
Parallel Tridiagonal Solvers

Fabian Prada, Eric Biagioli

IMPA

Tridiagonal Systems. Motivation

Serial Solution to Tridiagonal Systems

Parallel solution to linear recurrences

1. First Order No Constant Term:
I x1 is given.
I Find xi = aixi−1 for i = 2 . . . n.

2. First Order With Constant Term:
I x1 is given.
I Find xi = aixi−1 + bi for i = 2 . . . n.

3. Second Order No Constant Term:
I x1, x2 are given.
I Find xi = aixi−1 + bixi−2 for i = 3 . . . n.

4. Second Order With Constant Term:
I x1, x2 are given.
I Find xi = aixi−1 + bi + xi−2 + ci for i = 3 . . . n.

Parallel solution to linear recurrences

1. First Order No Constant Term:
I x1 is given.
I Find xi = aixi−1 for i = 2 . . . n.

2. First Order With Constant Term:
I x1 is given.
I Find xi = aixi−1 + bi for i = 2 . . . n.

3. Second Order No Constant Term:
I x1, x2 are given.
I Find xi = aixi−1 + bixi−2 for i = 3 . . . n.

4. Second Order With Constant Term:
I x1, x2 are given.
I Find xi = aixi−1 + bi + xi−2 + ci for i = 3 . . . n.

Parallel solution to linear recurrences

1. First Order No Constant Term:
I x1 is given.
I Find xi = aixi−1 for i = 2 . . . n.

2. First Order With Constant Term:
I x1 is given.
I Find xi = aixi−1 + bi for i = 2 . . . n.

3. Second Order No Constant Term:
I x1, x2 are given.
I Find xi = aixi−1 + bixi−2 for i = 3 . . . n.

4. Second Order With Constant Term:
I x1, x2 are given.
I Find xi = aixi−1 + bi + xi−2 + ci for i = 3 . . . n.

Parallel solution to linear recurrences

1. First Order No Constant Term:
I x1 is given.
I Find xi = aixi−1 for i = 2 . . . n.

2. First Order With Constant Term:
I x1 is given.
I Find xi = aixi−1 + bi for i = 2 . . . n.

3. Second Order No Constant Term:
I x1, x2 are given.
I Find xi = aixi−1 + bixi−2 for i = 3 . . . n.

4. Second Order With Constant Term:
I x1, x2 are given.
I Find xi = aixi−1 + bi + xi−2 + ci for i = 3 . . . n.

Parallel solution to linear recurrences

1. First Order No Constant Term:
I x1 is given.
I Find xi = aixi−1 for i = 2 . . . n.

2. First Order With Constant Term:
I x1 is given.
I Find xi = aixi−1 + bi for i = 2 . . . n.

3. Second Order No Constant Term:
I x1, x2 are given.
I Find xi = aixi−1 + bixi−2 for i = 3 . . . n.

4. Second Order With Constant Term:
I x1, x2 are given.
I Find xi = aixi−1 + bi + xi−2 + ci for i = 3 . . . n.

First Order No Constant Term

Problem:

I x1 is given.

I Find xi = aixi−1 for i = 2 . . . n.

Solution:
xi = aiai−1 . . . a2x1

Scan!!

First Order No Constant Term

Problem:

I x1 is given.

I Find xi = aixi−1 for i = 2 . . . n.

Solution:
xi = aiai−1 . . . a2x1

Scan!!

First Order No Constant Term

Problem:

I x1 is given.

I Find xi = aixi−1 for i = 2 . . . n.

Solution:

xi = aiai−1 . . . a2x1

Scan!!

First Order No Constant Term

Problem:

I x1 is given.

I Find xi = aixi−1 for i = 2 . . . n.

Solution:
xi = aiai−1 . . . a2x1

Scan!!

First Order No Constant Term

Problem:

I x1 is given.

I Find xi = aixi−1 for i = 2 . . . n.

Solution:
xi = aiai−1 . . . a2x1

Scan!!

First Order No Constant Term

Problem:

I x1 is given.

I Find xi = aixi−1 for i = 2 . . . n.

Solution:
xi = aiai−1 . . . a2x1

Scan!!

First Order With Constant Term

Problem:

I x1 is given.

I Find xi = aixi−1 + bi for i = 2 . . . n.

Solution: (
ai bi

0 1

)
︸ ︷︷ ︸

Ai

(
xi−1

1

)
︸ ︷︷ ︸

Xi−1

=

(
xi
1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X1 =
(x1
1

)
given.

I Xi = AiXi−1 for i = 2 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

First Order With Constant Term

Problem:

I x1 is given.

I Find xi = aixi−1 + bi for i = 2 . . . n.

Solution: (
ai bi

0 1

)
︸ ︷︷ ︸

Ai

(
xi−1

1

)
︸ ︷︷ ︸

Xi−1

=

(
xi
1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X1 =
(x1
1

)
given.

I Xi = AiXi−1 for i = 2 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

First Order With Constant Term

Problem:

I x1 is given.

I Find xi = aixi−1 + bi for i = 2 . . . n.

Solution:

(
ai bi

0 1

)
︸ ︷︷ ︸

Ai

(
xi−1

1

)
︸ ︷︷ ︸

Xi−1

=

(
xi
1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X1 =
(x1
1

)
given.

I Xi = AiXi−1 for i = 2 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

First Order With Constant Term

Problem:

I x1 is given.

I Find xi = aixi−1 + bi for i = 2 . . . n.

Solution: (
ai bi

0 1

)
︸ ︷︷ ︸

Ai

(
xi−1

1

)
︸ ︷︷ ︸

Xi−1

=

(
xi
1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X1 =
(x1
1

)
given.

I Xi = AiXi−1 for i = 2 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

First Order With Constant Term

Problem:

I x1 is given.

I Find xi = aixi−1 + bi for i = 2 . . . n.

Solution: (
ai bi

0 1

)
︸ ︷︷ ︸

Ai

(
xi−1

1

)
︸ ︷︷ ︸

Xi−1

=

(
xi
1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X1 =
(x1
1

)
given.

I Xi = AiXi−1 for i = 2 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

First Order With Constant Term

Problem:

I x1 is given.

I Find xi = aixi−1 + bi for i = 2 . . . n.

Solution: (
ai bi

0 1

)
︸ ︷︷ ︸

Ai

(
xi−1

1

)
︸ ︷︷ ︸

Xi−1

=

(
xi
1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X1 =
(x1
1

)
given.

I Xi = AiXi−1 for i = 2 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

First Order With Constant Term

Problem:

I x1 is given.

I Find xi = aixi−1 + bi for i = 2 . . . n.

Solution: (
ai bi

0 1

)
︸ ︷︷ ︸

Ai

(
xi−1

1

)
︸ ︷︷ ︸

Xi−1

=

(
xi
1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X1 =
(x1
1

)
given.

I Xi = AiXi−1 for i = 2 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Second Order No Constant Term

Problem:

I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 for i = 3 . . . n.

Solution: (
ai bi

1 0

)
︸ ︷︷ ︸

Ai

(
xi−1

xi−2

)
︸ ︷︷ ︸

Xi−1

=

(
xi

xi−1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X2 =
(x2
x1

)
given.

I Xi = AiXi−1 for i = 3 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Second Order No Constant Term

Problem:

I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 for i = 3 . . . n.

Solution: (
ai bi

1 0

)
︸ ︷︷ ︸

Ai

(
xi−1

xi−2

)
︸ ︷︷ ︸

Xi−1

=

(
xi

xi−1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X2 =
(x2
x1

)
given.

I Xi = AiXi−1 for i = 3 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Second Order No Constant Term

Problem:

I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 for i = 3 . . . n.

Solution:

(
ai bi

1 0

)
︸ ︷︷ ︸

Ai

(
xi−1

xi−2

)
︸ ︷︷ ︸

Xi−1

=

(
xi

xi−1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X2 =
(x2
x1

)
given.

I Xi = AiXi−1 for i = 3 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Second Order No Constant Term

Problem:

I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 for i = 3 . . . n.

Solution: (
ai bi

1 0

)
︸ ︷︷ ︸

Ai

(
xi−1

xi−2

)
︸ ︷︷ ︸

Xi−1

=

(
xi

xi−1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X2 =
(x2
x1

)
given.

I Xi = AiXi−1 for i = 3 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Second Order No Constant Term

Problem:

I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 for i = 3 . . . n.

Solution: (
ai bi

1 0

)
︸ ︷︷ ︸

Ai

(
xi−1

xi−2

)
︸ ︷︷ ︸

Xi−1

=

(
xi

xi−1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X2 =
(x2
x1

)
given.

I Xi = AiXi−1 for i = 3 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Second Order No Constant Term

Problem:

I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 for i = 3 . . . n.

Solution: (
ai bi

1 0

)
︸ ︷︷ ︸

Ai

(
xi−1

xi−2

)
︸ ︷︷ ︸

Xi−1

=

(
xi

xi−1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X2 =
(x2
x1

)
given.

I Xi = AiXi−1 for i = 3 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Second Order No Constant Term

Problem:

I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 for i = 3 . . . n.

Solution: (
ai bi

1 0

)
︸ ︷︷ ︸

Ai

(
xi−1

xi−2

)
︸ ︷︷ ︸

Xi−1

=

(
xi

xi−1

)
︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X2 =
(x2
x1

)
given.

I Xi = AiXi−1 for i = 3 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Second Order With Constant Term

Problem:

I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 + ci for i = 3 . . . n.

Solution: ai bi ci
1 0 0
0 0 1


︸ ︷︷ ︸

Ai

xi−1

xi−2

1


︸ ︷︷ ︸

Xi−1

=

 xi
xi−1

1


︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X2 =

x2
x1
1

 given.

I Xi = AiXi−1 for i = 3 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Second Order With Constant Term
Problem:

I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 + ci for i = 3 . . . n.

Solution: ai bi ci
1 0 0
0 0 1


︸ ︷︷ ︸

Ai

xi−1

xi−2

1


︸ ︷︷ ︸

Xi−1

=

 xi
xi−1

1


︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X2 =

x2
x1
1

 given.

I Xi = AiXi−1 for i = 3 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Second Order With Constant Term
Problem:

I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 + ci for i = 3 . . . n.

Solution:

ai bi ci
1 0 0
0 0 1


︸ ︷︷ ︸

Ai

xi−1

xi−2

1


︸ ︷︷ ︸

Xi−1

=

 xi
xi−1

1


︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X2 =

x2
x1
1

 given.

I Xi = AiXi−1 for i = 3 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Second Order With Constant Term
Problem:

I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 + ci for i = 3 . . . n.

Solution: ai bi ci
1 0 0
0 0 1


︸ ︷︷ ︸

Ai

xi−1

xi−2

1


︸ ︷︷ ︸

Xi−1

=

 xi
xi−1

1


︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X2 =

x2
x1
1

 given.

I Xi = AiXi−1 for i = 3 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Second Order With Constant Term
Problem:

I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 + ci for i = 3 . . . n.

Solution: ai bi ci
1 0 0
0 0 1


︸ ︷︷ ︸

Ai

xi−1

xi−2

1


︸ ︷︷ ︸

Xi−1

=

 xi
xi−1

1


︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X2 =

x2
x1
1

 given.

I Xi = AiXi−1 for i = 3 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Second Order With Constant Term
Problem:

I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 + ci for i = 3 . . . n.

Solution: ai bi ci
1 0 0
0 0 1


︸ ︷︷ ︸

Ai

xi−1

xi−2

1


︸ ︷︷ ︸

Xi−1

=

 xi
xi−1

1


︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X2 =

x2
x1
1

 given.

I Xi = AiXi−1 for i = 3 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Second Order With Constant Term
Problem:

I x1, x2 are given.

I Find xi = aixi−1 + bixi−2 + ci for i = 3 . . . n.

Solution: ai bi ci
1 0 0
0 0 1


︸ ︷︷ ︸

Ai

xi−1

xi−2

1


︸ ︷︷ ︸

Xi−1

=

 xi
xi−1

1


︸ ︷︷ ︸

Xi

The recurrence can be written in matrix form as:

I X2 =

x2
x1
1

 given.

I Xi = AiXi−1 for i = 3 . . . n.

Then
Xi = AiAi−1 . . .A2X1

Scan!!

Analysis Parallel Recurrence Computation using Scan

I FN : xi = aixi−1.

I FC : xi = aixi−1 + bi .

I SN : → xi = aixi−1 + bixi−2.

I SC : → xi = aixi−1 + bixi−2 + ci .

FN FC SN SC

Total Steps: log2(n) log2(n) log2(n) log2(n)
Active Threads: n→ n/2 n→ n/2 n→ n/2 n→ n/2
Floaps/Thread/Step: 1 3 12 20
Memory per Thread: 1 2 4 6

Analysis Parallel Recurrence Computation using Scan

I FN : xi = aixi−1.

I FC : xi = aixi−1 + bi .

I SN : → xi = aixi−1 + bixi−2.

I SC : → xi = aixi−1 + bixi−2 + ci .

FN FC SN SC

Total Steps: log2(n) log2(n) log2(n) log2(n)
Active Threads: n→ n/2 n→ n/2 n→ n/2 n→ n/2
Floaps/Thread/Step: 1 3 12 20
Memory per Thread: 1 2 4 6

Analysis Parallel Recurrence Computation using Scan

I FN : xi = aixi−1.

I FC : xi = aixi−1 + bi .

I SN : → xi = aixi−1 + bixi−2.

I SC : → xi = aixi−1 + bixi−2 + ci .

FN FC SN SC

Total Steps: log2(n) log2(n) log2(n) log2(n)

Active Threads: n→ n/2 n→ n/2 n→ n/2 n→ n/2
Floaps/Thread/Step: 1 3 12 20
Memory per Thread: 1 2 4 6

Analysis Parallel Recurrence Computation using Scan

I FN : xi = aixi−1.

I FC : xi = aixi−1 + bi .

I SN : → xi = aixi−1 + bixi−2.

I SC : → xi = aixi−1 + bixi−2 + ci .

FN FC SN SC

Total Steps: log2(n) log2(n) log2(n) log2(n)
Active Threads: n→ n/2 n→ n/2 n→ n/2 n→ n/2

Floaps/Thread/Step: 1 3 12 20
Memory per Thread: 1 2 4 6

Analysis Parallel Recurrence Computation using Scan

I FN : xi = aixi−1.

I FC : xi = aixi−1 + bi .

I SN : → xi = aixi−1 + bixi−2.

I SC : → xi = aixi−1 + bixi−2 + ci .

FN FC SN SC

Total Steps: log2(n) log2(n) log2(n) log2(n)
Active Threads: n→ n/2 n→ n/2 n→ n/2 n→ n/2
Floaps/Thread/Step: 1 3 12 20

Memory per Thread: 1 2 4 6

Analysis Parallel Recurrence Computation using Scan

I FN : xi = aixi−1.

I FC : xi = aixi−1 + bi .

I SN : → xi = aixi−1 + bixi−2.

I SC : → xi = aixi−1 + bixi−2 + ci .

FN FC SN SC

Total Steps: log2(n) log2(n) log2(n) log2(n)
Active Threads: n→ n/2 n→ n/2 n→ n/2 n→ n/2
Floaps/Thread/Step: 1 3 12 20
Memory per Thread: 1 2 4 6

Recursive Doubling (LU Form by Stone(1973))

1) Express A in LU form

A =



1
m2 1

m3 1
. . .

. . .

mn−1 1
mn 1





u1 c1
u2 c2

u3 c3
. . .

. . .

un−1 cn−1

un


I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))

1) Express A in LU form

A =



1
m2 1

m3 1
. . .

. . .

mn−1 1
mn 1





u1 c1
u2 c2

u3 c3
. . .

. . .

un−1 cn−1

un



I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))

1) Express A in LU form

A =



1
m2 1

m3 1
. . .

. . .

mn−1 1
mn 1





u1 c1
u2 c2

u3 c3
. . .

. . .

un−1 cn−1

un


I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))

1) Express A in LU form

A =



1
m2 1

m3 1
. . .

. . .

mn−1 1
mn 1





u1 c1
u2 c2

u3 c3
. . .

. . .

un−1 cn−1

un


I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))

1) Express A in LU form

A =



1
m2 1

m3 1
. . .

. . .

mn−1 1
mn 1





u1 c1
u2 c2

u3 c3
. . .

. . .

un−1 cn−1

un


I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))
2) Solve the recurrence:

I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

Trick!!: Express ui = qi
qi−1

.

⇒ qi = biqi−1 − aici−1qi−2

3) Solve the recurrence:

I q0 = 1, q1 = u1

I qi = biqi−1 − aici−1qi−2 for i = 2 . . . n

Second Order No Constant Term!!

4) Compute u’s and m’s from q’s

I ui = qi
qi−1

for i = 1 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))
2) Solve the recurrence:

I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

Trick!!: Express ui = qi
qi−1

.

⇒ qi = biqi−1 − aici−1qi−2

3) Solve the recurrence:

I q0 = 1, q1 = u1

I qi = biqi−1 − aici−1qi−2 for i = 2 . . . n

Second Order No Constant Term!!

4) Compute u’s and m’s from q’s

I ui = qi
qi−1

for i = 1 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))
2) Solve the recurrence:

I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

Trick!!: Express ui = qi
qi−1

.

⇒ qi = biqi−1 − aici−1qi−2

3) Solve the recurrence:

I q0 = 1, q1 = u1

I qi = biqi−1 − aici−1qi−2 for i = 2 . . . n

Second Order No Constant Term!!

4) Compute u’s and m’s from q’s

I ui = qi
qi−1

for i = 1 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))
2) Solve the recurrence:

I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

Trick!!: Express ui = qi
qi−1

.

⇒ qi = biqi−1 − aici−1qi−2

3) Solve the recurrence:

I q0 = 1, q1 = u1

I qi = biqi−1 − aici−1qi−2 for i = 2 . . . n

Second Order No Constant Term!!

4) Compute u’s and m’s from q’s

I ui = qi
qi−1

for i = 1 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))
2) Solve the recurrence:

I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

Trick!!: Express ui = qi
qi−1

.

⇒ qi = biqi−1 − aici−1qi−2

3) Solve the recurrence:

I q0 = 1, q1 = u1

I qi = biqi−1 − aici−1qi−2 for i = 2 . . . n

Second Order No Constant Term!!

4) Compute u’s and m’s from q’s

I ui = qi
qi−1

for i = 1 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))
2) Solve the recurrence:

I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

Trick!!: Express ui = qi
qi−1

.

⇒ qi = biqi−1 − aici−1qi−2

3) Solve the recurrence:

I q0 = 1, q1 = u1

I qi = biqi−1 − aici−1qi−2 for i = 2 . . . n

Second Order No Constant Term!!

4) Compute u’s and m’s from q’s

I ui = qi
qi−1

for i = 1 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))
2) Solve the recurrence:

I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

Trick!!: Express ui = qi
qi−1

.

⇒ qi = biqi−1 − aici−1qi−2

3) Solve the recurrence:

I q0 = 1, q1 = u1

I qi = biqi−1 − aici−1qi−2 for i = 2 . . . n

Second Order No Constant Term!!

4) Compute u’s and m’s from q’s

I ui = qi
qi−1

for i = 1 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))
2) Solve the recurrence:

I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

Trick!!: Express ui = qi
qi−1

.

⇒ qi = biqi−1 − aici−1qi−2

3) Solve the recurrence:

I q0 = 1, q1 = u1

I qi = biqi−1 − aici−1qi−2 for i = 2 . . . n

Second Order No Constant Term!!

4) Compute u’s and m’s from q’s

I ui = qi
qi−1

for i = 1 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))
2) Solve the recurrence:

I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

Trick!!: Express ui = qi
qi−1

.

⇒ qi = biqi−1 − aici−1qi−2

3) Solve the recurrence:

I q0 = 1, q1 = u1

I qi = biqi−1 − aici−1qi−2 for i = 2 . . . n

Second Order No Constant Term!!

4) Compute u’s and m’s from q’s

I ui = qi
qi−1

for i = 1 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))
2) Solve the recurrence:

I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

Trick!!: Express ui = qi
qi−1

.

⇒ qi = biqi−1 − aici−1qi−2

3) Solve the recurrence:

I q0 = 1, q1 = u1

I qi = biqi−1 − aici−1qi−2 for i = 2 . . . n

Second Order No Constant Term!!

4) Compute u’s and m’s from q’s

I ui = qi
qi−1

for i = 1 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))
2) Solve the recurrence:

I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

Trick!!: Express ui = qi
qi−1

.

⇒ qi = biqi−1 − aici−1qi−2

3) Solve the recurrence:

I q0 = 1, q1 = u1

I qi = biqi−1 − aici−1qi−2 for i = 2 . . . n

Second Order No Constant Term!!

4) Compute u’s and m’s from q’s

I ui = qi
qi−1

for i = 1 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))
2) Solve the recurrence:

I u1 = b1

I ui = bi − aici−1

ui−1
for i = 2 . . . n

Trick!!: Express ui = qi
qi−1

.

⇒ qi = biqi−1 − aici−1qi−2

3) Solve the recurrence:

I q0 = 1, q1 = u1

I qi = biqi−1 − aici−1qi−2 for i = 2 . . . n

Second Order No Constant Term!!

4) Compute u’s and m’s from q’s

I ui = qi
qi−1

for i = 1 . . . n

I mi = ai
ui−1

for i = 2 . . . n

Recursive Doubling (LU Form by Stone(1973))

The solution to the original system, Ax = LUx = d , is calculated
in two sequential steps:

5) Find y such that Ly = d

6) Find x such that Ux = y

Recursive Doubling (LU Form by Stone(1973))

The solution to the original system, Ax = LUx = d , is calculated
in two sequential steps:

5) Find y such that Ly = d

6) Find x such that Ux = y

Recursive Doubling (LU Form by Stone(1973))

The solution to the original system, Ax = LUx = d , is calculated
in two sequential steps:

5) Find y such that Ly = d

6) Find x such that Ux = y

Recursive Doubling (LU Form by Stone(1973))

5)Find y such that Ly = d

I y1 = d1

I yi = (−mi)yi−1 + di for i = 2 . . . n

First Order With Constant Term!!

6)Find x such that Ux = y

I xn = yn/un

I xi = (− ci
ui

)xi−1 + yi for i = n − 1 . . . 1

First Order With Constant Term!!

Recursive Doubling (LU Form by Stone(1973))

5)Find y such that Ly = d

I y1 = d1

I yi = (−mi)yi−1 + di for i = 2 . . . n

First Order With Constant Term!!

6)Find x such that Ux = y

I xn = yn/un

I xi = (− ci
ui

)xi−1 + yi for i = n − 1 . . . 1

First Order With Constant Term!!

Recursive Doubling (LU Form by Stone(1973))

5)Find y such that Ly = d

I y1 = d1

I yi = (−mi)yi−1 + di for i = 2 . . . n

First Order With Constant Term!!

6)Find x such that Ux = y

I xn = yn/un

I xi = (− ci
ui

)xi−1 + yi for i = n − 1 . . . 1

First Order With Constant Term!!

Recursive Doubling (LU Form by Stone(1973))

5)Find y such that Ly = d

I y1 = d1

I yi = (−mi)yi−1 + di for i = 2 . . . n

First Order With Constant Term!!

6)Find x such that Ux = y

I xn = yn/un

I xi = (− ci
ui

)xi−1 + yi for i = n − 1 . . . 1

First Order With Constant Term!!

Recursive Doubling (LU Form by Stone(1973))

5)Find y such that Ly = d

I y1 = d1

I yi = (−mi)yi−1 + di for i = 2 . . . n

First Order With Constant Term!!

6)Find x such that Ux = y

I xn = yn/un

I xi = (− ci
ui

)xi−1 + yi for i = n − 1 . . . 1

First Order With Constant Term!!

Recursive Doubling (LU Form by Stone(1973))

5)Find y such that Ly = d

I y1 = d1

I yi = (−mi)yi−1 + di for i = 2 . . . n

First Order With Constant Term!!

6)Find x such that Ux = y

I xn = yn/un

I xi = (− ci
ui

)xi−1 + yi for i = n − 1 . . . 1

First Order With Constant Term!!

Recursive Doubling (LU Form by Stone(1973))

5)Find y such that Ly = d

I y1 = d1

I yi = (−mi)yi−1 + di for i = 2 . . . n

First Order With Constant Term!!

6)Find x such that Ux = y

I xn = yn/un

I xi = (− ci
ui

)xi−1 + yi for i = n − 1 . . . 1

First Order With Constant Term!!

Recursive Doubling (LU Form by Stone(1973))

5)Find y such that Ly = d

I y1 = d1

I yi = (−mi)yi−1 + di for i = 2 . . . n

First Order With Constant Term!!

6)Find x such that Ux = y

I xn = yn/un

I xi = (− ci
ui

)xi−1 + yi for i = n − 1 . . . 1

First Order With Constant Term!!

Recursive Doubling (LU Form by Stone(1973))

Summary:

1. Solve Second Order No Constant Term (A=LU)
Total Steps: log2 n. Floaps/Thread/Step: 12

2. Solve First Order With Constant Term (Ly=x)
Total Steps: log2 n. Floaps/Thread/Step: 3

3. Solve First Order With Constant Term (Ux=y)
Total Steps: log2 n. Floaps/Thread/Step: 3

Recursive Doubling (LU Form by Stone(1973))

Summary:

1. Solve Second Order No Constant Term (A=LU)

Total Steps: log2 n. Floaps/Thread/Step: 12

2. Solve First Order With Constant Term (Ly=x)
Total Steps: log2 n. Floaps/Thread/Step: 3

3. Solve First Order With Constant Term (Ux=y)
Total Steps: log2 n. Floaps/Thread/Step: 3

Recursive Doubling (LU Form by Stone(1973))

Summary:

1. Solve Second Order No Constant Term (A=LU)
Total Steps: log2 n. Floaps/Thread/Step: 12

2. Solve First Order With Constant Term (Ly=x)
Total Steps: log2 n. Floaps/Thread/Step: 3

3. Solve First Order With Constant Term (Ux=y)
Total Steps: log2 n. Floaps/Thread/Step: 3

Recursive Doubling (LU Form by Stone(1973))

Summary:

1. Solve Second Order No Constant Term (A=LU)
Total Steps: log2 n. Floaps/Thread/Step: 12

2. Solve First Order With Constant Term (Ly=x)

Total Steps: log2 n. Floaps/Thread/Step: 3

3. Solve First Order With Constant Term (Ux=y)
Total Steps: log2 n. Floaps/Thread/Step: 3

Recursive Doubling (LU Form by Stone(1973))

Summary:

1. Solve Second Order No Constant Term (A=LU)
Total Steps: log2 n. Floaps/Thread/Step: 12

2. Solve First Order With Constant Term (Ly=x)
Total Steps: log2 n. Floaps/Thread/Step: 3

3. Solve First Order With Constant Term (Ux=y)
Total Steps: log2 n. Floaps/Thread/Step: 3

Recursive Doubling (LU Form by Stone(1973))

Summary:

1. Solve Second Order No Constant Term (A=LU)
Total Steps: log2 n. Floaps/Thread/Step: 12

2. Solve First Order With Constant Term (Ly=x)
Total Steps: log2 n. Floaps/Thread/Step: 3

3. Solve First Order With Constant Term (Ux=y)

Total Steps: log2 n. Floaps/Thread/Step: 3

Recursive Doubling (LU Form by Stone(1973))

Summary:

1. Solve Second Order No Constant Term (A=LU)
Total Steps: log2 n. Floaps/Thread/Step: 12

2. Solve First Order With Constant Term (Ly=x)
Total Steps: log2 n. Floaps/Thread/Step: 3

3. Solve First Order With Constant Term (Ux=y)
Total Steps: log2 n. Floaps/Thread/Step: 3

Recursive Doubling (Scan Form by Egecioglu(1989))

1)Express the system as Second Order Linear Recurrence With
Constant Term:

b1 c1
a2 b2 c2

a3 b3 c3
. . .

. . .
. . .

an−1 bn−1 cn−1

an bn





x1
x2
x3
...

xn−1

xn


=



d1

d2

d3
...

dn−1

dn



xi+1 = −bi

ci
xi −

ai
ci

xi−1 +
di

ci
for i = 2 . . . n − 1

The initial conditions, x1 and x2, are missing!!

Recursive Doubling (Scan Form by Egecioglu(1989))

1)Express the system as Second Order Linear Recurrence With
Constant Term:

b1 c1
a2 b2 c2

a3 b3 c3
. . .

. . .
. . .

an−1 bn−1 cn−1

an bn





x1
x2
x3
...

xn−1

xn


=



d1

d2

d3
...

dn−1

dn


xi+1 = −bi

ci
xi −

ai
ci

xi−1 +
di

ci
for i = 2 . . . n − 1

The initial conditions, x1 and x2, are missing!!

Recursive Doubling (Scan Form by Egecioglu(1989))

1)Express the system as Second Order Linear Recurrence With
Constant Term:

b1 c1
a2 b2 c2

a3 b3 c3
. . .

. . .
. . .

an−1 bn−1 cn−1

an bn





x1
x2
x3
...

xn−1

xn


=



d1

d2

d3
...

dn−1

dn


xi+1 = −bi

ci
xi −

ai
ci

xi−1 +
di

ci
for i = 2 . . . n − 1

The initial conditions, x1 and x2, are missing!!

Recursive Doubling (Scan Form by Egecioglu(1989))

2) Transform to an equivalent system with boundary conditions



1 b1 c1
a2 b2 c2

a3 b3 c3
. . .

. . .
. . .

an−1 bn−1 cn−1

an bn 1





x0
x1
x2
x3
...

xn−1

xn
xn+1


=



d1

d2

d3
...

dn−1

dn



s.a. x0 = xn+1 = 0

xi+1 = −bi

ci
xi −

ai
ci

xi−1 +
di

ci
for i = 1 . . . n

Instead of initial conditions we have boundary conditions!!

Recursive Doubling (Scan Form by Egecioglu(1989))

2) Transform to an equivalent system with boundary conditions



1 b1 c1
a2 b2 c2

a3 b3 c3
. . .

. . .
. . .

an−1 bn−1 cn−1

an bn 1





x0
x1
x2
x3
...

xn−1

xn
xn+1


=



d1

d2

d3
...

dn−1

dn



s.a. x0 = xn+1 = 0

xi+1 = −bi

ci
xi −

ai
ci

xi−1 +
di

ci
for i = 1 . . . n

Instead of initial conditions we have boundary conditions!!

Recursive Doubling (Scan Form by Egecioglu(1989))

2) Transform to an equivalent system with boundary conditions



1 b1 c1
a2 b2 c2

a3 b3 c3
. . .

. . .
. . .

an−1 bn−1 cn−1

an bn 1





x0
x1
x2
x3
...

xn−1

xn
xn+1


=



d1

d2

d3
...

dn−1

dn



s.a. x0 = xn+1 = 0

xi+1 = −bi

ci
xi −

ai
ci

xi−1 +
di

ci
for i = 1 . . . n

Instead of initial conditions we have boundary conditions!!

Recursive Doubling (Scan Form by Egecioglu(1989))

2) Transform to an equivalent system with boundary conditions



1 b1 c1
a2 b2 c2

a3 b3 c3
. . .

. . .
. . .

an−1 bn−1 cn−1

an bn 1





x0
x1
x2
x3
...

xn−1

xn
xn+1


=



d1

d2

d3
...

dn−1

dn



s.a. x0 = xn+1 = 0

xi+1 = −bi

ci
xi −

ai
ci

xi−1 +
di

ci
for i = 1 . . . n

Instead of initial conditions we have boundary conditions!!

Recursive Doubling (Scan Form by Egecioglu(1989))

3)Express the recurrence in multiplicative form:

xi+1

xi
1

 =

−bi
ci
−ai

ci
−di

ci
1 0 0
0 0 1

 xi
xi−1

1


Define Ci = AiAi−1 . . .A1, thenxi+1

xi
1

 = AiAi−1 . . .A1

x1
x0
1

 = Ci

x1
x0
1


4) Compute Ci = AiAi−1 . . .A1 for i = 1 . . . n using Scan!!.

Recursive Doubling (Scan Form by Egecioglu(1989))

3)Express the recurrence in multiplicative form:xi+1

xi
1

 =

−bi
ci
−ai

ci
−di

ci
1 0 0
0 0 1

 xi
xi−1

1



Define Ci = AiAi−1 . . .A1, thenxi+1

xi
1

 = AiAi−1 . . .A1

x1
x0
1

 = Ci

x1
x0
1


4) Compute Ci = AiAi−1 . . .A1 for i = 1 . . . n using Scan!!.

Recursive Doubling (Scan Form by Egecioglu(1989))

3)Express the recurrence in multiplicative form:xi+1

xi
1

 =

−bi
ci
−ai

ci
−di

ci
1 0 0
0 0 1

 xi
xi−1

1


Define Ci = AiAi−1 . . .A1, then

xi+1

xi
1

 = AiAi−1 . . .A1

x1
x0
1

 = Ci

x1
x0
1


4) Compute Ci = AiAi−1 . . .A1 for i = 1 . . . n using Scan!!.

Recursive Doubling (Scan Form by Egecioglu(1989))

3)Express the recurrence in multiplicative form:xi+1

xi
1

 =

−bi
ci
−ai

ci
−di

ci
1 0 0
0 0 1

 xi
xi−1

1


Define Ci = AiAi−1 . . .A1, thenxi+1

xi
1

 = AiAi−1 . . .A1

x1
x0
1

 = Ci

x1
x0
1


4) Compute Ci = AiAi−1 . . .A1 for i = 1 . . . n using Scan!!.

Recursive Doubling (Scan Form by Egecioglu(1989))

5) Find x1

xn+1

xn
1

 =

c11 c12 c13
c21 c22 c23
0 0 1


︸ ︷︷ ︸

Cn

x1
x0
1



Since x0 = xn+1 = 0 we get x1 = − c11
c13 .

6)Find xi for i = 2 . . . nxi+1

xi
1

 = Ci

x1
x0
1



Recursive Doubling (Scan Form by Egecioglu(1989))

5) Find x1 xn+1

xn
1

 =

c11 c12 c13
c21 c22 c23
0 0 1


︸ ︷︷ ︸

Cn

x1
x0
1



Since x0 = xn+1 = 0 we get x1 = − c11
c13 .

6)Find xi for i = 2 . . . nxi+1

xi
1

 = Ci

x1
x0
1



Recursive Doubling (Scan Form by Egecioglu(1989))

5) Find x1 xn+1

xn
1

 =

c11 c12 c13
c21 c22 c23
0 0 1


︸ ︷︷ ︸

Cn

x1
x0
1



Since x0 = xn+1 = 0 we get x1 = − c11
c13 .

6)Find xi for i = 2 . . . nxi+1

xi
1

 = Ci

x1
x0
1



Recursive Doubling (Scan Form by Egecioglu(1989))

5) Find x1 xn+1

xn
1

 =

c11 c12 c13
c21 c22 c23
0 0 1


︸ ︷︷ ︸

Cn

x1
x0
1



Since x0 = xn+1 = 0 we get x1 = − c11
c13 .

6)Find xi for i = 2 . . . n

xi+1

xi
1

 = Ci

x1
x0
1



Recursive Doubling (Scan Form by Egecioglu(1989))

5) Find x1 xn+1

xn
1

 =

c11 c12 c13
c21 c22 c23
0 0 1


︸ ︷︷ ︸

Cn

x1
x0
1



Since x0 = xn+1 = 0 we get x1 = − c11
c13 .

6)Find xi for i = 2 . . . nxi+1

xi
1

 = Ci

x1
x0
1



Recursive Doubling (Scan Form by Egecioglu(1989))

Summary:

1. Solve Second Order With Constant Term
Total Steps: log2 n. Floaps/Thread/Step: 20

Recursive Doubling (Scan Form by Egecioglu(1989))

Summary:

1. Solve Second Order With Constant Term

Total Steps: log2 n. Floaps/Thread/Step: 20

Recursive Doubling (Scan Form by Egecioglu(1989))

Summary:

1. Solve Second Order With Constant Term
Total Steps: log2 n. Floaps/Thread/Step: 20

Recursive Doubling (Scan Form by Egecioglu(1989))

Could Recursive Doubling be improved?

I Yes!!.

I Instead of computing all the n vectors X1,X2,X3, . . . ,Xn, we
just require half of them!!.

I This can be achieved using the same previous scan structure
but only updating matrix multiplications in even positions.

I If we assign two threads to compute the respective matrix
multiplication at each step, then Floaps/Thread/Step ratio
would reduce from 20 to 10!!.

I This could improve PCR which takes 12 Floaps/Thread/Step,
where 2 of such flops are divisions.

Could Recursive Doubling be improved?

I Yes!!.

I Instead of computing all the n vectors X1,X2,X3, . . . ,Xn, we
just require half of them!!.

I This can be achieved using the same previous scan structure
but only updating matrix multiplications in even positions.

I If we assign two threads to compute the respective matrix
multiplication at each step, then Floaps/Thread/Step ratio
would reduce from 20 to 10!!.

I This could improve PCR which takes 12 Floaps/Thread/Step,
where 2 of such flops are divisions.

Could Recursive Doubling be improved?

I Yes!!.

I Instead of computing all the n vectors X1,X2,X3, . . . ,Xn, we
just require half of them!!.

I This can be achieved using the same previous scan structure
but only updating matrix multiplications in even positions.

I If we assign two threads to compute the respective matrix
multiplication at each step, then Floaps/Thread/Step ratio
would reduce from 20 to 10!!.

I This could improve PCR which takes 12 Floaps/Thread/Step,
where 2 of such flops are divisions.

Could Recursive Doubling be improved?

I Yes!!.

I Instead of computing all the n vectors X1,X2,X3, . . . ,Xn, we
just require half of them!!.

I This can be achieved using the same previous scan structure
but only updating matrix multiplications in even positions.

I If we assign two threads to compute the respective matrix
multiplication at each step, then Floaps/Thread/Step ratio
would reduce from 20 to 10!!.

I This could improve PCR which takes 12 Floaps/Thread/Step,
where 2 of such flops are divisions.

Could Recursive Doubling be improved?

I Yes!!.

I Instead of computing all the n vectors X1,X2,X3, . . . ,Xn, we
just require half of them!!.

I This can be achieved using the same previous scan structure
but only updating matrix multiplications in even positions.

I If we assign two threads to compute the respective matrix
multiplication at each step, then Floaps/Thread/Step ratio
would reduce from 20 to 10!!.

I This could improve PCR which takes 12 Floaps/Thread/Step,
where 2 of such flops are divisions.

Could Recursive Doubling be improved?

I Yes!!.

I Instead of computing all the n vectors X1,X2,X3, . . . ,Xn, we
just require half of them!!.

I This can be achieved using the same previous scan structure
but only updating matrix multiplications in even positions.

I If we assign two threads to compute the respective matrix
multiplication at each step, then Floaps/Thread/Step ratio
would reduce from 20 to 10!!.

I This could improve PCR which takes 12 Floaps/Thread/Step,
where 2 of such flops are divisions.

Hybrid Algorithms

Building Blocks:

I CR → Work Efficient.

I PCR,RD → StepEfficient.

Hybrid Algorithm Structure:

Hybrid Algorithms

Building Blocks:

I CR → Work Efficient.

I PCR,RD → StepEfficient.

Hybrid Algorithm Structure:

Hybrid Algorithms

Building Blocks:

I CR → Work Efficient.

I PCR,RD → StepEfficient.

Hybrid Algorithm Structure:

Hybrid Algorithms

Building Blocks:

I CR → Work Efficient.

I PCR,RD → StepEfficient.

Hybrid Algorithm Structure:

GPU Implementation

I Five arrays are initially allocated in Global Memory: three for
the matrix diagonals, one for the right hand side, and one to
save the solution.

I The complete system is transferred to shared memory. This
imposed a limit on the size of evaluated systems (up to
512x512).

I For CR and RD active threads were contiguous threads to
reduce divergence.

I Transformations are done in-place to save shared memory.
This produces bank conflicts in CR at the last steps of forward
reduction and first steps of backward substitution.

GPU Implementation

I Five arrays are initially allocated in Global Memory: three for
the matrix diagonals, one for the right hand side, and one to
save the solution.

I The complete system is transferred to shared memory. This
imposed a limit on the size of evaluated systems (up to
512x512).

I For CR and RD active threads were contiguous threads to
reduce divergence.

I Transformations are done in-place to save shared memory.
This produces bank conflicts in CR at the last steps of forward
reduction and first steps of backward substitution.

GPU Implementation

I Five arrays are initially allocated in Global Memory: three for
the matrix diagonals, one for the right hand side, and one to
save the solution.

I The complete system is transferred to shared memory. This
imposed a limit on the size of evaluated systems (up to
512x512).

I For CR and RD active threads were contiguous threads to
reduce divergence.

I Transformations are done in-place to save shared memory.
This produces bank conflicts in CR at the last steps of forward
reduction and first steps of backward substitution.

GPU Implementation

I Five arrays are initially allocated in Global Memory: three for
the matrix diagonals, one for the right hand side, and one to
save the solution.

I The complete system is transferred to shared memory. This
imposed a limit on the size of evaluated systems (up to
512x512).

I For CR and RD active threads were contiguous threads to
reduce divergence.

I Transformations are done in-place to save shared memory.
This produces bank conflicts in CR at the last steps of forward
reduction and first steps of backward substitution.

GPU Implementation

I Five arrays are initially allocated in Global Memory: three for
the matrix diagonals, one for the right hand side, and one to
save the solution.

I The complete system is transferred to shared memory. This
imposed a limit on the size of evaluated systems (up to
512x512).

I For CR and RD active threads were contiguous threads to
reduce divergence.

I Transformations are done in-place to save shared memory.
This produces bank conflicts in CR at the last steps of forward
reduction and first steps of backward substitution.

Performance Results:Parallel Algorithms in GPU

Hardware Specifications:
I GPU: GTX 280, 30 SM’s, 8 cores per SM, 16kb shared

memory. CUDA 2.0.

GPU vs CPU (Ignoring Transfer Time)

I GPU: GTX 280, 30 SM’s, 8 cores per SM, 16kb shared
memory. CUDA 2.0.

I CPU: 2.5 GHZ Intel Core 2 Q9300 quadcore.

GPU vs CPU (Regarding Transfer Time)

I GPU: GTX 280, 30 SM’s, 8 cores per SM, 16kb shared
memory. CUDA 2.0.

I CPU: 2.5 GHZ Intel Core 2 Q9300 quadcore.

Performance Analysis

I ”We use a differental method to measure the time for each
part of the algorithm. We first comment out the whole code
and uncomment it incrementally in program order and
measure excecution time.”

I ”To estimate shared memory access time, we replaced shared
memory accesses with register accesses, and calculate the
shared memory access time as the difference between this
program and the original program.”

Hybrid Algorithms Performance

Why hybrid algorithms outperform the others?

They achieve a better trade off between number of steps and
amount of work per step.

Intuition:

I In a system with 512 variables 8 warps execute the instruction.

I In system with 256 variables 4 warps execute the instruction.

I Since warp execution is serial in each SM, a system with 256
variables would take half of time per step!!.

I Conclusion: Using CR for the first iterations reduce the per
step time required by PCR or RD to solve the intermediate
system.

PCR and RD are preferred to solve the intermediate system since
they require less steps and are free of bank conflicts.

Why hybrid algorithms outperform the others?

They achieve a better trade off between number of steps and
amount of work per step.

Intuition:

I In a system with 512 variables 8 warps execute the instruction.

I In system with 256 variables 4 warps execute the instruction.

I Since warp execution is serial in each SM, a system with 256
variables would take half of time per step!!.

I Conclusion: Using CR for the first iterations reduce the per
step time required by PCR or RD to solve the intermediate
system.

PCR and RD are preferred to solve the intermediate system since
they require less steps and are free of bank conflicts.

Why hybrid algorithms outperform the others?

They achieve a better trade off between number of steps and
amount of work per step.

Intuition:

I In a system with 512 variables 8 warps execute the instruction.

I In system with 256 variables 4 warps execute the instruction.

I Since warp execution is serial in each SM, a system with 256
variables would take half of time per step!!.

I Conclusion: Using CR for the first iterations reduce the per
step time required by PCR or RD to solve the intermediate
system.

PCR and RD are preferred to solve the intermediate system since
they require less steps and are free of bank conflicts.

Why hybrid algorithms outperform the others?

They achieve a better trade off between number of steps and
amount of work per step.

Intuition:

I In a system with 512 variables 8 warps execute the instruction.

I In system with 256 variables 4 warps execute the instruction.

I Since warp execution is serial in each SM, a system with 256
variables would take half of time per step!!.

I Conclusion: Using CR for the first iterations reduce the per
step time required by PCR or RD to solve the intermediate
system.

PCR and RD are preferred to solve the intermediate system since
they require less steps and are free of bank conflicts.

Why hybrid algorithms outperform the others?

They achieve a better trade off between number of steps and
amount of work per step.

Intuition:

I In a system with 512 variables 8 warps execute the instruction.

I In system with 256 variables 4 warps execute the instruction.

I Since warp execution is serial in each SM, a system with 256
variables would take half of time per step!!.

I Conclusion: Using CR for the first iterations reduce the per
step time required by PCR or RD to solve the intermediate
system.

PCR and RD are preferred to solve the intermediate system since
they require less steps and are free of bank conflicts.

Why hybrid algorithms outperform the others?

They achieve a better trade off between number of steps and
amount of work per step.

Intuition:

I In a system with 512 variables 8 warps execute the instruction.

I In system with 256 variables 4 warps execute the instruction.

I Since warp execution is serial in each SM, a system with 256
variables would take half of time per step!!.

I Conclusion: Using CR for the first iterations reduce the per
step time required by PCR or RD to solve the intermediate
system.

PCR and RD are preferred to solve the intermediate system since
they require less steps and are free of bank conflicts.

Why hybrid algorithms outperform the others?

They achieve a better trade off between number of steps and
amount of work per step.

Intuition:

I In a system with 512 variables 8 warps execute the instruction.

I In system with 256 variables 4 warps execute the instruction.

I Since warp execution is serial in each SM, a system with 256
variables would take half of time per step!!.

I Conclusion: Using CR for the first iterations reduce the per
step time required by PCR or RD to solve the intermediate
system.

PCR and RD are preferred to solve the intermediate system since
they require less steps and are free of bank conflicts.

Why hybrid algorithms outperform the others?

They achieve a better trade off between number of steps and
amount of work per step.

Intuition:

I In a system with 512 variables 8 warps execute the instruction.

I In system with 256 variables 4 warps execute the instruction.

I Since warp execution is serial in each SM, a system with 256
variables would take half of time per step!!.

I Conclusion: Using CR for the first iterations reduce the per
step time required by PCR or RD to solve the intermediate
system.

PCR and RD are preferred to solve the intermediate system since
they require less steps and are free of bank conflicts.

Accuracy Experiments

||Ax − b|| error in Tridiagonal Systems

Bibliography

1. Zhang Y.,Cohen J.,Owens J..Fast Tridiagonal Solvers on th
GPU, 2010.

2. Stone H..An Efficient Parallel Algorithm for the Solution of a
Tridiagonal Linear System of Equations,1973.

3. Kogge P.. Stone H.,A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations, 1973.

4. Hockney R.W.. Jesshope C.R., Parallel Computers,1981.

5. Egecioglu O.,Koc C.K., Laub A.J..A recursive doubling
algorithm for solution of tridiagonal systems on hypercube
multiprocessors, 1989.

