
Homework 2: Graphs

Fabian Andres Prada Nino

1) Minimun Spanning Tree

The Minimun Spanning Tree was constructed following the Prim’s algorithm. The algorithm

I implemented has the folowing particular characteristics:

Variables:

• int numeroVertices: Stores the amount of vertexes in the graph.

• int[] numeroDeVecinos: This array stores the amount of neighbours each vertex have.

• int[][][]edges: For each vertex, this array stores the ”name” of their neighbours and the

weigth of the edge between them. edges�i��k��0� refers to the name of the kth neighbour

of vertex i, and edges�i��k��0� refers to the weigth of the edege joining vertex i and its

kth neighbour. For instance edges�1��1��0� � 128 and edges�1��1��1� � 59

• int[] heap: Array that stores the ”name” of the vertex in each position of the heap. At

the initialization heap is empty. heap stores in an Min Heap structure the verteces we

have already visited according to their current distance to the tree.

• int[] papa: For each vertex (except the initial one) this array stores the ”name” of the

vertex in the tree which is closest to it. At the initialization papa points to 0 for all

verteces.

• int[] distancia: For each vertex , this array stores the distance to the closest vertex in

the tree (i.e. , its current papa). At the initialization distancia is 0 for all verteces.(This

doesn’t mean that all the verteces are ”visible” since the inital step. Take into account

that in this implementation heap is empty when the algorithm starts.)

• int[] posHeap: For each vertex, this array stores its current position in the heap. At

the initialization posHeap points to 0 for all verteces.

• int ultimaPosHeap: Stores the lenght of the current heap. At the initialization

ultimaPosHeap � 0.

• int pesoTotal : Stores the total weigth of the current tree.

• boolean [] estaAgregado: Indicates if a vertex was already added to the tree. Equiva-

lently, if it was already removed from the heap.

1

• int[][] spanningTree: Array that stores the edges of the current Minimun Spanning Tree

acorrding to the order they are added. spanningTree�i��0� and spanningTree�i��1�

stores the name of the verteces associated to the ith edge of the MST.

• int edgeST : Count the amount of edges already added to the Minimun Spanning Tree.

Procedure:

• Add vertex 1 to the inital position of the heap, heap�0� � 1, and set its parent pointing

to a null position, papa�1� � �1.

while(heap is not empty, i.e, heap�0�! � 0)

• Set the variable posicionActual pointing to the vertex in the top of the heap, i.e.,

posicionActual :� heap�0�.

• Remove heap�0� and set estaAgregado�posicionActual� � true.

• Update the status of the neighbours of posicionActual in the heap:

for i � 1, ..., numeroDeV ecinos�posicionActual�

• If the neighbour ith was already added to MST, i.e, estaAgregado�neighbour� �� true,

do not perform any action.

• If the neighbour ith has not been added to the MST neither to the heap, which

is verified through papa�neighbour� �� 0, set papa�neighbour� � posicionActual,

distancia�neighbour� � edges�posicionActual��i��1�. Finally add this vertex to the

heap.

• If the neighbour ith has not been added to the MST but it is already in the heap,

compare its current distance to the tree with the distance to posicionActual. If the dis-

tance to posicionActual is lower, update its parent and the distance to the tree setting

papa�neighbour� � posicionActual, distancia�neighbour� � edges�posicionActual��i��1�

and update its position in the heap.

end for

• Finally update the MST:

if papa�posicionActual�! � �1 (this is only false for the first vertex)

• Add the edge joining posicionActual with its parent:

spanningTree�edgeST ��0� � papa�posicionActual�, spanningTree�edgeST ��1� � posicionActual.

2

• Increase the counter of edges: edgeST ��.

• Update the total weight: pesoTotal� � distancia�posicionActual�.

end if

end while

Additionally, I managed the Min Heap structure using the following two methods:

• upheapify(): This method picks certain position of the heap and compare it with its

predecesors. Comparisions and assigantions are done iteratively until the initial value

find an adequate position in the heap (one that make the structure indeed a Min Heap).

This method is invoqued when a new vertex is added to the heap (since they are added

to the last position of the heap), and for update the position of a vertex that eventually

became closer to the tree.

• downheapify(): Performs the heap update comparing a position with its descendents.

This method is invoqued once the root position is removed from the heap and replaced

by the last position. downheapify() is precisely applied in the new root.

The results I obtained for the Minimum Spanning Tree are illustrated in the following figure:

Total Weight of the tree=22081.

3

As the theory asserts, we can check that any vertex is always connected to its nearest

neighbour. It is also interesting to see how this tree avoid unnecessary large (heavy) edges

and prefer the shortest (lightest) edges everywhere it is posible.

2)Shortest Path Tree from Vertex 104

In order to find the Shortest Path Tree from vertex 104 I implemente Dkjastra’s algorithm.

This algorithm works almost identically to Prim’s. The most important modifications in the

implementation (compared to the previously described) are the following:

• The array distancia[] now stores the current distance from each vertex to vertex 104.

At the initiallization distancia is 0 for all verteces.(Again, this was just an initialization

value and doesn’t mean that all the verteces are ”visible” since the inital step).

• The variables int[][] shortestPath and int edgeSP were defined in analogous way to

int[][] spanningTree and int edgeST respectively.

• In the initial step add 104 to the fisrt position of the heap, i.e, heap�0� � 104.

• Once we are visiting the neighbours of posicionActual, if the ith neighbour has not

been added to the MST neither to the heap, set papa�neighbour� � posicionActual,

and distancia�neighbour� � distancia�posicionActual� � edges�posicionActual��i��1�.

Finally add this vertex to the heap.

• Once we are visiting the neighbours of posicionActual, if the ith neighbour has not

been added to the MST but it is already in the heap, compare its current distance to

the distance induced through posicionActual.

If distancia�neighbour� � distancia�posicionActual��edges�posicionActual��i��1�, set

papa�neighbour� � posicionActual and distancia�neighbour� � distancia�posicionActual��

edges�posicionActual��i��1�. Finally update its position in the heap.

• To update the total weight of the tree set: pesoTotal� � �distancia�posicionActual��

distancia�papa�posicionActual���, that is equivalent to adding the weight of the edge

between posicionActual and papa�posicionActual�

The results obtained for the Shortest Path Tree from vertex 104 were the following:

4

Total Weight of the tree=33314.

As expected, the tree is ”centered” at vertex 104 (the blue vertex), and the the paths

looks like rays with origin at this point. Circular paths around 104 does not occur anywhere.

3)Shortest Path between vertex 93 and 112

In order to find the shortest path between these two vertices I implemented the Dkjastra

algorithm starting at vertex 93 and stopping the process once the vertex 112 is added to

the shortest path tree. The following are the main modifications applied to the algorithm

implemented in the previous section:

• The variables int verticeS, int verticeT are defined to store the ”name” of the vertices

to join. In this case, verticeS � 93 and verticeT � 112.

• The variable int edgeSB stores the amount of edges in the shortest path between

verticeS and verticeT . The array int [][]shortestBetween stores the ”name” of the

vertices associated to each edege in this path.

• The while loop is excecuted until the first position of the heap refers to verticeT ,

i.e,while ��heap�0�! � verticeT �� the expansion of the shortest path tree from verticeS

is done.

• Once verticeT is found, a while loop is invoqued to count the edges of the path from

verticeS to verticeT , in order to assign the memory space required for the variable

5

shortestBetween����. Finally a for loop is implemeneted to visit all the edges of the

path storig the ”name” of their verteces in shortestBetween����.

• The value of the weight is precisely the distance from verticeT to verticeS, i.e,

pesoTotal � distancia�verticeT �.

The results of the implementation are illustrated in the following figure:

Total Weight of the path=4737.

The blue vertex corresponds to vertex 93 and the green one to vertex 112. This path seems as

”linear” as possible. The following figures shows the Shortest Path Tree from vertex 93 and

the Shortest Path Tree from vertex 112 respectively. As expected, the path in the previous

figure appears again in these:

6

