Homework 3: Convex Hull
Fabian Andres Prada Nino

1)Algorithm’s Implementation.

e Jarvis. It was implemented using three methods: buscarInferiorDerecho(), buscar-
Sucesor(),and jarvis(). buscarInferiorDerecho() runs an O(n) search to identify the
point with lowest y coordinate (and largest x as a second comparision condition ), and
this becomes the initial vertex of the convex hull, v5. Once a vertex v, is added to the
convex hull, the method buscarSucesor() is applied over v to identify the next vertex
vg+1 of the convex hull in positive orientaton. For each input point p, buscarSucesor()
defines vectors centered at v, and directed to p, and sets as vy, the point whose vector
is leftmost. jarvis() invokes buscarInferiorDerecho() for a single time and then invokes
buscarSucesor() until v = vo.

e Graham V1. The implementation of this algorithm was much more complex than
Jarvis. It is divided in four major methods: buscarInferiorDerecho(), ordenarVer-
tices(),recorrer VerticesOrdenados(),and graham Variantel(). The method ordenarVer-
tices() defines vectors centered at the lowest-rightmost point and directed to any other
input point. Then, the additional method quicksortVectores() is invoked to sort these
vectors, doing this task in O(nlogn) time (taking in to account that quicksort had the
best results in randomly generated samples, I prefer this method instead of heapsort
and mergesort). recorrerVerticesOrdenados() visits the input points in the order in-
duced by the previous vector sorting. Each time a new point is visited, the current
convex path is updated. To do this, I created an array variable, int[|arraySucesion,
that stores the points added to the convex hull in the order they are visited, and the
variable int ultimaPosArray that indicates where the new point visted must be stored
in the array. The method graham Variantel() invokes the other three major methods
in the described order.

e Graham V2. The implementation of this algorithm was harder than Jarvis and
a bit easier than Graham V1. The algorithm is divided in three major meth-
ods: quicksortMenosInf(),recorrerMenosInfMasInf(),and graham Variante2(). quick-
sortMenosInf() sorts the points in positive order according to a point in minus infinity
position. To do this, the first criterion of comparision is ’larger x coordinate is lower’,
and the second criterion is "lower y coordinate is lower’. The sorting from a point in
plus infinity position is precisely the reverse of the previous result, so it’s not necce-
sary to run a new sort. recorrerMenosInfMasInf() first visits the list of point sorted
by minus infinity position to find the upper path of the convex hull, and inmediately



visits the list of points sorted by plus infinity position to find the lower path of the
convex hull.

2)Results in test sets.

Figure 1: These images shows the results of the algorithms applied to the given test sets.
The number of points in the convex hull of (a) is 13, and in the convex hull of (b) is 8.

(b) W © @

Figure 2: These images shows the results of the algorithms applied to samples of 1000 points
in a rectangle(a), a triangle(b), interior of a circle(c), and border of a circle(d). The amount
of points in the convex hull for these figures were 11, 13, 28, and 1000 respectively.

3)Comparision of Performance.

I took data sets of 100,1000,10000,20000,40000,80000, and 1600000 points uniformly dis-
tributed in rectangles, triangles, circles and border of circles. For each geometric shape, size
of the data set, and algorithm, the experiment was run 15 times, and the mean was taken
over the last 10 results:



Tiempo de Ejecucion(s=gs)

Tiempa de Ejecuzon(s=gs)

1 Muestra AleatoriaInterior Rectangulo 1 Muestra Aleatoria Interior Triangulo

o125 0,125 s
- // a0z v
003125 P 002125 /-

¥ " Li
0,015625 0015825

00078125 0,0078125

0,0029062 <
4 Lo 0,0035063 o

Oeo1ss31 e GrafEmyL 50015531 —a—GrahamyL

00003766 Grahamv2 00009766 Grahamvz

Tiempo de Ejecucion (s=gs)

0,0004883 0,0004883

00002441 0,0002441

00001221 gooo221

100 200 1600 8400 25500 102400 100 a0 1600 6400 25600 102400

Humero de Puntos Numero de Puntas

1 Muestra Aleatoria Interior Circulo 512 Muestra Aleatoria Borde Circulo

00625
0mLs
0015625

00078125 0,25
0125
0,0625
003125
0015625
00078125
5,0039063
5,0019531

00002441 0,0009765

0,0001221 0,0004883 _
0,0002441

5,104E-05 p 0,0001221 4
6104605

3082605 3,0526-05

126 0s T . ., . . ., 1,5266-05 T v : : T T
K 00 1500 se0 25600 102400 100 00 1600 &40 25500 10240

]
00039063 Janvis _/ ——Jarvis
0,0018531 S GrabamV1 LA - e Grshamy/ 1

Tiempo de Ejecucion(s=gs)

00008766 Grahamv2 " Grahamyz

00004833

Numero de Puntos Numero de Puntos

The results corroborates that the performance of Jarvis depends a lot on the amount
of points in the convex hull (O(nh), as seen in class). We can observe that Jarvis
is better than Graham V1 and Graham V2 for triangles and rectangles, and this
is because of the small output for such cases (see Figure 2). In the case of points in
the interior of circles, the performance of Jarvis get worse (compared with Graham)
as the amount of points in the sample (and consequently in the output) increases.
From the previous result, one could think that the amount of expected points in the
convex hull in the case of triangle or a rectangle is o(logn) while in the case of a circle
is Q(logn). Finally, in the case of the border of a circle, Jarvis performs O(n?) as
expected, since all the points belong to the hull.

Graham V1 and Graham V2 were almost indifferent to the particularities of the
figures, i.e., input distributions and output size, and performed very similarly in the
four cases. This was expected since these algorithms are almost indifferent to the
geometry of the figure: all the points are sorted to define the order they will be
visited, and then they are all visited once (in the case of Graham V1) or twice (in
the case of Graham V2). From the obatined resuts it is not possible to say in which
figure they performed best. However I expected that the best performance took place
for border of circles: once the sorting is done, the round trip is the easiest possible since
no exclusions are performed. Probably, this was not clearly evidenced in the results by
two reasons: the amount of experiments were insufficients, or the sort step (which is

3



O(nlogn) and is indiffernet to geometry) is so weighted that it hidden the round trips
(which is O(n) and is sensible to geometry).

e Graham V1 and Graham V2 performed almost identically in all the experiments.
I expected that they had a similar behaviour, but not so close!!. T expected that the
differences in the criterions used for sort the points and the differeneces in round trips
would lead to notable differences in performance. Again, I guess that the weigth of
the sort step (which in both cases is quicksort, O(nlogn)) hiddens steps like the round
trips (O(n)).(see section (5) for extended discussion).

4 )Elimination of Interior Points

To eliminate interior points I implemented an algorithm that eliminates points in the
interior of a quadriletaral. The vertex of the quadrilateral are the leftmost, rightmost,utmost
and lowest points of the sample. The following table compares the results (in seconds) of
applying elimination in the previous figures for samples of 80000 and 160000 points.

JARWAS GRAHANN1 GRAHAMNZ
Sin Eliminaoon Con Eliminagon Sin Eliminaoion Con Efminacion Sin Eiiminacion Con Eliminaoion
Rectangulo
20000 0,015521 001164 0056634 0,02611 0052461 0,02505
160000 0,03432 0,02023 0,110634 0,05568 0,0972243 0,047006
Triangulo
20000 0,0165 0,006346 0,0501 0,01206 0,0567 0,01105
160000 0,02912 0,014005 011089 0,02254 0,12664 0022429
Int Circule
80000 03,1048 004854 0051183 0,02115 Q046777 0,01931
1650000 0,3884 Q,143107 0084544 0,047733 0,0963312 0,03976
Borde Circulo
20000 69,5268 B2, 7476 0,042954 0,05368 0047664 0,05995
160000 289,2461 2B9,60923 0,101127 0,105358 0104407 0119034

e In the case of Jarvis, the improvement was about 33% in the rectangle, 50% in the
triangle and 50% in the interior of the circle. Since eliminating interior points is done
in O(n) time and do not affect the output size (i.e h is not changed) the percentage of
improvement for Jarvis is closely related with the percentage of points removed. Look-
ing at Figure 3 we observe that 'quadrialteral elimination’ removes a higher percentage
of points in triangles, then in circles and finally in rectangles.

e In the case of Graham V1 and Graham V2, the improvement was about 50%
in the rectangle, 80% in the triangle, and 60% in the interior of the of the circle.
Since Graham is O(nlogn) (and independent of the output size h), it is coherent to
have better improvements for Graham than Jarvis as effectively we get. In this case,
the relation between the percentage of points removed and the percentage of time
improvement is even closer (see Figure 3).



()

Figure 3: These images shows the results of quadrilateral elimination in samples of 1000
points inside a rectangle(a), a triangle(b) and a circle(c). The percentage of removed points
was 52%, 92%, and 65% respecively.

e As expected, applying elimination in the case of circle border does not produce any
improvement (since there is nothing to eliminate!), and increases a bit the total time
of performance of the algorithms.

5)Impact of sort algorithms in the global behaviour

GrahamV10uicksort Graham\V 20uicks ort Graham\V1lnsercao Graham\2Insercao
Rectangulo
20000 0,0087725 0,0083071 1,2615%4 1,21702
40000 0019215 0,0183865 536712 501791
20000 00395886 0,045401 22,3671 21,3358
Triangulo
20000 Q007723 0,008021 1,2418 1,15933
40000 0,01932 002144 5,3527 518536
30000 0,04282 0,04604 22,7256 20,9965
Int Circulo
20000 0008761 0,0082923 1,2644 1,2112
40000 0,01852 0,02076 5,3801 501184
30000 0,03999 0,04663 22,538 215088
Borde Circulo
20000 0007277 0,008294 1,2666 1,19284
40000 0,0153595 00163255 54358 5, 02678
20000 0035606 0,033809 22,8645 21,3583

e The sort step in Graham’s algorithm almost define the global performance of the
algorithm, I mean, most of implementation time is concerned with the sort step and
it effectively eclipses the reamining steps. Therefore, when Quicksort was applied the



global performance of Graham (both V1 and V2) was O(nlogn) and when Insertion
was applied the global performance was O(n?).

In general, terms Graham V1 and Graham V2 performs almost identically when
Quicksort is applied and they also performs almost identically when Insertion is applied.
Looking the table at detail, for the Quicksort case Graham V1 seems to be a bit better
than Graham V2, and in the Insertion case the opposite happens. In order to justify
this phenomenon take into account the following observations:

— In the sort step, Graham V2 only requires of at most two number’s comparisions
(py with ¢, and in case of equality p, with ¢,), while in Graham V1 it requires
finding the lowest-rightmost point (O(n)), assigning a vector to each point of
the sample (O(n)), and finally calculating a determinant to compare pairs of
vectors(a higher multiplicative constant for the nlogn associated to Quicksort).
In conclusion, the sort step in Graham V1 is more expensive than in Graham
V1.

— The round trip in Graham V1 only visits each point once, while the round trip
in Graham V2 visits points twice, once for the minus infinity ordering and once
for the plus infinity ordering. Therefore, Graham V2 is more expensive than
Graham V1 in the round trip step.

When Quicksort is applied for the sort step it does not eclipses totally the round trip
step, this glabally produces that Graham V1 performs a bit better than Graham
V2. On the other hand, when Insertion is applied it eclipses totally the round trip
step, and this globally produces that Graham V2 performs better than Graham V1.

The previous results also corroborates that Graham algorithm (I mean the round trip
specifically) is indifferent to the geometric features of the sample. Consequently, this
algorithm performs almost identically in all geometric shapes.



