithm for the Solution of a
Tridiagonal Linear System of Equations,1973.

3. Kogge P.. Stone H.,A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations, 1973.

4. Hockney R.W.. Jesshope C.R., Parallel Computers,1981.

5. Egecioglu O.,Koc C.K., Laub A.J..A recursive doubling
algorithm for solution of tridiagonal systems on hypercube
multiprocessors, 1989.


