2D Computer Graphics

Diego Nehab
Summer 2020

IMPA

DIFFERENTIAL GEOMETRY

INSIDE-OUTSIDE TEST

Ideal model is implicit
Given a region $\Omega \subset R^{2}$, define the indicator function $1_{\Omega}: R^{2} \rightarrow\{0,1\}$

$$
1_{\Omega}(p)= \begin{cases}1, & p \in \Omega \\ 0, & p \notin \Omega\end{cases}
$$

INSIDE-OUTSIDE TEST

Ideal model is implicit
Given a region $\Omega \subset R^{2}$, define the indicator function $1_{\Omega}: R^{2} \rightarrow\{0,1\}$

$$
1_{\Omega}(p)= \begin{cases}1, & p \in \Omega \\ 0, & p \notin \Omega\end{cases}
$$

A.k.a. characteristic function $\chi_{\Omega}(p)=1_{\Omega}(p)$

INSIDE-OUTSIDE TEST

Ideal model is implicit
Given a region $\Omega \subset R^{2}$, define the indicator function $1_{\Omega}: R^{2} \rightarrow\{0,1\}$

$$
1_{\Omega}(p)= \begin{cases}1, & p \in \Omega \\ 0, & p \notin \Omega\end{cases}
$$

A.k.a. characteristic function $\chi_{\Omega}(p)=1_{\Omega}(p)$

Alternatively, using the Iverson bracket, $[p \in \Omega]=1_{\Omega}(p)$, where $[$ true $]=1$ and $[$ false $]=0$

INSIDE-OUTSIDE TEST

Simple shapes can be defined as primitives

$$
[\langle p, r\rangle<0], \quad p, r \in \mathrm{RP}^{2}
$$

INSIDE-OUTSIDE TEST

Simple shapes can be defined as primitives

$$
\begin{array}{ll}
{[\langle p, r\rangle<0],} & p, r \in \operatorname{RP}^{2} \\
{[f(x, y)<0],} & f \in R[x, y]
\end{array}
$$

INSIDE-OUTSIDE TEST

Simple shapes can be defined as primitives

$$
\begin{array}{ll}
{[\langle p, r\rangle<0],} & p, r \in \operatorname{RP}^{2} \\
{[f(x, y)<0],} & f \in \operatorname{R}[x, y] \\
{[|p-c|<r],} & p, c \in R^{2}
\end{array}
$$

INSIDE-OUTSIDE TEST

Simple shapes can be defined as primitives

$$
\begin{gathered}
{[\langle p, r\rangle<0], \quad p, r \in \mathbf{R P}^{2}} \\
{[f(x, y)<0], \quad f \in \mathrm{R}[x, y]} \\
{[|p-c|<r], \quad p, c \in \mathbf{R}^{2}} \\
{\left[p=s p_{1}+t p_{2}+(1-s-t) p_{3} \wedge 0 \leq s, t \leq 1\right], \quad s, t \in \mathrm{R}, p_{i} \in \mathbf{R}^{2}}
\end{gathered}
$$

INSIDE-OUTSIDE TEST

Simple shapes can be defined as primitives

$$
\begin{gathered}
{[\langle p, r\rangle<0], \quad p, r \in \mathbf{R P}^{2}} \\
{[f(x, y)<0], \quad f \in \mathrm{R}[x, y]} \\
{[|p-c|<r], \quad p, c \in \mathbf{R}^{2}} \\
{\left[p=s p_{1}+t p_{2}+(1-s-t) p_{3} \wedge 0 \leq s, t \leq 1\right], \quad s, t \in \mathrm{R}, p_{i} \in \mathbf{R}^{2}}
\end{gathered}
$$

Complex shapes can be defined by logical expressions

$$
[\langle p, r\rangle<0] \wedge \neg[|p-c|<r]
$$

INSIDE-OUTSIDE TEST

Simple shapes can be defined as primitives

$$
\begin{gathered}
{[\langle p, r\rangle<0], \quad p, r \in \mathbf{R P}^{2}} \\
{[f(x, y)<0], \quad f \in \mathrm{R}[x, y]} \\
{[|p-c|<r], \quad p, c \in \mathbf{R}^{2}} \\
{\left[p=s p_{1}+t p_{2}+(1-s-t) p_{3} \wedge 0 \leq s, t \leq 1\right], \quad s, t \in \mathrm{R}, p_{i} \in \mathbf{R}^{2}}
\end{gathered}
$$

Complex shapes can be defined by logical expressions

$$
[\langle p, r\rangle<0] \wedge \neg[|p-c|<r]
$$

Basis of CSG (constructive solid geometry)

INSIDE-OUTSIDE TEST

More common to define interior by boundary (Jordan curve theorem)

INSIDE-OUTSIDE TEST

More common to define interior by boundary (Jordan curve theorem)
Let $\partial \Omega$ denote the boundary of region Ω

INSIDE-OUTSIDE TEST

More common to define interior by boundary (Jordan curve theorem) Let $\partial \Omega$ denote the boundary of region Ω

Let $w(\partial \Omega, p)$ count the number of signed intersections with boundary $\partial \Omega$ when we move from p to infinity in any direction

INSIDE-OUTSIDE TEST

More common to define interior by boundary (Jordan curve theorem) Let $\partial \Omega$ denote the boundary of region Ω

Let $w(\partial \Omega, p)$ count the number of signed intersections with boundary $\partial \Omega$ when we move from p to infinity in any direction
$w(\partial \Omega, p)$ is the winding number of the boundary $\partial \Omega$ around point p

INSIDE-OUTSIDE TEST

More common to define interior by boundary (Jordan curve theorem) Let $\partial \Omega$ denote the boundary of region Ω

Let $w(\partial \Omega, p)$ count the number of signed intersections with boundary $\partial \Omega$ when we move from p to infinity in any direction $w(\partial \Omega, p)$ is the winding number of the boundary $\partial \Omega$ around point p Define interior by odd or non-zero winding numbers

$$
[w(\partial \Omega, p)=1(\bmod 2)] \quad \text { or } \quad[w(\partial \Omega, p) \neq 0]
$$

INSIDE-OUTSIDE TEST

More common to define interior by boundary (Jordan curve theorem)
Let $\partial \Omega$ denote the boundary of region Ω
Let $w(\partial \Omega, p)$ count the number of signed intersections with boundary $\partial \Omega$ when we move from p to infinity in any direction $w(\partial \Omega, p)$ is the winding number of the boundary $\partial \Omega$ around point p Define interior by odd or non-zero winding numbers

$$
[w(\partial \Omega, p)=1(\bmod 2)] \quad \text { or } \quad[w(\partial \Omega, p) \neq 0]
$$

In a sense, the definition is still implicit

INSIDE-OUTSIDE TEST

More common to define interior by boundary (Jordan curve theorem)
Let $\partial \Omega$ denote the boundary of region Ω
Let $w(\partial \Omega, p)$ count the number of signed intersections with boundary $\partial \Omega$ when we move from p to infinity in any direction
$w(\partial \Omega, p)$ is the winding number of the boundary $\partial \Omega$ around point p
Define interior by odd or non-zero winding numbers

$$
[w(\partial \Omega, p)=1(\bmod 2)] \quad \text { or } \quad[w(\partial \Omega, p) \neq 0]
$$

In a sense, the definition is still implicit
But the "function" involves a complicated decision procedure

INSIDE-OUTSIDE TEST

More common to define interior by boundary (Jordan curve theorem)
Let $\partial \Omega$ denote the boundary of region Ω
Let $w(\partial \Omega, p)$ count the number of signed intersections with boundary $\partial \Omega$ when we move from p to infinity in any direction
$w(\partial \Omega, p)$ is the winding number of the boundary $\partial \Omega$ around point p
Define interior by odd or non-zero winding numbers

$$
[w(\partial \Omega, p)=1(\bmod 2)] \quad \text { or } \quad[w(\partial \Omega, p) \neq 0]
$$

In a sense, the definition is still implicit
But the "function" involves a complicated decision procedure How do we define the boundary?

PLANAR PARAMETRIC CURVE

Piecewise differentiable function $\alpha: I \subset \mathbf{R} \rightarrow \mathbf{R}^{2}$ from an interval/ to \mathbf{R}^{2}

$$
t \mapsto \alpha(t)=(x(t), y(t))
$$

PLANAR PARAMETRIC CURVE

Piecewise differentiable function $\alpha: I \subset \mathbf{R} \rightarrow \mathbf{R}^{2}$ from an interval/ to \mathbf{R}^{2}

$$
t \mapsto \alpha(t)=(x(t), y(t))
$$

x, y are the coordinate functions of α

PLANAR PARAMETRIC CURVE

Piecewise differentiable function $\alpha: / \subset \mathbf{R} \rightarrow \mathbf{R}^{2}$ from an interval / to \mathbf{R}^{2}

$$
t \mapsto \alpha(t)=(x(t), y(t))
$$

x, y are the coordinate functions of α
When $I=[a, b]$, we say the curve α is closed if $\alpha(a)=\alpha(b)$

$$
\alpha:[0,2 \pi] \rightarrow \mathrm{R}^{2} \quad \alpha(t)=(r \cos t, r \sin t)
$$

PLANAR PARAMETRIC CURVE

Piecewise differentiable function $\alpha: I \subset \mathbf{R} \rightarrow \mathbf{R}^{2}$ from an interval/ to \mathbf{R}^{2}

$$
t \mapsto \alpha(t)=(x(t), y(t))
$$

x, y are the coordinate functions of α
When $I=[a, b]$, we say the curve α is closed if $\alpha(a)=\alpha(b)$

$$
\alpha:[0,2 \pi] \rightarrow \mathrm{R}^{2} \quad \alpha(t)=(r \cos t, r \sin t)
$$

The trace $\alpha(I)$ is image of I through α. It is the trace that we care about

PLANAR PARAMETRIC CURVE

Piecewise differentiable function $\alpha: I \subset \mathbf{R} \rightarrow \mathbf{R}^{2}$ from an interval/ to \mathbf{R}^{2}

$$
t \mapsto \alpha(t)=(x(t), y(t))
$$

x, y are the coordinate functions of α
When $I=[a, b]$, we say the curve α is closed if $\alpha(a)=\alpha(b)$

$$
\alpha:[0,2 \pi] \rightarrow \mathrm{R}^{2} \quad \alpha(t)=(r \cos t, r \sin t)
$$

The trace $\alpha(I)$ is image of I through α. It is the trace that we care about A subset $S \subset \mathbf{R}^{2}$ is parametrized by α if there is $I \subset \mathbf{R}$ such that $\alpha(I)=S$

PLANAR PARAMETRIC CURVE

Piecewise differentiable function $\alpha: I \subset \mathbf{R} \rightarrow \mathbf{R}^{2}$ from an interval/ to \mathbf{R}^{2}

$$
t \mapsto \alpha(t)=(x(t), y(t))
$$

x, y are the coordinate functions of α
When $I=[a, b]$, we say the curve α is closed if $\alpha(a)=\alpha(b)$

$$
\alpha:[0,2 \pi] \rightarrow \mathrm{R}^{2} \quad \alpha(t)=(r \cos t, r \sin t)
$$

The trace $\alpha(I)$ is image of I through α. It is the trace that we care about A subset $S \subset \mathbf{R}^{2}$ is parametrized by α if there is $I \subset \mathbf{R}$ such that $\alpha(I)=S$ A subset $S \subset R^{2}$ can be parametrized in many different ways

$$
\beta:[a, b] \rightarrow \mathbf{R}^{2} \quad \beta(t)=(r \cos (\omega t+\phi), r \sin (\omega t+\phi)), \quad b-a \geq \frac{2 \pi}{\omega}
$$

Regularity, velocity, and tangent

Let $\alpha: I \rightarrow R^{2}$ be a parameterization of $S \subset R^{2}$.

Regularity, velocity, and tangent

Let $\alpha: I \rightarrow \mathrm{R}^{2}$ be a parameterization of $S \subset \mathrm{R}^{2}$.
The velocity vector is $\alpha^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$

Regularity, velocity, and tangent

Let $\alpha: I \rightarrow \mathrm{R}^{2}$ be a parameterization of $S \subset \mathrm{R}^{2}$.
The velocity vector is $\alpha^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$
A regular point $\alpha(t)$ is a point where $\alpha^{\prime}(t)$ exists and $\alpha^{\prime}(t) \neq 0$

- What if $\alpha^{\prime}(t)=0$?

Regularity, velocity, and tangent

Let $\alpha: I \rightarrow \mathrm{R}^{2}$ be a parameterization of $S \subset \mathrm{R}^{2}$.
The velocity vector is $\alpha^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$
A regular point $\alpha(t)$ is a point where $\alpha^{\prime}(t)$ exists and $\alpha^{\prime}(t) \neq 0$

- What if $\alpha^{\prime}(t)=0$?

A is curve α is regular in $J \subset I$ if all points in $\alpha(J)$ are regular

Regularity, velocity, and tangent

Let $\alpha: I \rightarrow \mathrm{R}^{2}$ be a parameterization of $S \subset \mathrm{R}^{2}$.
The velocity vector is $\alpha^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$
A regular point $\alpha(t)$ is a point where $\alpha^{\prime}(t)$ exists and $\alpha^{\prime}(t) \neq 0$
-What if $\alpha^{\prime}(t)=0$?
A is curve α is regular in $J \subset I$ if all points in $\alpha(J)$ are regular The speed is given by $v(t)=\left\|\alpha^{\prime}(t)\right\|$

Regularity, velocity, and tangent

Let $\alpha: I \rightarrow \mathrm{R}^{2}$ be a parameterization of $S \subset \mathrm{R}^{2}$.
The velocity vector is $\alpha^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$
A regular point $\alpha(t)$ is a point where $\alpha^{\prime}(t)$ exists and $\alpha^{\prime}(t) \neq 0$

- What if $\alpha^{\prime}(t)=0$?

A is curve α is regular in $J \subset I$ if all points in $\alpha(J)$ are regular
The speed is given by $v(t)=\left\|\alpha^{\prime}(t)\right\|$
If $\alpha(t)$ is regular, $T(t)=\alpha^{\prime}(t) / v(t)$ is the unit tangent to α

Regularity, velocity, and tangent

Let $\alpha: I \rightarrow \mathrm{R}^{2}$ be a parameterization of $S \subset \mathrm{R}^{2}$.
The velocity vector is $\alpha^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$
A regular point $\alpha(t)$ is a point where $\alpha^{\prime}(t)$ exists and $\alpha^{\prime}(t) \neq 0$

- What if $\alpha^{\prime}(t)=0$?

A is curve α is regular in $J \subset I$ if all points in $\alpha(J)$ are regular
The speed is given by $v(t)=\left\|\alpha^{\prime}(t)\right\|$
If $\alpha(t)$ is regular, $T(t)=\alpha^{\prime}(t) / v(t)$ is the unit tangent to α
Are SVG paths regular?

Regularity, velocity, and tangent

Let $\alpha: I \rightarrow \mathrm{R}^{2}$ be a parameterization of $S \subset \mathrm{R}^{2}$.
The velocity vector is $\alpha^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$
A regular point $\alpha(t)$ is a point where $\alpha^{\prime}(t)$ exists and $\alpha^{\prime}(t) \neq 0$
-What if $\alpha^{\prime}(t)=0$?
A is curve α is regular in $J \subset I$ if all points in $\alpha(J)$ are regular
The speed is given by $v(t)=\left\|\alpha^{\prime}(t)\right\|$
If $\alpha(t)$ is regular, $T(t)=\alpha^{\prime}(t) / v(t)$ is the unit tangent to α
Are SVG paths regular?
Are individual SVG segments regular?

ARC LENGTH

The arc-length of a curve segment $\alpha:[a, b] \rightarrow R^{2}$ is

$$
s=\int_{a}^{b}\left|\alpha^{\prime}(t)\right| d t
$$

- Makes sense from physics' time integral of speed
- Also makes sense from rectification

ARC LENGTH

The arc-length of a curve segment $\alpha:[a, b] \rightarrow R^{2}$ is

$$
s=\int_{a}^{b}\left|\alpha^{\prime}(t)\right| d t
$$

- Makes sense from physics' time integral of speed
- Also makes sense from rectification

Not all curves have a length

- E.g. $\alpha(t)=t \sin (1 / t), \quad t \in[0,1]$

ARC LENGTH

The arc-length of a curve segment $\alpha:[a, b] \rightarrow R^{2}$ is

$$
s=\int_{a}^{b}\left|\alpha^{\prime}(t)\right| d t
$$

- Makes sense from physics' time integral of speed
- Also makes sense from rectification

Not all curves have a length

- E.g. $\alpha(t)=t \sin (1 / t), \quad t \in[0,1]$
- Koch snowflake

REPARAMETERIZATION

A curve $\beta: J \rightarrow \mathrm{R}^{2}$ is a reparameterization of α if there is a monotonic differentiable function $h: J \rightarrow$ I such that $\beta=\alpha \circ h$

- A positive reparameterization has $h^{\prime}(J) \subset R_{>0}$
- A negative reparameterization has $h^{\prime}(J) \subset R_{<0}$

REPARAMETERIZATION

A curve $\beta: J \rightarrow \mathrm{R}^{2}$ is a reparameterization of α if there is a monotonic differentiable function $h: J \rightarrow$ I such that $\beta=\alpha \circ h$

- A positive reparameterization has $h^{\prime}(J) \subset R_{>0}$
- A negative reparameterization has $h^{\prime}(J) \subset \mathrm{R}_{<0}$

The arc-length is invariant to reparameterizations $\beta:[c, d] \rightarrow \mathbf{R}^{2}$

$$
\int_{c}^{d}\left|\beta^{\prime}(t)\right| d t
$$

REPARAMETERIZATION

A curve $\beta: J \rightarrow \mathrm{R}^{2}$ is a reparameterization of α if there is a monotonic differentiable function $h: J \rightarrow$ I such that $\beta=\alpha \circ h$

- A positive reparameterization has $h^{\prime}(J) \subset R_{>0}$
- A negative reparameterization has $h^{\prime}(J) \subset \mathrm{R}_{<0}$

The arc-length is invariant to reparameterizations $\beta:[c, d] \rightarrow \mathbf{R}^{2}$

$$
\int_{c}^{d}\left|\beta^{\prime}(t)\right| d t=\int_{c}^{d}\left|\alpha^{\prime}(h(t))\right| h^{\prime}(t) d t
$$

REPARAMETERIZATION

A curve $\beta: J \rightarrow \mathbf{R}^{2}$ is a reparameterization of α if there is a monotonic differentiable function $h: J \rightarrow$ I such that $\beta=\alpha \circ h$

- A positive reparameterization has $h^{\prime}(J) \subset R_{>0}$
- A negative reparameterization has $h^{\prime}(J) \subset \mathrm{R}_{<0}$

The arc-length is invariant to reparameterizations $\beta:[c, d] \rightarrow \mathbf{R}^{2}$

$$
\begin{aligned}
\int_{c}^{d}\left|\beta^{\prime}(t)\right| d t & =\int_{c}^{d}\left|\alpha^{\prime}(h(t))\right| h^{\prime}(t) d t \\
& =\int_{a}^{b}\left|\alpha^{\prime}(u)\right| d u \quad(u=h(t))
\end{aligned}
$$

ARC-LENGTH REPARAMETERIZATION

Let $\alpha:(a, b) \rightarrow \mathbf{R}^{2}$ be a curve. The arc-length function of α is defined by

$$
s(t)=\int_{a}^{t}\left|\alpha^{\prime}(t)\right| d t
$$

ARC-LENGTH REPARAMETERIZATION

Let $\alpha:(a, b) \rightarrow \mathbf{R}^{2}$ be a curve. The arc-length function of α is defined by

$$
s(t)=\int_{a}^{t}\left|\alpha^{\prime}(t)\right| d t
$$

Every regular curve admits an arc-length reparameterization

ARC-LENGTH REPARAMETERIZATION

Let $\alpha:(a, b) \rightarrow \mathbf{R}^{2}$ be a curve. The arc-length function of α is defined by

$$
s(t)=\int_{a}^{t}\left|\alpha^{\prime}(t)\right| d t
$$

Every regular curve admits an arc-length reparameterization Regularity means $s^{\prime}(t)=\left|\alpha^{\prime}(t)\right|>0$, which means $s(t)$ is strictly increasing, which means s has a differentiable inverse u with

$$
u^{\prime}(t)=\frac{1}{s^{\prime}(u(t))}=\frac{1}{\left|\alpha^{\prime}(u(t))\right|}
$$

ARC-LENGTH REPARAMETERIZATION

Let $\alpha:(a, b) \rightarrow \mathbf{R}^{2}$ be a curve. The arc-length function of α is defined by

$$
s(t)=\int_{a}^{t}\left|\alpha^{\prime}(t)\right| d t
$$

Every regular curve admits an arc-length reparameterization
Regularity means $s^{\prime}(t)=\left|\alpha^{\prime}(t)\right|>0$, which means $s(t)$ is strictly increasing, which means s has a differentiable inverse u with

$$
u^{\prime}(t)=\frac{1}{s^{\prime}(u(t))}=\frac{1}{\left|\alpha^{\prime}(u(t))\right|}
$$

Consider $\beta=\alpha \circ u$

$$
\left|\beta^{\prime}(t)\right|
$$

ARC-LENGTH REPARAMETERIZATION

Let $\alpha:(a, b) \rightarrow \mathbf{R}^{2}$ be a curve. The arc-length function of α is defined by

$$
s(t)=\int_{a}^{t}\left|\alpha^{\prime}(t)\right| d t
$$

Every regular curve admits an arc-length reparameterization
Regularity means $s^{\prime}(t)=\left|\alpha^{\prime}(t)\right|>0$, which means $s(t)$ is strictly increasing, which means s has a differentiable inverse u with

$$
u^{\prime}(t)=\frac{1}{s^{\prime}(u(t))}=\frac{1}{\left|\alpha^{\prime}(u(t))\right|}
$$

Consider $\beta=\alpha \circ u$

$$
\left|\beta^{\prime}(t)\right|=\left|\alpha^{\prime}(u(t)) u^{\prime}(t)\right|
$$

ARC-LENGTH REPARAMETERIZATION

Let $\alpha:(a, b) \rightarrow \mathbf{R}^{2}$ be a curve. The arc-length function of α is defined by

$$
s(t)=\int_{a}^{t}\left|\alpha^{\prime}(t)\right| d t
$$

Every regular curve admits an arc-length reparameterization
Regularity means $s^{\prime}(t)=\left|\alpha^{\prime}(t)\right|>0$, which means $s(t)$ is strictly increasing, which means s has a differentiable inverse u with

$$
u^{\prime}(t)=\frac{1}{s^{\prime}(u(t))}=\frac{1}{\left|\alpha^{\prime}(u(t))\right|}
$$

Consider $\beta=\alpha \circ u$

$$
\left|\beta^{\prime}(t)\right|=\left|\alpha^{\prime}(u(t)) u^{\prime}(t)\right|=\frac{\left|\alpha^{\prime}(u(t))\right|}{\left|\alpha^{\prime}(u(t))\right|}=1
$$

ARC-LENGTH REPARAMETERIZATION

Let $\alpha:(a, b) \rightarrow \mathbf{R}^{2}$ be a curve. The arc-length function of α is defined by

$$
s(t)=\int_{a}^{t}\left|\alpha^{\prime}(t)\right| d t
$$

Every regular curve admits an arc-length reparameterization
Regularity means $s^{\prime}(t)=\left|\alpha^{\prime}(t)\right|>0$, which means $s(t)$ is strictly increasing, which means s has a differentiable inverse u with

$$
u^{\prime}(t)=\frac{1}{s^{\prime}(u(t))}=\frac{1}{\left|\alpha^{\prime}(u(t))\right|}
$$

Consider $\beta=\alpha \circ u$

$$
\left|\beta^{\prime}(t)\right|=\left|\alpha^{\prime}(u(t)) u^{\prime}(t)\right|=\frac{\left|\alpha^{\prime}(u(t))\right|}{\left|\alpha^{\prime}(u(t))\right|}=1
$$

We get

$$
s(t)=\int_{c}^{t}\left|\beta^{\prime}(t)\right| d t=t-c
$$

ARC-LENGTH REPARAMETERIZATION

This is easier said than done

ARC-LENGTH REPARAMETERIZATION

This is easier said than done
Canonic parabola $y^{2}=4 a x$ with focus at $(a, 0)$ and directrix $x=-a$

$$
\begin{aligned}
\alpha(t) & =\left(a t^{2}, 2 a t\right) \Rightarrow \\
\left|\alpha^{\prime}(t)\right| & =2 a \sqrt{1+t^{2}} \\
\int_{0}^{t}\left|\alpha^{\prime}(t)\right| d t & =a t \sqrt{t^{2}+1}+a \log \left(\sqrt{t^{2}+1}+t\right)
\end{aligned}
$$

ARC-LENGTH REPARAMETERIZATION

This is easier said than done
Canonic parabola $y^{2}=4 a x$ with focus at $(a, 0)$ and directrix $x=-a$

$$
\begin{aligned}
\alpha(t) & =\left(a t^{2}, 2 a t\right) \Rightarrow \\
\left|\alpha^{\prime}(t)\right| & =2 a \sqrt{1+t^{2}} \\
\int_{0}^{t}\left|\alpha^{\prime}(t)\right| d t & =a t \sqrt{t^{2}+1}+a \log \left(\sqrt{t^{2}+1}+t\right)
\end{aligned}
$$

Standard ellipse

$$
\begin{aligned}
\beta(t) & =(a \cos t, b \sin t) \quad \Rightarrow \\
\left|\beta^{\prime}(t)\right| & =b \sqrt{1-m \sin ^{2}(t)}, \quad m=1-\frac{a^{2}}{b^{2}} \\
\int_{0}^{t}\left|\beta^{\prime}(t)\right| d t & =\text { Elliptic integral of the second kind }
\end{aligned}
$$

Curvature

Let $\beta(t)$ be an arc-length parameterization
$T(t)=\beta^{\prime}(t)$ is the unit tangent to β

Curvature

Let $\beta(t)$ be an arc-length parameterization
$T(t)=\beta^{\prime}(t)$ is the unit tangent to β
$T^{\prime}(t)=\beta^{\prime \prime}(t)$ is normal to β

$$
\langle T(t), T(t)\rangle=1 \quad \Rightarrow \quad\left\langle T^{\prime}(t), T(t)\right\rangle=0
$$

Curvature

Let $\beta(t)$ be an arc-length parameterization
$T(t)=\beta^{\prime}(t)$ is the unit tangent to β
$T^{\prime}(t)=\beta^{\prime \prime}(t)$ is normal to β

$$
\langle T(t), T(t)\rangle=1 \quad \Rightarrow \quad\left\langle T^{\prime}(t), T(t)\right\rangle=0
$$

$\kappa(t)=\left|T^{\prime}(t)\right|$ is the curvature of β

Curvature

Let $\beta(t)$ be an arc-length parameterization
$T(t)=\beta^{\prime}(t)$ is the unit tangent to β
$T^{\prime}(t)=\beta^{\prime \prime}(t)$ is normal to β

$$
\langle T(t), T(t)\rangle=1 \quad \Rightarrow \quad\left\langle T^{\prime}(t), T(t)\right\rangle=0
$$

$\kappa(t)=\left|T^{\prime}(t)\right|$ is the curvature of β
$\rho(t)=1 / \kappa(t)$ is the radius of curvature of β

Curvature

Let $\beta(t)$ be an arc-length parameterization
$T(t)=\beta^{\prime}(t)$ is the unit tangent to β
$T^{\prime}(t)=\beta^{\prime \prime}(t)$ is normal to β

$$
\langle T(t), T(t)\rangle=1 \quad \Rightarrow \quad\left\langle T^{\prime}(t), T(t)\right\rangle=0
$$

$\kappa(t)=\left|T^{\prime}(t)\right|$ is the curvature of β
$\rho(t)=1 / \kappa(t)$ is the radius of curvature of β
$\kappa(t)$ and $\rho(t)$ measure the way curve β is turning

Curvature

Let $\beta(t)$ be an arc-length parameterization
$T(t)=\beta^{\prime}(t)$ is the unit tangent to β
$T^{\prime}(t)=\beta^{\prime \prime}(t)$ is normal to β

$$
\langle T(t), T(t)\rangle=1 \quad \Rightarrow \quad\left\langle T^{\prime}(t), T(t)\right\rangle=0
$$

$\kappa(t)=\left|T^{\prime}(t)\right|$ is the curvature of β
$\rho(t)=1 / \kappa(t)$ is the radius of curvature of β
$\kappa(t)$ and $\rho(t)$ measure the way curve β is turning
$N(t)=T^{\prime}(t) / T^{\prime}(t) \mid$ is the unit normal to β

CURVATURE

If β is an arc-length parameterization,

$$
\left|\beta^{\prime}(t) \times \beta^{\prime \prime}(t)\right|=|T(t) \times \kappa(t) N(t)|=\kappa(t)
$$

Curvature

If β is an arc-length parameterization,

$$
\left|\beta^{\prime}(t) \times \beta^{\prime \prime}(t)\right|=|T(t) \times \kappa(t) N(t)|=\kappa(t)
$$

If α is a general parameterization with $\beta=\alpha \circ \boldsymbol{u}$, we obtain

$$
\kappa(t)=\left|\alpha(u)^{\prime} \times \alpha(u)^{\prime \prime}\right|
$$

CURVATURE

If β is an arc-length parameterization,

$$
\left|\beta^{\prime}(t) \times \beta^{\prime \prime}(t)\right|=|T(t) \times \kappa(t) N(t)|=\kappa(t)
$$

If α is a general parameterization with $\beta=\alpha \circ \boldsymbol{u}$, we obtain

$$
\begin{aligned}
\kappa(t) & =\left|\alpha(u)^{\prime} \times \alpha(u)^{\prime \prime}\right| \\
& =\left|\alpha^{\prime}(u) u^{\prime} \times\left(\alpha^{\prime \prime}(u)\left(u^{\prime}\right)^{2}+\alpha^{\prime}(u) u^{\prime \prime}\right)\right|
\end{aligned}
$$

Curvature

If β is an arc-length parameterization,

$$
\left|\beta^{\prime}(t) \times \beta^{\prime \prime}(t)\right|=|T(t) \times \kappa(t) N(t)|=\kappa(t)
$$

If α is a general parameterization with $\beta=\alpha \circ \boldsymbol{u}$, we obtain

$$
\begin{aligned}
\kappa(t) & =\left|\alpha(u)^{\prime} \times \alpha(u)^{\prime \prime}\right| \\
& =\left|\alpha^{\prime}(u) u^{\prime} \times\left(\alpha^{\prime \prime}(u)\left(u^{\prime}\right)^{2}+\alpha^{\prime}(u) u^{\prime \prime}\right)\right| \\
& =\left|\alpha^{\prime}(u) u^{\prime} \times \alpha^{\prime \prime}(u)\left(u^{\prime}\right)^{2}\right|
\end{aligned}
$$

Curvature

If β is an arc-length parameterization,

$$
\left|\beta^{\prime}(t) \times \beta^{\prime \prime}(t)\right|=|T(t) \times \kappa(t) N(t)|=\kappa(t)
$$

If α is a general parameterization with $\beta=\alpha \circ \boldsymbol{u}$, we obtain

$$
\begin{aligned}
\kappa(t) & =\left|\alpha(u)^{\prime} \times \alpha(u)^{\prime \prime}\right| \\
& =\left|\alpha^{\prime}(u) u^{\prime} \times\left(\alpha^{\prime \prime}(u)\left(u^{\prime}\right)^{2}+\alpha^{\prime}(u) u^{\prime \prime}\right)\right| \\
& =\left|\alpha^{\prime}(u) u^{\prime} \times \alpha^{\prime \prime}(u)\left(u^{\prime}\right)^{2}\right| \\
& =\left|\alpha^{\prime}(u) \times \alpha^{\prime \prime}(u)\right|\left|u^{\prime}\right|^{3}
\end{aligned}
$$

Curvature

If β is an arc-length parameterization,

$$
\left|\beta^{\prime}(t) \times \beta^{\prime \prime}(t)\right|=|T(t) \times \kappa(t) N(t)|=\kappa(t)
$$

If α is a general parameterization with $\beta=\alpha \circ \boldsymbol{u}$, we obtain

$$
\begin{aligned}
\kappa(t) & =\left|\alpha(u)^{\prime} \times \alpha(u)^{\prime \prime}\right| \\
& =\left|\alpha^{\prime}(u) u^{\prime} \times\left(\alpha^{\prime \prime}(u)\left(u^{\prime}\right)^{2}+\alpha^{\prime}(u) u^{\prime \prime}\right)\right| \\
& =\left|\alpha^{\prime}(u) u^{\prime} \times \alpha^{\prime \prime}(u)\left(u^{\prime}\right)^{2}\right| \\
& =\left|\alpha^{\prime}(u) \times \alpha^{\prime \prime}(u)\right|\left|u^{\prime}\right|^{3} \\
& =\frac{\left|\alpha^{\prime}(u) \times \alpha^{\prime \prime}(u)\right|}{\left|\alpha^{\prime}(u)\right|^{3}}
\end{aligned}
$$

Curvature

For planar curves, the normal $N(t)$ as the right-hand rotation of $T(t)$

Curvature

For planar curves, the normal $N(t)$ as the right-hand rotation of $T(t)$
Then define the signed curvature

$$
\kappa(t)=\frac{\alpha^{\prime}(u) \times \alpha^{\prime \prime}(u)}{\left|\alpha^{\prime}(u)\right|^{3}}
$$

Curvature

For planar curves, the normal $N(t)$ as the right-hand rotation of $T(t)$
Then define the signed curvature

$$
\kappa(t)=\frac{\alpha^{\prime}(u) \times \alpha^{\prime \prime}(u)}{\left|\alpha^{\prime}(u)\right|^{3}}
$$

Either way, the center of curvature for a curve α is at $\alpha(t)+\rho(t) N(t)$

Curvature

For planar curves, the normal $N(t)$ as the right-hand rotation of $T(t)$
Then define the signed curvature

$$
\kappa(t)=\frac{\alpha^{\prime}(u) \times \alpha^{\prime \prime}(u)}{\left|\alpha^{\prime}(u)\right|^{3}}
$$

Either way, the center of curvature for a curve α is at $\alpha(t)+\rho(t) N(t)$
The osculating circle has the center and radius of curvature

Curvature

For planar curves, the normal $N(t)$ as the right-hand rotation of $T(t)$
Then define the signed curvature

$$
\kappa(t)=\frac{\alpha^{\prime}(u) \times \alpha^{\prime \prime}(u)}{\left|\alpha^{\prime}(u)\right|^{3}}
$$

Either way, the center of curvature for a curve α is at $\alpha(t)+\rho(t) N(t)$
The osculating circle has the center and radius of curvature
An inflection is a point where the curvature vanishes
I.e. where the 1st and 2 nd derivatives are collinear

Stroking

A different way of specifying the interior

Stroking

A different way of specifying the interior
Given a curve $\alpha: I \rightarrow R^{2}$ and a stroke width $w \in R$, we can define endpoints $p_{1}, p_{2} \in R^{2}$

$$
p_{1}(t)=\alpha(t)+\frac{w}{2} N(t) \quad \text { and } \quad p_{2}(t)=\alpha(t)-\frac{w}{2} N(t)
$$

Stroking

A different way of specifying the interior
Given a curve $\alpha: I \rightarrow R^{2}$ and a stroke width $w \in R$, we can define endpoints $p_{1}, p_{2} \in R^{2}$

$$
p_{1}(t)=\alpha(t)+\frac{w}{2} N(t) \quad \text { and } \quad p_{2}(t)=\alpha(t)-\frac{w}{2} N(t)
$$

We can then define the line segment

$$
\begin{equation*}
\ell(t)=\left[(1-u) p_{1}(t)+u p_{2}(t), 0<u<1\right] \tag{1}
\end{equation*}
$$

Stroking

A different way of specifying the interior
Given a curve $\alpha: I \rightarrow R^{2}$ and a stroke width $w \in R$, we can define endpoints $p_{1}, p_{2} \in R^{2}$

$$
p_{1}(t)=\alpha(t)+\frac{w}{2} N(t) \quad \text { and } \quad p_{2}(t)=\alpha(t)-\frac{w}{2} N(t)
$$

We can then define the line segment

$$
\begin{equation*}
\ell(t)=\left[(1-u) p_{1}(t)+u p_{2}(t), 0<u<1\right] \tag{1}
\end{equation*}
$$

The stroked region is $[p \in \ell(t), t \in I]$

Stroking

A different way of specifying the interior
Given a curve $\alpha: I \rightarrow R^{2}$ and a stroke width $w \in R$, we can define endpoints $p_{1}, p_{2} \in R^{2}$

$$
p_{1}(t)=\alpha(t)+\frac{w}{2} N(t) \quad \text { and } \quad p_{2}(t)=\alpha(t)-\frac{w}{2} N(t)
$$

We can then define the line segment

$$
\begin{equation*}
\ell(t)=\left[(1-u) p_{1}(t)+u p_{2}(t), 0<u<1\right] \tag{1}
\end{equation*}
$$

The stroked region is $[p \in \ell(t), t \in I]$
How to decide if point p belongs to the stroked curve segment?

Stroking

A different way of specifying the interior
Given a curve $\alpha: I \rightarrow R^{2}$ and a stroke width $w \in R$, we can define endpoints $p_{1}, p_{2} \in R^{2}$

$$
p_{1}(t)=\alpha(t)+\frac{w}{2} N(t) \quad \text { and } \quad p_{2}(t)=\alpha(t)-\frac{w}{2} N(t)
$$

We can then define the line segment

$$
\begin{equation*}
\ell(t)=\left[(1-u) p_{1}(t)+u p_{2}(t), 0<u<1\right] \tag{1}
\end{equation*}
$$

The stroked region is $[p \in \ell(t), t \in I]$
How to decide if point p belongs to the stroked curve segment?
Dashing requires the arc length

BÉzier curves

Find a simple formula for the curvature at $t=0$

BÉzier curves

Find a simple formula for the curvature at $t=0$
Let curve $\alpha(t)$ have endpoints $p_{0}, p_{1}, p_{2}, \ldots, p_{n}$

$$
\alpha^{\prime}(0)=n\left(p_{1}-p_{0}\right) \quad \text { and } \quad \alpha^{\prime \prime}(0)=(n-1) n\left(\left(p_{2}-p_{1}\right)-\left(p_{1}-p_{0}\right)\right)
$$

BÉzier curves

Find a simple formula for the curvature at $t=0$
Let curve $\alpha(t)$ have endpoints $p_{0}, p_{1}, p_{2}, \ldots, p_{n}$

$$
\begin{aligned}
\alpha^{\prime}(0) & =n\left(p_{1}-p_{0}\right) \quad \text { and } \quad \alpha^{\prime \prime}(0)=(n-1) n\left(\left(p_{2}-p_{1}\right)-\left(p_{1}-p_{0}\right)\right) \\
\kappa(0) & =\frac{\alpha^{\prime}(0) \times \alpha^{\prime \prime}(0)}{\left|\alpha^{\prime}(0)\right|^{3}}
\end{aligned}
$$

BÉzier curves

Find a simple formula for the curvature at $t=0$
Let curve $\alpha(t)$ have endpoints $p_{0}, p_{1}, p_{2}, \ldots, p_{n}$

$$
\begin{aligned}
\alpha^{\prime}(0) & =n\left(p_{1}-p_{0}\right) \quad \text { and } \quad \alpha^{\prime \prime}(0)=(n-1) n\left(\left(p_{2}-p_{1}\right)-\left(p_{1}-p_{0}\right)\right) \\
\kappa(0) & =\frac{\alpha^{\prime}(0) \times \alpha^{\prime \prime}(0)}{\left|\alpha^{\prime}(0)\right|^{3}} \\
& =\frac{n-1}{n} \frac{\left(p_{1}-p_{0}\right) \times\left(p_{2}-p_{1}\right)}{\left|p_{1}-p_{0}\right|^{3}}
\end{aligned}
$$

BÉzier curves

Find a simple formula for the curvature at $t=0$
Let curve $\alpha(t)$ have endpoints $p_{0}, p_{1}, p_{2}, \ldots, p_{n}$

$$
\begin{aligned}
\alpha^{\prime}(0) & =n\left(p_{1}-p_{0}\right) \text { and } \alpha^{\prime \prime}(0)=(n-1) n\left(\left(p_{2}-p_{1}\right)-\left(p_{1}-p_{0}\right)\right) \\
\kappa(0) & =\frac{\alpha^{\prime}(0) \times \alpha^{\prime \prime}(0)}{\left|\alpha^{\prime}(0)\right|^{3}} \\
& =\frac{n-1}{n} \frac{\left(p_{1}-p_{0}\right) \times\left(p_{2}-p_{1}\right)}{\left|p_{1}-p_{0}\right|^{3}} \\
& =\frac{n-1}{n} \frac{h}{a^{2}}
\end{aligned}
$$

BÉzier curves

Find a simple formula for the curvature at $t=0$
Let curve $\alpha(t)$ have endpoints $p_{0}, p_{1}, p_{2}, \ldots, p_{n}$

$$
\begin{aligned}
\alpha^{\prime}(0) & =n\left(p_{1}-p_{0}\right) \text { and } \alpha^{\prime \prime}(0)=(n-1) n\left(\left(p_{2}-p_{1}\right)-\left(p_{1}-p_{0}\right)\right) \\
\kappa(0) & =\frac{\alpha^{\prime}(0) \times \alpha^{\prime \prime}(0)}{\left|\alpha^{\prime}(0)\right|^{3}} \\
& =\frac{n-1}{n} \frac{\left(p_{1}-p_{0}\right) \times\left(p_{2}-p_{1}\right)}{\left|p_{1}-p_{0}\right|^{3}} \\
& =\frac{n-1}{n} \frac{h}{a^{2}}
\end{aligned}
$$

How would you compute the arc length? [Jüttler, 1997]

BÉzier curves

Find a simple formula for the curvature at $t=0$
Let curve $\alpha(t)$ have endpoints $p_{0}, p_{1}, p_{2}, \ldots, p_{n}$

$$
\begin{aligned}
\alpha^{\prime}(0) & =n\left(p_{1}-p_{0}\right) \text { and } \alpha^{\prime \prime}(0)=(n-1) n\left(\left(p_{2}-p_{1}\right)-\left(p_{1}-p_{0}\right)\right) \\
\kappa(0) & =\frac{\alpha^{\prime}(0) \times \alpha^{\prime \prime}(0)}{\left|\alpha^{\prime}(0)\right|^{3}} \\
& =\frac{n-1}{n} \frac{\left(p_{1}-p_{0}\right) \times\left(p_{2}-p_{1}\right)}{\left|p_{1}-p_{0}\right|^{3}} \\
& =\frac{n-1}{n} \frac{h}{a^{2}}
\end{aligned}
$$

How would you compute the arc length? [Jüttler, 1997]
Show offset and evolute curves

References

B. Jüttler. A vegetarian approach to optimal parameterizations. Computer Aided Geometric Design, 14(9):887-890, 1997.
E. Kreyszig. Differential Geometry. Dover, 1991.
B. O'Neill. Elementary Differential Geometry. Academic Press, revised 2nd edition, 2006.

