2D COMPUTER GRAPHICS

Diego Nehab

Summer 2020

IMPA

DIFFERENTIAL GEOMETRY

Ideal model is implicit

Given a region $\Omega \subset R^2,$ define the indicator function $\mathbf{1}_\Omega: R^2 \to \{0,1\}$

$$\mathbf{1}_{\Omega}(p) = \begin{cases} 1, & p \in \Omega \\ 0, & p \notin \Omega \end{cases}$$

Ideal model is implicit

Given a region $\Omega \subset R^2$, define the indicator function $\mathbf{1}_\Omega: R^2 \to \{0,1\}$

$$\mathbf{1}_{\Omega}(p) = \begin{cases} 1, & p \in \Omega \\ 0, & p \notin \Omega \end{cases}$$

A.k.a. characteristic function $\chi_{\Omega}(p) = \mathbf{1}_{\Omega}(p)$

Ideal model is implicit

Given a region $\Omega \subset \mathbb{R}^2$, define the *indicator function* $\mathbf{1}_{\Omega} : \mathbb{R}^2 \to \{0, 1\}$

$$\mathbf{1}_{\Omega}(p) = \begin{cases} 1, & p \in \Omega \\ 0, & p \notin \Omega \end{cases}$$

A.k.a. characteristic function $\chi_{\Omega}(p) = \mathbf{1}_{\Omega}(p)$

Alternatively, using the *Iverson bracket*, $[p \in \Omega] = \mathbf{1}_{\Omega}(p)$, where [true] = 1 and [false] = 0

Simple shapes can be defined as primitives $\big[\langle p,\,r\rangle<0\big],\quad p,r\in {\bf RP}^2$

Simple shapes can be defined as primitives $\big[\langle p,\,r\rangle<0\big],\quad p,r\in {\bf RP}^2$

 $[f(x,y)<0], \quad f\in \mathbf{R}[x,y]$

$$\begin{split} & [\langle p, r \rangle < 0], \quad p, r \in \mathbf{RP}^2 \\ & [f(x, y) < 0], \quad f \in \mathbf{R}[x, y] \\ & [|p - c| < r], \quad p, c \in \mathbf{R}^2 \end{split}$$

$$[\langle p, r \rangle < 0], \quad p, r \in \mathbb{RP}^{2}$$

$$[f(x, y) < 0], \quad f \in \mathbb{R}[x, y]$$

$$[|p - c| < r], \quad p, c \in \mathbb{R}^{2}$$

$$[p = s p_{1} + t p_{2} + (1 - s - t) p_{3} \land 0 \le s, t \le 1], \quad s, t \in \mathbb{R}, p_{i} \in \mathbb{R}^{2}$$

$$\begin{split} [\langle p, r \rangle < 0], \quad p, r \in \mathbf{RP}^2 \\ [f(x, y) < 0], \quad f \in \mathbf{R}[x, y] \\ [|p - c| < r], \quad p, c \in \mathbf{R}^2 \\ [p = s p_1 + t p_2 + (1 - s - t) p_3 \land 0 \le s, t \le 1], \quad s, t \in \mathbf{R}, p_i \in \mathbf{R}^2 \end{split}$$

Complex shapes can be defined by logical expressions

$$\left[\langle p, r \rangle < 0 \right] \land \neg \left[|p - c| < r \right]$$

$$\begin{split} [\langle p, r \rangle < 0], \quad p, r \in \mathbf{RP}^2 \\ [f(x, y) < 0], \quad f \in \mathbf{R}[x, y] \\ [|p - c| < r], \quad p, c \in \mathbf{R}^2 \\ [p = s p_1 + t p_2 + (1 - s - t) p_3 \land 0 \le s, t \le 1], \quad s, t \in \mathbf{R}, p_i \in \mathbf{R}^2 \end{split}$$

Complex shapes can be defined by logical expressions

$$\left[\langle p, r \rangle < 0 \right] \land \neg \left[|p - c| < r \right]$$

Basis of CSG (constructive solid geometry)

More common to define interior by boundary (Jordan curve theorem)

More common to define interior by boundary (Jordan curve theorem)

Let $\partial \Omega$ denote the boundary of region Ω

Let $w(\partial \Omega, p)$ count the number of *signed* intersections with boundary $\partial \Omega$ when we move from *p* to infinity in any direction

Let $w(\partial \Omega, p)$ count the number of *signed* intersections with boundary $\partial \Omega$ when we move from *p* to infinity in any direction

 $w(\partial\Omega,p)$ is the winding number of the boundary $\partial\Omega$ around point p

Let $w(\partial \Omega, p)$ count the number of *signed* intersections with boundary $\partial \Omega$ when we move from *p* to infinity in any direction

 $w(\partial\Omega, p)$ is the winding number of the boundary $\partial\Omega$ around point pDefine interior by odd or non-zero winding numbers

 $[w(\partial\Omega, p) = 1 \pmod{2}]$ or $[w(\partial\Omega, p) \neq 0]$

Let $w(\partial \Omega, p)$ count the number of *signed* intersections with boundary $\partial \Omega$ when we move from *p* to infinity in any direction

 $w(\partial \Omega, p)$ is the winding number of the boundary $\partial \Omega$ around point pDefine interior by odd or non-zero winding numbers

 $[w(\partial\Omega, p) = 1 \pmod{2}]$ or $[w(\partial\Omega, p) \neq 0]$

In a sense, the definition is still implicit

Let $w(\partial \Omega, p)$ count the number of *signed* intersections with boundary $\partial \Omega$ when we move from *p* to infinity in any direction

 $w(\partial\Omega, p)$ is the winding number of the boundary $\partial\Omega$ around point pDefine interior by odd or non-zero winding numbers $[w(\partial\Omega, p) = 1 \pmod{2}]$ or $[w(\partial\Omega, p) \neq 0]$

In a sense, the definition is still implicit

But the "function" involves a complicated decision procedure

Let $w(\partial \Omega, p)$ count the number of *signed* intersections with boundary $\partial \Omega$ when we move from *p* to infinity in any direction

 $w(\partial\Omega, p)$ is the winding number of the boundary $\partial\Omega$ around point pDefine interior by odd or non-zero winding numbers $[w(\partial\Omega, p) = 1 \pmod{2}]$ or $[w(\partial\Omega, p) \neq 0]$

In a sense, the definition is still implicit

But the "function" involves a complicated decision procedure How do we define the boundary?

x, y are the coordinate functions of α

x, y are the coordinate functions of α

When I = [a, b], we say the curve α is closed if $\alpha(a) = \alpha(b)$ $\alpha \colon [0, 2\pi] \to \mathbb{R}^2 \quad \alpha(t) = (r \cos t, r \sin t)$

x, y are the coordinate functions of α

When I = [a, b], we say the curve α is closed if $\alpha(a) = \alpha(b)$ $\alpha \colon [0, 2\pi] \to \mathbb{R}^2 \quad \alpha(t) = (r \cos t, r \sin t)$

The trace $\alpha(I)$ is image of I through α . It is the trace that we care about

x, y are the coordinate functions of α

When I = [a, b], we say the curve α is closed if $\alpha(a) = \alpha(b)$ $\alpha \colon [0, 2\pi] \to \mathbb{R}^2 \quad \alpha(t) = (r \cos t, r \sin t)$

The trace $\alpha(I)$ is image of *I* through α . It is the trace that we care about A subset $S \subset \mathbb{R}^2$ is parametrized by α if there is $I \subset \mathbb{R}$ such that $\alpha(I) = S$

x, y are the coordinate functions of α

When I = [a, b], we say the curve α is closed if $\alpha(a) = \alpha(b)$ $\alpha \colon [0, 2\pi] \to \mathbb{R}^2 \quad \alpha(t) = (r \cos t, r \sin t)$

The trace $\alpha(I)$ is image of I through α . It is the trace that we care about A subset $S \subset \mathbb{R}^2$ is parametrized by α if there is $I \subset \mathbb{R}$ such that $\alpha(I) = S$ A subset $S \subset \mathbb{R}^2$ can be parametrized in many different ways $\beta: [a, b] \to \mathbb{R}^2 \quad \beta(t) = (r \cos(\omega t + \phi), r \sin(\omega t + \phi)), \quad b - a \ge \frac{2\pi}{\omega}$

Let $\alpha : I \to \mathbf{R}^2$ be a parameterization of $S \subset \mathbf{R}^2$. The velocity vector is $\alpha'(t) = (x'(t), y'(t))$

The velocity vector is $\alpha'(t) = (x'(t), y'(t))$

A regular point $\alpha(t)$ is a point where $\alpha'(t)$ exists and $\alpha'(t) \neq 0$

• What if $\alpha'(t) = 0$?

The velocity vector is $\alpha'(t) = (x'(t), y'(t))$

A regular point $\alpha(t)$ is a point where $\alpha'(t)$ exists and $\alpha'(t) \neq 0$

• What if $\alpha'(t) = 0$?

A is curve α is *regular* in $J \subset I$ if all points in $\alpha(J)$ are regular

The velocity vector is $\alpha'(t) = (x'(t), y'(t))$

A regular point $\alpha(t)$ is a point where $\alpha'(t)$ exists and $\alpha'(t) \neq 0$

• What if $\alpha'(t) = 0$?

A is curve α is *regular* in $J \subset I$ if all points in $\alpha(J)$ are regular The *speed* is given by $v(t) = \|\alpha'(t)\|$

The velocity vector is $\alpha'(t) = (x'(t), y'(t))$

A regular point $\alpha(t)$ is a point where $\alpha'(t)$ exists and $\alpha'(t) \neq 0$

• What if $\alpha'(t) = 0$?

A is curve α is *regular* in $J \subset I$ if all points in $\alpha(J)$ are regular The speed is given by $v(t) = \|\alpha'(t)\|$

If $\alpha(t)$ is regular, $T(t) = \alpha'(t)/v(t)$ is the unit tangent to α

The velocity vector is $\alpha'(t) = (x'(t), y'(t))$

A regular point $\alpha(t)$ is a point where $\alpha'(t)$ exists and $\alpha'(t) \neq 0$

• What if $\alpha'(t) = 0$?

A is curve α is *regular* in $J \subset I$ if all points in $\alpha(J)$ are regular The *speed* is given by $v(t) = ||\alpha'(t)||$ If $\alpha(t)$ is regular, $T(t) = \alpha'(t)/v(t)$ is the *unit tangent* to α Are SVG paths regular?

The velocity vector is $\alpha'(t) = (x'(t), y'(t))$

A regular point $\alpha(t)$ is a point where $\alpha'(t)$ exists and $\alpha'(t) \neq 0$

• What if $\alpha'(t) = 0$?

A is curve α is *regular* in $J \subset I$ if all points in $\alpha(J)$ are regular The *speed* is given by $v(t) = ||\alpha'(t)||$ If $\alpha(t)$ is regular, $T(t) = \alpha'(t)/v(t)$ is the *unit tangent* to α

Are SVG paths regular?

Are individual SVG segments regular?

ARC LENGTH

The arc-length of a curve segment $\alpha : [a, b] \rightarrow \mathbb{R}^2$ is

$$s = \int_{a}^{b} \left| \alpha'(t) \right| dt$$

- Makes sense from physics' time integral of speed
- Also makes sense from *rectification*

ARC LENGTH

The arc-length of a curve segment $\alpha : [a, b] \rightarrow \mathbb{R}^2$ is

$$s = \int_{a}^{b} \left| \alpha'(t) \right| dt$$

- Makes sense from physics' time integral of speed
- Also makes sense from rectification

Not all curves have a length

• E.g. $\alpha(t) = t \sin(1/t), \quad t \in [0, 1]$

ARC LENGTH

The arc-length of a curve segment $\alpha : [a, b] \rightarrow \mathbb{R}^2$ is

$$s = \int_{a}^{b} \left| \alpha'(t) \right| dt$$

- Makes sense from physics' time integral of speed
- Also makes sense from rectification

Not all curves have a length

- E.g. $\alpha(t) = t \sin(1/t), \quad t \in [0, 1]$
- Koch snowflake

- A positive reparameterization has $h'(J) \subset \mathbf{R}_{>0}$
- A negative reparameterization has $h'(J) \subset {\sf R}_{<0}$

- A positive reparameterization has $h'(J) \subset \mathbf{R}_{>0}$
- A negative reparameterization has $h'(J) \subset {\sf R}_{<0}$

The arc-length is invariant to reparameterizations $\beta: [c, d] \to \mathbb{R}^2$ $\int_c^d |\beta'(t)| \, dt$

- A positive reparameterization has $h'(J) \subset \mathbf{R}_{>0}$
- · A negative reparameterization has $h'(J) \subset {\sf R}_{<0}$

The arc-length is invariant to reparameterizations $\beta : [c, d] \to \mathbb{R}^2$ $\int_c^d |\beta'(t)| dt = \int_c^d |\alpha'(h(t))| h'(t) dt$

- A positive reparameterization has $h'(J) \subset \mathbf{R}_{>0}$
- · A negative reparameterization has $h'(J) \subset {\sf R}_{<0}$

The arc-length is invariant to reparameterizations $\beta : [c, d] \to \mathbb{R}^2$ $\int_c^d |\beta'(t)| dt = \int_c^d |\alpha'(h(t))| h'(t) dt$ $= \int_c^b |\alpha'(u)| du \qquad (u = h(t))$ Let $\alpha : (a, b) \to \mathbb{R}^2$ be a curve. The arc-length function of α is defined by $s(t) = \int_{\alpha}^{t} |\alpha'(t)| dt$ Let $\alpha : (a, b) \to \mathbb{R}^2$ be a curve. The arc-length function of α is defined by $s(t) = \int_{\alpha}^{t} |\alpha'(t)| dt$

Every regular curve admits an arc-length reparameterization

$$\mathsf{s}(t) = \int_a^t \left| \alpha'(t) \right| dt$$

Every regular curve admits an arc-length reparameterization

Regularity means $s'(t) = |\alpha'(t)| > 0$, which means s(t) is strictly increasing, which means s has a differentiable inverse u with

$$u'(t) = \frac{1}{s'(u(t))} = \frac{1}{\left|\alpha'(u(t))\right|}$$

$$\mathsf{s}(t) = \int_a^t \left| \alpha'(t) \right| dt$$

Every regular curve admits an arc-length reparameterization

Regularity means $s'(t) = |\alpha'(t)| > 0$, which means s(t) is strictly increasing, which means s has a differentiable inverse u with

$$u'(t) = \frac{1}{s'(u(t))} = \frac{1}{\left|\alpha'(u(t))\right|}$$

Consider $\beta = \alpha \circ u$

 $|\beta'(t)|$

$$\mathsf{s}(t) = \int_a^t \left| \alpha'(t) \right| dt$$

Every regular curve admits an arc-length reparameterization

Regularity means $s'(t) = |\alpha'(t)| > 0$, which means s(t) is strictly increasing, which means s has a differentiable inverse u with

$$u'(t) = \frac{1}{s'(u(t))} = \frac{1}{\left|\alpha'(u(t))\right|}$$

Consider $\beta = \alpha \circ u$

$$|\beta'(t)| = \left|\alpha'(u(t)) u'(t)\right|$$

$$s(t) = \int_{a}^{t} \left| \alpha'(t) \right| dt$$

Every regular curve admits an arc-length reparameterization

Regularity means $s'(t) = |\alpha'(t)| > 0$, which means s(t) is strictly increasing, which means s has a differentiable inverse u with

$$u'(t) = \frac{1}{s'(u(t))} = \frac{1}{\left|\alpha'(u(t))\right|}$$

Consider $\beta = \alpha \circ u$
$$|\beta'(t)| = \left|\alpha'(u(t)) u'(t)\right| = \frac{\left|\alpha'(u(t))\right|}{\left|\alpha'(u(t))\right|} = 1$$

$$\mathsf{s}(t) = \int_a^t \left| \alpha'(t) \right| dt$$

Every regular curve admits an arc-length reparameterization

Regularity means $s'(t) = |\alpha'(t)| > 0$, which means s(t) is strictly increasing, which means s has a differentiable inverse u with

$$u'(t) = \frac{1}{s'(u(t))} = \frac{1}{\left|\alpha'(u(t))\right|}$$

Consider $\beta = \alpha \circ u$
$$|\beta'(t)| = \left|\alpha'(u(t)) u'(t)\right| = \frac{\left|\alpha'(u(t))\right|}{\left|\alpha'(u(t))\right|} = 1$$

We get

$$s(t) = \int_c^t \left|\beta'(t)\right| dt = t - c$$

This is easier said than done

This is easier said than done

Canonic parabola $y^2 = 4ax$ with focus at (a, 0) and directrix x = -a

$$\alpha(t) = (at^2, 2at) \implies$$
$$|\alpha'(t)| = 2a\sqrt{1+t^2}$$
$$\int_0^t |\alpha'(t)| dt = at\sqrt{t^2+1} + a\log\left(\sqrt{t^2+1}+t\right)$$

This is easier said than done

Canonic parabola $y^2 = 4ax$ with focus at (a, 0) and directrix x = -a

$$\alpha(t) = (at^2, 2at) \implies$$
$$|\alpha'(t)| = 2a\sqrt{1+t^2}$$
$$\int_0^t |\alpha'(t)| dt = at\sqrt{t^2+1} + a\log\left(\sqrt{t^2+1}+t\right)$$

Standard ellipse

$$\beta(t) = (a \cos t, b \sin t) \implies \\ |\beta'(t)| = b\sqrt{1 - m \sin^2(t)}, \quad m = 1 - \frac{a^2}{b^2} \\ \int_0^t |\beta'(t)| \, dt = \text{Elliptic integral of the second kinc}$$

Let $\beta(t)$ be an arc-length parameterization $T(t) = \beta'(t)$ is the *unit tangent* to β

Let $\beta(t)$ be an arc-length parameterization $T(t) = \beta'(t)$ is the unit tangent to β $T'(t) = \beta''(t)$ is normal to β $\langle T(t), T(t) \rangle = 1 \implies \langle T'(t), T(t) \rangle = 0$

Let $\beta(t)$ be an arc-length parameterization $T(t) = \beta'(t)$ is the unit tangent to β $T'(t) = \beta''(t)$ is normal to β $\langle T(t), T(t) \rangle = 1 \implies \langle T'(t), T(t) \rangle = 0$ $\kappa(t) = |T'(t)|$ is the curvature of β

Let $\beta(t)$ be an arc-length parameterization $T(t) = \beta'(t)$ is the unit tangent to β $T'(t) = \beta''(t)$ is normal to β $\langle T(t), T(t) \rangle = 1 \implies \langle T'(t), T(t) \rangle = 0$ $\kappa(t) = |T'(t)|$ is the curvature of β

 $ho(t)=1/\kappa(t)$ is the radius of curvature of eta

Let $\beta(t)$ be an arc-length parameterization $T(t) = \beta'(t)$ is the unit tangent to β $T'(t) = \beta''(t)$ is normal to β $\langle T(t), T(t) \rangle = 1 \implies \langle T'(t), T(t) \rangle = 0$ $\kappa(t) = |T'(t)|$ is the curvature of β $\rho(t) = 1/\kappa(t)$ is the radius of curvature of β

 $\kappa(t)$ and ho(t) measure the way curve eta is turning

Let $\beta(t)$ be an arc-length parameterization $T(t) = \beta'(t)$ is the unit tangent to β $T'(t) = \beta''(t)$ is normal to β $\langle T(t), T(t) \rangle = 1 \implies \langle T'(t), T(t) \rangle = 0$ $\kappa(t) = |T'(t)|$ is the curvature of β

- $ho(t)=1/\kappa(t)$ is the radius of curvature of eta
- $\kappa(t)$ and $\rho(t)$ measure the way curve β is turning
- N(t) = T'(t)/|T'(t)| is the unit normal to β

If β is an arc-length parameterization,

$$|\beta'(t) \times \beta''(t)| = |T(t) \times \kappa(t)N(t)| = \kappa(t)$$

If β is an arc-length parameterization,

$$|\beta'(t) \times \beta''(t)| = |T(t) \times \kappa(t)N(t)| = \kappa(t)$$

If α is a general parameterization with $\beta = \alpha \circ u$, we obtain $\kappa(t) = |\alpha(u)' \times \alpha(u)''|$

If β is an arc-length parameterization,

$$|\beta'(t) \times \beta''(t)| = |T(t) \times \kappa(t)N(t)| = \kappa(t)$$

If α is a general parameterization with $\beta = \alpha \circ u$, we obtain $\kappa(t) = |\alpha(u)' \times \alpha(u)''|$ $= |\alpha'(u) u' \times (\alpha''(u)(u')^2 + \alpha'(u) u'')|$

If β is an arc-length parameterization,

$$\beta'(t) \times \beta''(t) = |T(t) \times \kappa(t)N(t)| = \kappa(t)$$

If α is a general parameterization with $\beta = \alpha \circ u$, we obtain $\kappa(t) = |\alpha(u)' \times \alpha(u)''|$ $= |\alpha'(u) u' \times (\alpha''(u)(u')^2 + \alpha'(u) u'')|$ $= |\alpha'(u) u' \times \alpha''(u) (u')^2|$

If β is an arc-length parameterization,

$$\beta'(t) \times \beta''(t) = |T(t) \times \kappa(t)N(t)| = \kappa(t)$$

If α is a general parameterization with $\beta = \alpha \circ u$, we obtain $\kappa(t) = |\alpha(u)' \times \alpha(u)''|$ $= |\alpha'(u) u' \times (\alpha''(u)(u')^2 + \alpha'(u) u'')|$ $= |\alpha'(u) u' \times \alpha''(u) (u')^2|$ $= |\alpha'(u) \times \alpha''(u)| |u'|^3$

If β is an arc-length parameterization,

$$\beta'(t) \times \beta''(t) = |T(t) \times \kappa(t)N(t)| = \kappa(t)$$

If α is a general parameterization with $\beta = \alpha \circ u$, we obtain $\kappa(t) = |\alpha(u)' \times \alpha(u)''|$ $= |\alpha'(u) u' \times (\alpha''(u)(u')^2 + \alpha'(u) u'')|$ $= |\alpha'(u) u' \times \alpha''(u) (u')^2|$ $= |\alpha'(u) \times \alpha''(u)| |u'|^3$ $= \frac{|\alpha'(u) \times \alpha''(u)|}{|\alpha'(u)|^3}$ For planar curves, the normal N(t) as the right-hand rotation of T(t)

For planar curves, the normal N(t) as the right-hand rotation of T(t)

Then define the signed curvature

$$\kappa(t) = \frac{\alpha'(u) \times \alpha''(u)}{|\alpha'(u)|^3}$$

For planar curves, the normal N(t) as the right-hand rotation of T(t)

Then define the signed curvature

$$\kappa(t) = \frac{\alpha'(u) \times \alpha''(u)}{|\alpha'(u)|^3}$$

Either way, the center of curvature for a curve α is at $\alpha(t) + \rho(t)N(t)$

For planar curves, the normal N(t) as the right-hand rotation of T(t)

Then define the signed curvature

$$\kappa(t) = \frac{\alpha'(u) \times \alpha''(u)}{|\alpha'(u)|^3}$$

Either way, the center of curvature for a curve α is at $\alpha(t) + \rho(t)N(t)$

The osculating circle has the center and radius of curvature

For planar curves, the normal N(t) as the right-hand rotation of T(t)Then define the *signed* curvature

$$\kappa(t) = \frac{\alpha'(u) \times \alpha''(u)}{|\alpha'(u)|^3}$$

Either way, the center of curvature for a curve α is at $\alpha(t) + \rho(t)N(t)$

The osculating circle has the center and radius of curvature

- An inflection is a point where the curvature vanishes
- I.e. where the 1st and 2nd derivatives are collinear

A different way of specifying the interior

STROKING

A different way of specifying the interior

Given a curve $\alpha : I \to \mathbb{R}^2$ and a stroke width $w \in \mathbb{R}$, we can define endpoints $p_1, p_2 \in \mathbb{R}^2$

 $p_1(t) = \alpha(t) + \frac{W}{2}N(t)$ and $p_2(t) = \alpha(t) - \frac{W}{2}N(t)$

A different way of specifying the interior

Given a curve $\alpha : I \to \mathbb{R}^2$ and a stroke width $w \in \mathbb{R}$, we can define endpoints $p_1, p_2 \in \mathbb{R}^2$

$$p_1(t) = \alpha(t) + \frac{W}{2}N(t)$$
 and $p_2(t) = \alpha(t) - \frac{W}{2}N(t)$

We can then define the line segment

$$\ell(t) = [(1-u)p_1(t) + up_2(t), 0 < u < 1]$$
(1)

A different way of specifying the interior

Given a curve $\alpha : I \to \mathbf{R}^2$ and a stroke width $w \in \mathbf{R}$, we can define endpoints $p_1, p_2 \in \mathbf{R}^2$

$$p_1(t) = \alpha(t) + \frac{W}{2}N(t)$$
 and $p_2(t) = \alpha(t) - \frac{W}{2}N(t)$

We can then define the line segment

$$\ell(t) = \left[(1-u) p_1(t) + u p_2(t), 0 < u < 1 \right]$$
(1)

The stroked region is $[p \in \ell(t), t \in I]$

A different way of specifying the interior

Given a curve $\alpha : I \to \mathbf{R}^2$ and a stroke width $w \in \mathbf{R}$, we can define endpoints $p_1, p_2 \in \mathbf{R}^2$

$$p_1(t) = \alpha(t) + \frac{w}{2}N(t)$$
 and $p_2(t) = \alpha(t) - \frac{w}{2}N(t)$

We can then define the line segment

$$\ell(t) = \left[(1-u) p_1(t) + u p_2(t), 0 < u < 1 \right]$$
(1)

The stroked region is $[p \in \ell(t), t \in I]$

How to decide if point p belongs to the stroked curve segment?

A different way of specifying the interior

Given a curve $\alpha : I \to \mathbb{R}^2$ and a stroke width $w \in \mathbb{R}$, we can define endpoints $p_1, p_2 \in \mathbb{R}^2$

$$p_1(t) = \alpha(t) + \frac{w}{2}N(t)$$
 and $p_2(t) = \alpha(t) - \frac{w}{2}N(t)$

We can then define the line segment

$$\ell(t) = \left[(1-u) p_1(t) + u p_2(t), 0 < u < 1 \right]$$
(1)

The stroked region is $[p \in \ell(t), t \in I]$

How to decide if point *p* belongs to the stroked curve segment?

Dashing requires the arc length

Find a simple formula for the curvature at t = 0

Find a simple formula for the curvature at t = 0

Let curve $\alpha(t)$ have endpoints $p_0, p_1, p_2, \ldots, p_n$

 $\alpha'(0) = n(p_1 - p_0)$ and $\alpha''(0) = (n - 1)n((p_2 - p_1) - (p_1 - p_0))$

Find a simple formula for the curvature at t = 0

Let curve $\alpha(t)$ have endpoints $p_0, p_1, p_2, \ldots, p_n$

$$\alpha'(0) = n(p_1 - p_0)$$
 and $\alpha''(0) = (n - 1)n((p_2 - p_1) - (p_1 - p_0))$
 $\kappa(0) = \frac{\alpha'(0) \times \alpha''(0)}{|\alpha'(0)|^3}$

Find a simple formula for the curvature at t = 0

Let curve $\alpha(t)$ have endpoints $p_0, p_1, p_2, \ldots, p_n$

$$\alpha'(0) = n(p_1 - p_0) \text{ and } \alpha''(0) = (n - 1)n((p_2 - p_1) - (p_1 - p_0))$$

$$\kappa(0) = \frac{\alpha'(0) \times \alpha''(0)}{|\alpha'(0)|^3}$$

$$= \frac{n - 1}{n} \frac{(p_1 - p_0) \times (p_2 - p_1)}{|p_1 - p_0|^3}$$

Find a simple formula for the curvature at t = 0

Let curve $\alpha(t)$ have endpoints $p_0, p_1, p_2, \ldots, p_n$

$$\alpha'(0) = n(p_1 - p_0) \text{ and } \alpha''(0) = (n - 1)n((p_2 - p_1) - (p_1 - p_0))$$

$$\kappa(0) = \frac{\alpha'(0) \times \alpha''(0)}{|\alpha'(0)|^3}$$

$$= \frac{n - 1}{n} \frac{(p_1 - p_0) \times (p_2 - p_1)}{|p_1 - p_0|^3}$$

$$= \frac{n - 1}{n} \frac{h}{a^2}$$

Find a simple formula for the curvature at t = 0

Let curve $\alpha(t)$ have endpoints $p_0, p_1, p_2, \ldots, p_n$

$$\alpha'(0) = n(p_1 - p_0) \text{ and } \alpha''(0) = (n - 1)n((p_2 - p_1) - (p_1 - p_0))$$

$$\kappa(0) = \frac{\alpha'(0) \times \alpha''(0)}{|\alpha'(0)|^3}$$

$$= \frac{n - 1}{n} \frac{(p_1 - p_0) \times (p_2 - p_1)}{|p_1 - p_0|^3}$$

$$= \frac{n - 1}{n} \frac{h}{a^2}$$

How would you compute the arc length? [Jüttler, 1997]

Find a simple formula for the curvature at t = 0

Let curve $\alpha(t)$ have endpoints $p_0, p_1, p_2, \ldots, p_n$

$$\alpha'(0) = n(p_1 - p_0) \text{ and } \alpha''(0) = (n - 1)n((p_2 - p_1) - (p_1 - p_0))$$

$$\kappa(0) = \frac{\alpha'(0) \times \alpha''(0)}{|\alpha'(0)|^3}$$

$$= \frac{n - 1}{n} \frac{(p_1 - p_0) \times (p_2 - p_1)}{|p_1 - p_0|^3}$$

$$= \frac{n - 1}{n} \frac{h}{a^2}$$

How would you compute the arc length? [Jüttler, 1997]

Show offset and evolute curves

References

- B. Jüttler. A vegetarian approach to optimal parameterizations. *Computer Aided Geometric Design*, 14(9):887–890, 1997.
- E. Kreyszig. Differential Geometry. Dover, 1991.
- B. O'Neill. *Elementary Differential Geometry*. Academic Press, revised 2nd edition, 2006.