
Homework 3: Convex Hull

Fabian Andres Prada Nino

1)Algorithm’s Implementation.

• Jarvis. It was implemented using three methods: buscarInferiorDerecho(), buscar-

Sucesor(),and jarvis(). buscarInferiorDerecho() runs an Opnq search to identify the

point with lowest y coordinate (and largest x as a second comparision condition ), and

this becomes the initial vertex of the convex hull, v0. Once a vertex vk is added to the

convex hull, the method buscarSucesor() is applied over vk to identify the next vertex

vk�1 of the convex hull in positive orientaton. For each input point p, buscarSucesor()

defines vectors centered at vk and directed to p, and sets as vk�1 the point whose vector

is leftmost. jarvis() invokes buscarInferiorDerecho() for a single time and then invokes

buscarSucesor() until vk�1 � v0.

• Graham V1. The implementation of this algorithm was much more complex than

Jarvis. It is divided in four major methods: buscarInferiorDerecho(), ordenarVer-

tices(),recorrerVerticesOrdenados(),and grahamVariante1(). The method ordenarVer-

tices() defines vectors centered at the lowest-rightmost point and directed to any other

input point. Then, the additional method quicksortV ectorespq is invoked to sort these

vectors, doing this task in Opnlognq time (taking in to account that quicksort had the

best results in randomly generated samples, I prefer this method instead of heapsort

and mergesort). recorrerV erticesOrdenadospq visits the input points in the order in-

duced by the previous vector sorting. Each time a new point is visited, the current

convex path is updated. To do this, I created an array variable, intrsarraySucesion,

that stores the points added to the convex hull in the order they are visited, and the

variable int ultimaPosArray that indicates where the new point visted must be stored

in the array. The method grahamVariante1() invokes the other three major methods

in the described order.

• Graham V2. The implementation of this algorithm was harder than Jarvis and

a bit easier than Graham V1. The algorithm is divided in three major meth-

ods: quicksortMenosInf(),recorrerMenosInfMasInf(),and grahamVariante2(). quick-

sortMenosInf() sorts the points in positive order according to a point in minus infinity

position. To do this, the first criterion of comparision is ’larger x coordinate is lower’,

and the second criterion is ’lower y coordinate is lower’. The sorting from a point in

plus infinity position is precisely the reverse of the previous result, so it’s not necce-

sary to run a new sort. recorrerMenosInfMasInf() first visits the list of point sorted

by minus infinity position to find the upper path of the convex hull, and inmediately

1



visits the list of points sorted by plus infinity position to find the lower path of the

convex hull.

2)Results in test sets.

(a) (b)

Figure 1: These images shows the results of the algorithms applied to the given test sets.

The number of points in the convex hull of (a) is 13, and in the convex hull of (b) is 8.

(a) (b) (c) (d)

Figure 2: These images shows the results of the algorithms applied to samples of 1000 points

in a rectangle(a), a triangle(b), interior of a circle(c), and border of a circle(d). The amount

of points in the convex hull for these figures were 11, 13, 28, and 1000 respectively.

3)Comparision of Performance.

I took data sets of 100,1000,10000,20000,40000,80000, and 1600000 points uniformly dis-

tributed in rectangles, triangles, circles and border of circles. For each geometric shape, size

of the data set, and algorithm, the experiment was run 15 times, and the mean was taken

over the last 10 results:

2



• The results corroborates that the performance of Jarvis depends a lot on the amount

of points in the convex hull (Opnhq, as seen in class). We can observe that Jarvis

is better than Graham V1 and Graham V2 for triangles and rectangles, and this

is because of the small output for such cases (see Figure 2). In the case of points in

the interior of circles, the performance of Jarvis get worse (compared with Graham)

as the amount of points in the sample (and consequently in the output) increases.

From the previous result, one could think that the amount of expected points in the

convex hull in the case of triangle or a rectangle is oplog nq while in the case of a circle

is Ωplog nq. Finally, in the case of the border of a circle, Jarvis performs Opn2q as

expected, since all the points belong to the hull.

• Graham V1 and Graham V2 were almost indifferent to the particularities of the

figures, i.e., input distributions and output size, and performed very similarly in the

four cases. This was expected since these algorithms are almost indifferent to the

geometry of the figure: all the points are sorted to define the order they will be

visited, and then they are all visited once (in the case of Graham V1) or twice (in

the case of Graham V2). From the obatined resuts it is not possible to say in which

figure they performed best. However I expected that the best performance took place

for border of circles: once the sorting is done, the round trip is the easiest possible since

no exclusions are performed. Probably, this was not clearly evidenced in the results by

two reasons: the amount of experiments were insufficients, or the sort step (which is

3



Opn log nq and is indiffernet to geometry) is so weighted that it hidden the round trips

(which is Opnq and is sensible to geometry).

• Graham V1 and Graham V2 performed almost identically in all the experiments.

I expected that they had a similar behaviour, but not so close!!. I expected that the

differences in the criterions used for sort the points and the differeneces in round trips

would lead to notable differences in performance. Again, I guess that the weigth of

the sort step (which in both cases is quicksort, Opn log nq) hiddens steps like the round

trips (Opnq).(see section (5) for extended discussion).

4)Elimination of Interior Points

To eliminate interior points I implemented an algorithm that eliminates points in the

interior of a quadriletaral. The vertex of the quadrilateral are the leftmost, rightmost,utmost

and lowest points of the sample. The following table compares the results (in seconds) of

applying elimination in the previous figures for samples of 80000 and 160000 points.

• In the case of Jarvis, the improvement was about 33% in the rectangle, 50% in the

triangle and 50% in the interior of the circle. Since eliminating interior points is done

in Opnq time and do not affect the output size (i.e h is not changed) the percentage of

improvement for Jarvis is closely related with the percentage of points removed. Look-

ing at Figure 3 we observe that ’quadrialteral elimination’ removes a higher percentage

of points in triangles, then in circles and finally in rectangles.

• In the case of Graham V1 and Graham V2, the improvement was about 50%

in the rectangle, 80% in the triangle, and 60% in the interior of the of the circle.

Since Graham is Opn log nq (and independent of the output size h), it is coherent to

have better improvements for Graham than Jarvis as effectively we get. In this case,

the relation between the percentage of points removed and the percentage of time

improvement is even closer (see Figure 3).

4



(a) (b) (c)

Figure 3: These images shows the results of quadrilateral elimination in samples of 1000

points inside a rectangle(a), a triangle(b) and a circle(c). The percentage of removed points

was 52%, 92%, and 65% respecively.

• As expected, applying elimination in the case of circle border does not produce any

improvement (since there is nothing to eliminate!), and increases a bit the total time

of performance of the algorithms.

5)Impact of sort algorithms in the global behaviour

• The sort step in Graham’s algorithm almost define the global performance of the

algorithm, I mean, most of implementation time is concerned with the sort step and

it effectively eclipses the reamining steps. Therefore, when Quicksort was applied the

5



global performance of Graham (both V1 and V2) was Opn log nq and when Insertion

was applied the global performance was Opn2q.

• In general, terms Graham V1 and Graham V2 performs almost identically when

Quicksort is applied and they also performs almost identically when Insertion is applied.

Looking the table at detail, for the Quicksort case Graham V1 seems to be a bit better

than Graham V2, and in the Insertion case the opposite happens. In order to justify

this phenomenon take into account the following observations:

– In the sort step, Graham V2 only requires of at most two number’s comparisions

(px with qx, and in case of equality py with qy), while in Graham V1 it requires

finding the lowest-rightmost point (Opnq), assigning a vector to each point of

the sample (Opnq), and finally calculating a determinant to compare pairs of

vectors(a higher multiplicative constant for the n log n associated to Quicksort).

In conclusion, the sort step in Graham V1 is more expensive than in Graham

V1.

– The round trip in Graham V1 only visits each point once, while the round trip

in Graham V2 visits points twice, once for the minus infinity ordering and once

for the plus infinity ordering. Therefore, Graham V2 is more expensive than

Graham V1 in the round trip step.

When Quicksort is applied for the sort step it does not eclipses totally the round trip

step, this glabally produces that Graham V1 performs a bit better than Graham

V2. On the other hand, when Insertion is applied it eclipses totally the round trip

step, and this globally produces that Graham V2 performs better than Graham V1.

• The previous results also corroborates that Graham algorithm (I mean the round trip

specifically) is indifferent to the geometric features of the sample. Consequently, this

algorithm performs almost identically in all geometric shapes.

6


