
 
 

Homework 1: Sort Algorithms 

Fabián Andrés Prada Niño 

1) Algorithm’s Implementation 

The sort algorithms were implemented in C++ (look at the attached file main.cpp). The order of 
implementation difficulty (in my project) was the following: 

Heapsort>>Mergesort>>Quicksort>>Insertion>>Selection 

• Selection and Insertion were easily implemented since these algorithms can be executed 
using a single method (selecao() and insercao() respectively ).  Selection only requires a  for  
loop, and Insertion a for loop and  a while  

•  Mergesort is executed in two methods:  mergesort() and merge(). mergesort() works 
recursively and invokes merge() which works in a single step. merge() requires the 
construction of a new vector of memory to store the mixed lists. 

• Quicksort has a similar implementation structure than Mergesort: it is also executed in two 
methods, quicksort() and particionar(), where the first works recursively and invokes the 
second which works in a single step. However, the implementation of particionar() is easier 
than merge() because it does not require extra memory. In both cases you require two 
pointers to perform each process. 

• Heapsort was the hardest to be implemented since it requires of three methods: heapify(), 
construcaoMaxHeap(),  and heapsort(). Heapify() is a recursive method that assigns to a node 
the correct position in a subtree in order to make such subtree a correct heap. 
construcaoMaxHeap() works in a single step and invokes heapify() to construct the initial heap. 
Finally, heapsort() is the method that organizes the sorting process: first, it calls 
construcaoMaxHeap(), and iteratively it changes the root with the last node of the heap and 
invokes heapify() applied to the new root. 

2) Comparison of performance in general random lists 

In order to compare the performance of sort algorithms I developed the following experiment: 

• Each algorithm was executed with lists of 8 different sizes: 1000, 2000, 4000, 10000, 
20000, 40000, 80000, and 160000. 

• The list of size n was constructed taking a random sample of numbers in the set {1,2,3,…n}. 
(see generateRandomVector()). 

• For each size, the sort algorithms were executed 13 times (ordering a different list in each 
execution) and the mean time of performance was calculated from the last 10 execution.  

The order of performance I obtained for general random list was this:  

Quicksort>>Heapsort>>Mergesort>> Insertion>>Selection 



 
 

The following figure summarizes the obtained results: 

Algorithm’s performance in general random lists (log-log scale) 

 

As expected, we can classify the previous sort algorithms in two order of performance: Selection 
and Insertion belongs to an order of performance O(n2), while Mergesort, Quicksort and Heapsort 
have an order of performance O(nlogn). 

We can deduce the approximate order of performance of these algorithms as follows: 

• Selection-Insertion: Since these curves are almost parallels, we can deduce that they 
share the same functional type (order) up to a multiplicative factor. In the log-log figure 
we can check that the slope of these curves is approximately 2, this means that if the size 
of the sample is duplicated, the sort time will increase approximately 4 times. This is 
precisely the behavior that defines O(n2) functions . Therefore, the experimental results 
obtained are coherent with the theoretical O(n2) order of these algorithms. The following 
linear-linear scale graph corroborates the hypothesis (I made extra experiments with 
60000, 1000000, 120000, and 140000 for better precision): 
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Selection and Insertion performance in general random lists (linear-linear scale) 

 
• Mergesort-Quicksort-Heapsort: Again, the parallelism between lines lead us to confirm 

that these algorithms share the same functional type (order) up to a multiplicative factor. 
In this case the slope analysis must be more elaborated: If we just observe the mean 
slopes of the curves we get it is approximately 1 (duplicating sample approximately 
duplicates times). This behavior is almost true for functions O(nlogn) ( when n tend to 
infinity) but this behavior is specially characteristic of O(n) functions. In practice, 
differentiate between O(n)  and O(nlogn) behavior from a simple graph is a difficult task. 
Here is a figure which illustrates the results in linear-linear scale: 

Mergesort-Quicksort-Heapsort performance in general random lists (linear-linear scale) 

 

It is important to notice that nlogn is a strongly convex function (i.e., second derivative is strictly 
positive) while n is not. In the graph, the curves of the algorithms seem a bit strongly convex! 
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3) Comparison of performance in special lists 

a) Increasing order lists 

Algorithm’s performance in increasing order lists (log-log scale) 

 

• As expected, Selection does not change its performance in comparison to the general 
random list. Even in this situation it is O(n2)  .  

• Insertion improved a lot its performance and was the best algorithm for this case.  It is 
possible to check that in ordered lists it operated in O(n).  

• Quicksort become worse than in general random lists, and in this case its behavior is 
identical to Selection (since in each step it must visit the tail of the list and it only gets to 
sort one element). Then it run in O(n2). (Some data is missing because I got Segmentation 
Faults for Quicksort in lists of size greater than 80000). 

• Mergesort and Heapsort shares a similar behavior in ordered lists (still O(nlogn)), but they 
perform a bit better than in random  list. In the case of Mergesort the merge steps are 
easily run since there are no intercalation of lists (i.e., one list is pasted just after the 
other). 
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b) Decreasing order lists: 
 

Algorithm’s performance in decreasing order lists (log-log scale) 

 

 
• Selection, Insertion and Quicksort must visit the tail of the list in each step and they only 

get to fix a number. For this reason they present the a similar O(n2) behavior. As expected, 
Insertion performs worse with decreasing lists than in general random lists. 
 

• Mergesort and in Heapsort still behaves in a similar way.  In decreasing lists they both 
perform better than in general random lists. Mergesort performed almost identically in 
increasing and decreasing sort, while Heapsort improved a little in the decreasing case.  
Take into account that for decreasing lists the construction of the maxHeap() does not 
require to call heapify() anytime. 
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c) List with few repetitions:  

 
In this case I take random lists of size n in the interval {1, 2,…, 1000n}. 

Algorithm’s performance in lists with few repetitions (log-log scale) 

 
• The results were almost identical to the explained in the general random case. There were 

no remarkable changes.  

d) Lists with many repetitions:  

In this case I take random lists of size n in the interval {1,2,…,n/1000} 

Algorithm’s performance in lists many repetitions (log-log scale) 
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• Insertion started being a good algorithm (when the list only has few categories of 
values), but when the quantity of categories increased, the behavior of insertion is 
almost the same than in the general random case. 

• Quicksort performs worse in this case than in the general random case.  However 
it is important to realize that in this case its behavior seems to still being of order 
O(nlogn), instead of order O(n2) as in increasing or decreasing order lists.  

• Heapsort and Mergesort had a slightly better behavior in this case than in general 
random lists. Also, their behavior was slightly worse than in increasing and 
decreasing lists. This phenomenon was not studied in detail during the project, but 
probably the block structures that are built along the algorithm execution (in the 
case of many repetitions) lead to a reduction of the computational time. For 
instance, when you merge “blocks”, it is more likely that once you have concluded 
to visit one of the lists (left/ right), there are many “blocks” in the other list that 
have not  been visited yet. These “blocks” are carried to the end of the new list 
using a for loop. Instead, when the lists (left/right) are completely random they 
tend to conclude at the same time and this requires many more comparisons. 

4) Adding Insertion to Quicksort and Mergesort 

Before proposing the new algorithm’s implementation, let’s observe the behavior of Insertion, 
Mersgesort, and Quicksort in small general random lists. I obtained the following results: 

Algorithm’s performance in small general random lists (log-log scale) 

 

 

 

1,192E-07

2,384E-07

4,768E-07

9,537E-07

1,907E-06

3,815E-06

7,629E-06

1,526E-05

3,052E-05

6,104E-05

0,0001221

0,0002441

1 2 4 8 16 32 64 128 256 512

Ti
em

po
 d

e 
ex

ec
uc

ao
 (s

eg
un

do
s)

 

Cantidad de dados 

Insercao

MergeSort

QuickSort



 
 

Size(n) Insertion(n)/Quicksort(n) Insertion(n)/Mergesort(n) 

2 0,89 
 

0,26 

3 0,85 
 

0,25 

5 0,83 
 

0,22 

8 0,82 
 

0,23 

10 0,72 
 

0,19 

12 0,81 
 

0,21 

15 0,79 
 

0,21 

20 0,77 
 

0,21 

30 0,85 
 

0,24 

50 1,00 
 

0,32 

100 1,39 
 

0,46 

200 2,21 
 

0,83 

400 3,66 
 

1,53 
 

• Insertion was faster than Quicksort for lists of less than 50 numbers.  The lowest ratio 
Insertion(n)/Quicksort(n) was obtained at t=10, and it was 0,72 (i.e, Insertion expends 0,72 
times the expenditure of Quicksort ). In the interval {2,…,20} this ratio was about 0,8. 
 

• Insertion was faster than Mergesort for lists of less than 200 numbers.  The lowest ratio 
Insertion(n)/Mergesort(n) was at t=10 , and it was 0,19. In the interval {2,…,30} this ratio 
remains about 0,25. 
 

From the previous observations, I selected the size L=20 as the ideal length of subproblem such 
that it is more convenient to invoke Insertion to sort that segment, instead of invoke Mergesort or 
Quicksort again.  

The algorithms implemented were the following: 

a) Quicksort+ Partial Insertion:  Quicksort is recursively executed (as standard) and once you 
get a partition of length less or equal to L, this partition is immediately sorted using 
Insertion algorithm. 

b) Quicksort+ Final Insertion:  Quicksort is recursively executed (as standard) and once you 
get a partition of length less or equal to L, this partition is ignored and it continues 
partitioning the greater partitions. Once all the partitions are of length less or equal to L 
the Insertion algorithm is executed. 

c)  Mergesort+ Partial Insertion:  Mergesort is recursively executed (as standard) and once 
your left and right lists are of length less or equal to L, they are  sorted independently 
using Insertion algorithm, and then effectively merged. 

d)  Mergesort+ Final Insertion: Mergesort is recursively executed (as standard) and once 
your left and right lists are of length less or equal to L, Mergesort stops  “getting depth” 



 
 

and immediately merges these two lists  (certainly, this could have no sense since the 
merge is done with unsorted lists). Finally Insertion is run over the whole list. (I prefer this 
implementation, instead of the one where you apply merge except in the last step (with 
the halves of the original list) and then run Insert. For me this proposed implementation is 
more curious. In the other implementation, it is expected that once the Insertion get the 
second half of the list, the element in position n/2+k will be moved n/2-k positions ahead, 
what leads to O(n2) behavior ). 
 

The following table summarizes the results obtained: 

Algorithm’s performance in general random lists (time in seconds) 

Size(n) Quicksort Q+PI Q+FI Mergesort M+PI M+FI 
10000 0,00139226 0,00135037 0,00125783 0,00303494 0,00182724 0,080013 
40000 0,00616702 0,0058013 0,0057037 0,012551 0,00781569 1,26136 
80000 0,0127756 0,0123808 0,012241 0,0258848 0,0170605 5,1634 

160000 0,0267531 0,0259126 0,0255233 0,0533563 0,0353732 20,7891 
 

• The Insertion subroutine improved the performance of Mergesort and Quicksort. 
In the case of Quicksort, implementing Partial Insertion improved performs a bit 
and Final Insertion even a bit more. In both cases improvement was less than 5%, 
which is still far to the 20% that could be expected from the analysis of small lists 
sorting. Probably the improvement is not so good because the time that Quicksort 
expends partitioning big lists is much higher than the time it expends sorting all 
the small lists.   

• The improvement from Mergesort to M+PI is very notorious and it was about 
40%. Since Insertion is much better than Mergesort for small lists, it was expected 
a good improvement, and indeed we get it. Again, we are yet far to the 75% 
improvement that could be expected from the analysis of small lists sorting.  

• As expected, merging unsorted lists is a nonsense operation and effectively it 
leads to bad results. We observe that M+FI had a behavior O(n2), and it is a bit 
better than Insertion.  This is because merging unsorted lists produce lists that are 
“sorted by segments” (like 5,6,7,1,2,3,6,8,9) and do Insertion in such cases is 
probably  faster   than in completely  random lists.  

 

 

 

  


