

Homework 1: Sort Algorithms

Fabián Andrés Prada Niño

1) Algorithm’s Implementation

The sort algorithms were implemented in C++ (look at the attached file main.cpp). The order of
implementation difficulty (in my project) was the following:

Heapsort>>Mergesort>>Quicksort>>Insertion>>Selection

• Selection and Insertion were easily implemented since these algorithms can be executed
using a single method (selecao() and insercao() respectively). Selection only requires a for
loop, and Insertion a for loop and a while

• Mergesort is executed in two methods: mergesort() and merge(). mergesort() works
recursively and invokes merge() which works in a single step. merge() requires the
construction of a new vector of memory to store the mixed lists.

• Quicksort has a similar implementation structure than Mergesort: it is also executed in two
methods, quicksort() and particionar(), where the first works recursively and invokes the
second which works in a single step. However, the implementation of particionar() is easier
than merge() because it does not require extra memory. In both cases you require two
pointers to perform each process.

• Heapsort was the hardest to be implemented since it requires of three methods: heapify(),
construcaoMaxHeap(), and heapsort(). Heapify() is a recursive method that assigns to a node
the correct position in a subtree in order to make such subtree a correct heap.
construcaoMaxHeap() works in a single step and invokes heapify() to construct the initial heap.
Finally, heapsort() is the method that organizes the sorting process: first, it calls
construcaoMaxHeap(), and iteratively it changes the root with the last node of the heap and
invokes heapify() applied to the new root.

2) Comparison of performance in general random lists

In order to compare the performance of sort algorithms I developed the following experiment:

• Each algorithm was executed with lists of 8 different sizes: 1000, 2000, 4000, 10000,
20000, 40000, 80000, and 160000.

• The list of size n was constructed taking a random sample of numbers in the set {1,2,3,…n}.
(see generateRandomVector()).

• For each size, the sort algorithms were executed 13 times (ordering a different list in each
execution) and the mean time of performance was calculated from the last 10 execution.

The order of performance I obtained for general random list was this:

Quicksort>>Heapsort>>Mergesort>> Insertion>>Selection

The following figure summarizes the obtained results:

Algorithm’s performance in general random lists (log-log scale)

As expected, we can classify the previous sort algorithms in two order of performance: Selection
and Insertion belongs to an order of performance O(n2), while Mergesort, Quicksort and Heapsort
have an order of performance O(nlogn).

We can deduce the approximate order of performance of these algorithms as follows:

• Selection-Insertion: Since these curves are almost parallels, we can deduce that they
share the same functional type (order) up to a multiplicative factor. In the log-log figure
we can check that the slope of these curves is approximately 2, this means that if the size
of the sample is duplicated, the sort time will increase approximately 4 times. This is
precisely the behavior that defines O(n2) functions . Therefore, the experimental results
obtained are coherent with the theoretical O(n2) order of these algorithms. The following
linear-linear scale graph corroborates the hypothesis (I made extra experiments with
60000, 1000000, 120000, and 140000 for better precision):

6,10E-05

1,22E-04

2,44E-04

4,88E-04

9,77E-04

1,95E-03

3,91E-03

7,81E-03

1,56E-02

3,13E-02

6,25E-02

1,25E-01

2,50E-01

5,00E-01

1,00E+00

2,00E+00

4,00E+00

8,00E+00

1,60E+01

3,20E+01

6,40E+01

1000 4000 16000 64000 256000

Te
m

po
 d

e
ex

ec
uç

ão
(s

eg
un

do
s)

Cantidad de dados

Selecao

Insercao

MergeSort

QuickSort

HeapSort

Selection and Insertion performance in general random lists (linear-linear scale)

• Mergesort-Quicksort-Heapsort: Again, the parallelism between lines lead us to confirm

that these algorithms share the same functional type (order) up to a multiplicative factor.
In this case the slope analysis must be more elaborated: If we just observe the mean
slopes of the curves we get it is approximately 1 (duplicating sample approximately
duplicates times). This behavior is almost true for functions O(nlogn) (when n tend to
infinity) but this behavior is specially characteristic of O(n) functions. In practice,
differentiate between O(n) and O(nlogn) behavior from a simple graph is a difficult task.
Here is a figure which illustrates the results in linear-linear scale:

Mergesort-Quicksort-Heapsort performance in general random lists (linear-linear scale)

It is important to notice that nlogn is a strongly convex function (i.e., second derivative is strictly
positive) while n is not. In the graph, the curves of the algorithms seem a bit strongly convex!

0

5

10

15

20

25

30

35

40

45

0 50000 100000 150000 200000

Ti
em

po
 d

e
ex

ec
uc

ao
(s

eg
un

do
s)

Cantidad de dados

Selecao

Insercao

n^2 (E-9)

0

0,01

0,02

0,03

0,04

0,05

0,06

0 50000 100000 150000 200000

Ti
em

po
 d

e
ex

ec
uc

ao
(s

eg
un

do
s)

Cantidad de dados

MergeSort

QuickSort

HeapSort

nlogn (E-8)

3) Comparison of performance in special lists

a) Increasing order lists

Algorithm’s performance in increasing order lists (log-log scale)

• As expected, Selection does not change its performance in comparison to the general
random list. Even in this situation it is O(n2) .

• Insertion improved a lot its performance and was the best algorithm for this case. It is
possible to check that in ordered lists it operated in O(n).

• Quicksort become worse than in general random lists, and in this case its behavior is
identical to Selection (since in each step it must visit the tail of the list and it only gets to
sort one element). Then it run in O(n2). (Some data is missing because I got Segmentation
Faults for Quicksort in lists of size greater than 80000).

• Mergesort and Heapsort shares a similar behavior in ordered lists (still O(nlogn)), but they
perform a bit better than in random list. In the case of Mergesort the merge steps are
easily run since there are no intercalation of lists (i.e., one list is pasted just after the
other).

3,81E-06
7,63E-06
1,53E-05
3,05E-05
6,10E-05
1,22E-04
2,44E-04
4,88E-04
9,77E-04
1,95E-03
3,91E-03
7,81E-03
1,56E-02
3,13E-02
6,25E-02
1,25E-01
2,50E-01
5,00E-01
1,00E+00
2,00E+00
4,00E+00
8,00E+00
1,60E+01
3,20E+01
6,40E+01

1000 4000 16000 64000 256000

Ti
em

po
 d

e
ex

ec
uc

ao
 (s

eg
un

do
s)

Cantidad de dados

Selecao
Insercao
MergeSort
QuickSort
HeapSort

b) Decreasing order lists:

Algorithm’s performance in decreasing order lists (log-log scale)

• Selection, Insertion and Quicksort must visit the tail of the list in each step and they only

get to fix a number. For this reason they present the a similar O(n2) behavior. As expected,
Insertion performs worse with decreasing lists than in general random lists.

• Mergesort and in Heapsort still behaves in a similar way. In decreasing lists they both
perform better than in general random lists. Mergesort performed almost identically in
increasing and decreasing sort, while Heapsort improved a little in the decreasing case.
Take into account that for decreasing lists the construction of the maxHeap() does not
require to call heapify() anytime.

1,22E-04
2,44E-04
4,88E-04
9,77E-04
1,95E-03
3,91E-03
7,81E-03
1,56E-02
3,13E-02
6,25E-02
1,25E-01
2,50E-01
5,00E-01
1,00E+00
2,00E+00
4,00E+00
8,00E+00
1,60E+01
3,20E+01
6,40E+01

1000 4000 16000 64000 256000

Ti
em

po
 d

e
ex

ec
uc

ao
 (s

eg
un

do
s)

Cantidad de dados

Selecao
Insercao
MergeSort
QuickSort
HeapSort

c) List with few repetitions:

In this case I take random lists of size n in the interval {1, 2,…, 1000n}.

Algorithm’s performance in lists with few repetitions (log-log scale)

• The results were almost identical to the explained in the general random case. There were

no remarkable changes.

d) Lists with many repetitions:

In this case I take random lists of size n in the interval {1,2,…,n/1000}

Algorithm’s performance in lists many repetitions (log-log scale)

6,10E-05
1,22E-04
2,44E-04
4,88E-04
9,77E-04
1,95E-03
3,91E-03
7,81E-03
1,56E-02
3,13E-02
6,25E-02
1,25E-01
2,50E-01
5,00E-01
1,00E+00
2,00E+00
4,00E+00
8,00E+00
1,60E+01
3,20E+01
6,40E+01

1000 4000 16000 64000 256000

Ti
em

po
 d

e
ex

ec
uc

ao
 (s

eg
un

do
s)

Cantidad de dados

Selecao
Insercao
MergeSort
QuickSort
HeapSort

3,81E-06
7,63E-06
1,53E-05
3,05E-05
6,10E-05
1,22E-04
2,44E-04
4,88E-04
9,77E-04
1,95E-03
3,91E-03
7,81E-03
1,56E-02
3,13E-02
6,25E-02
1,25E-01
2,50E-01
5,00E-01
1,00E+00
2,00E+00
4,00E+00
8,00E+00
1,60E+01
3,20E+01
6,40E+01

1000 4000 16000 64000 256000

Ti
em

po
 d

e
ex

ec
uc

ao
 (s

eg
un

do
s)

Cantidad de dados

Selecao

Insercao

• Insertion started being a good algorithm (when the list only has few categories of
values), but when the quantity of categories increased, the behavior of insertion is
almost the same than in the general random case.

• Quicksort performs worse in this case than in the general random case. However
it is important to realize that in this case its behavior seems to still being of order
O(nlogn), instead of order O(n2) as in increasing or decreasing order lists.

• Heapsort and Mergesort had a slightly better behavior in this case than in general
random lists. Also, their behavior was slightly worse than in increasing and
decreasing lists. This phenomenon was not studied in detail during the project, but
probably the block structures that are built along the algorithm execution (in the
case of many repetitions) lead to a reduction of the computational time. For
instance, when you merge “blocks”, it is more likely that once you have concluded
to visit one of the lists (left/ right), there are many “blocks” in the other list that
have not been visited yet. These “blocks” are carried to the end of the new list
using a for loop. Instead, when the lists (left/right) are completely random they
tend to conclude at the same time and this requires many more comparisons.

4) Adding Insertion to Quicksort and Mergesort

Before proposing the new algorithm’s implementation, let’s observe the behavior of Insertion,
Mersgesort, and Quicksort in small general random lists. I obtained the following results:

Algorithm’s performance in small general random lists (log-log scale)

1,192E-07

2,384E-07

4,768E-07

9,537E-07

1,907E-06

3,815E-06

7,629E-06

1,526E-05

3,052E-05

6,104E-05

0,0001221

0,0002441

1 2 4 8 16 32 64 128 256 512

Ti
em

po
 d

e
ex

ec
uc

ao
 (s

eg
un

do
s)

Cantidad de dados

Insercao

MergeSort

QuickSort

Size(n) Insertion(n)/Quicksort(n) Insertion(n)/Mergesort(n)

2 0,89

0,26

3 0,85

0,25

5 0,83

0,22

8 0,82

0,23

10 0,72

0,19

12 0,81

0,21

15 0,79

0,21

20 0,77

0,21

30 0,85

0,24

50 1,00

0,32

100 1,39

0,46

200 2,21

0,83

400 3,66

1,53

• Insertion was faster than Quicksort for lists of less than 50 numbers. The lowest ratio
Insertion(n)/Quicksort(n) was obtained at t=10, and it was 0,72 (i.e, Insertion expends 0,72
times the expenditure of Quicksort). In the interval {2,…,20} this ratio was about 0,8.

• Insertion was faster than Mergesort for lists of less than 200 numbers. The lowest ratio
Insertion(n)/Mergesort(n) was at t=10 , and it was 0,19. In the interval {2,…,30} this ratio
remains about 0,25.

From the previous observations, I selected the size L=20 as the ideal length of subproblem such
that it is more convenient to invoke Insertion to sort that segment, instead of invoke Mergesort or
Quicksort again.

The algorithms implemented were the following:

a) Quicksort+ Partial Insertion: Quicksort is recursively executed (as standard) and once you
get a partition of length less or equal to L, this partition is immediately sorted using
Insertion algorithm.

b) Quicksort+ Final Insertion: Quicksort is recursively executed (as standard) and once you
get a partition of length less or equal to L, this partition is ignored and it continues
partitioning the greater partitions. Once all the partitions are of length less or equal to L
the Insertion algorithm is executed.

c) Mergesort+ Partial Insertion: Mergesort is recursively executed (as standard) and once
your left and right lists are of length less or equal to L, they are sorted independently
using Insertion algorithm, and then effectively merged.

d) Mergesort+ Final Insertion: Mergesort is recursively executed (as standard) and once
your left and right lists are of length less or equal to L, Mergesort stops “getting depth”

and immediately merges these two lists (certainly, this could have no sense since the
merge is done with unsorted lists). Finally Insertion is run over the whole list. (I prefer this
implementation, instead of the one where you apply merge except in the last step (with
the halves of the original list) and then run Insert. For me this proposed implementation is
more curious. In the other implementation, it is expected that once the Insertion get the
second half of the list, the element in position n/2+k will be moved n/2-k positions ahead,
what leads to O(n2) behavior).

The following table summarizes the results obtained:

Algorithm’s performance in general random lists (time in seconds)

Size(n) Quicksort Q+PI Q+FI Mergesort M+PI M+FI
10000 0,00139226 0,00135037 0,00125783 0,00303494 0,00182724 0,080013
40000 0,00616702 0,0058013 0,0057037 0,012551 0,00781569 1,26136
80000 0,0127756 0,0123808 0,012241 0,0258848 0,0170605 5,1634

160000 0,0267531 0,0259126 0,0255233 0,0533563 0,0353732 20,7891

• The Insertion subroutine improved the performance of Mergesort and Quicksort.
In the case of Quicksort, implementing Partial Insertion improved performs a bit
and Final Insertion even a bit more. In both cases improvement was less than 5%,
which is still far to the 20% that could be expected from the analysis of small lists
sorting. Probably the improvement is not so good because the time that Quicksort
expends partitioning big lists is much higher than the time it expends sorting all
the small lists.

• The improvement from Mergesort to M+PI is very notorious and it was about
40%. Since Insertion is much better than Mergesort for small lists, it was expected
a good improvement, and indeed we get it. Again, we are yet far to the 75%
improvement that could be expected from the analysis of small lists sorting.

• As expected, merging unsorted lists is a nonsense operation and effectively it
leads to bad results. We observe that M+FI had a behavior O(n2), and it is a bit
better than Insertion. This is because merging unsorted lists produce lists that are
“sorted by segments” (like 5,6,7,1,2,3,6,8,9) and do Insertion in such cases is
probably faster than in completely random lists.

