
2D Computer Graphics

Diego Nehab

Summer 2020

IMPA

1



Gradients in SVG [SVG, 2011]



Color ramp

A color ramp is a function c

c : [0, 1] → sRGBA
that maps the interval [0, 1] to colors with transparency

Defined by a list of n stops

(ti, ci) ∈ [0, 1]× sRGBA, with i ∈ {1, . . . ,n}, ti < ti+1

c(t) is linear by parts

c(t) =
(ti+1 − t) ci + (t − ti) ci+1

ti+1 − ti
, ti ≤ t < ti+1

2



Color ramp

A color ramp is a function c

c : [0, 1] → sRGBA
that maps the interval [0, 1] to colors with transparency

Defined by a list of n stops

(ti, ci) ∈ [0, 1]× sRGBA, with i ∈ {1, . . . ,n}, ti < ti+1

c(t) is linear by parts

c(t) =
(ti+1 − t) ci + (t − ti) ci+1

ti+1 − ti
, ti ≤ t < ti+1

2



Color ramp

A color ramp is a function c

c : [0, 1] → sRGBA
that maps the interval [0, 1] to colors with transparency

Defined by a list of n stops

(ti, ci) ∈ [0, 1]× sRGBA, with i ∈ {1, . . . ,n}, ti < ti+1

c(t) is linear by parts

c(t) =
(ti+1 − t) ci + (t − ti) ci+1

ti+1 − ti
, ti ≤ t < ti+1

2



Wrapping function (or spread method)

A wrapping function s

s : R → [0, 1]

maps a real number to the domain of the color ramp

E.g., pad (or clamp), repeat (or wrap), and reflect (or mirror)

pad(t) = min
(
1,max(0, t)

)

repeat(t) = t − btc
reflect(t) = 2

∣∣ 1
2 t − b 1

2 t +
1
2c
∣∣

3



Wrapping function (or spread method)

A wrapping function s

s : R → [0, 1]

maps a real number to the domain of the color ramp

E.g., pad (or clamp), repeat (or wrap), and reflect (or mirror)

pad(t) = min
(
1,max(0, t)

)

repeat(t) = t − btc
reflect(t) = 2

∣∣ 1
2 t − b 1

2 t +
1
2c
∣∣

3



Wrapping function (or spread method)

A wrapping function s

s : R → [0, 1]

maps a real number to the domain of the color ramp

E.g., pad (or clamp), repeat (or wrap), and reflect (or mirror)

pad(t) = min
(
1,max(0, t)

)
repeat(t) = t − btc

reflect(t) = 2
∣∣ 1
2 t − b 1

2 t +
1
2c
∣∣

3



Wrapping function (or spread method)

A wrapping function s

s : R → [0, 1]

maps a real number to the domain of the color ramp

E.g., pad (or clamp), repeat (or wrap), and reflect (or mirror)

pad(t) = min
(
1,max(0, t)

)
repeat(t) = t − btc
reflect(t) = 2

∣∣ 1
2 t − b 1

2 t +
1
2c
∣∣

3



Linear gradient mapping

A linear gradient mapping is a function `

` : R2 → R

parametrized by 2 control points p1,p2

p1

p2

p

It computes the normalized projected length of p− p1 into p2 − p1

`(p) =
〈p− p1, p2 − p1〉
〈p2 − p1, p2 − p1〉

4



Linear gradient mapping

A linear gradient mapping is a function `

` : R2 → R

parametrized by 2 control points p1,p2

p1

p2

p

It computes the normalized projected length of p− p1 into p2 − p1

`(p) =
〈p− p1, p2 − p1〉
〈p2 − p1, p2 − p1〉

4



Linear gradient mapping

A linear gradient mapping is a function `

` : R2 → R

parametrized by 2 control points p1,p2

p1

p2

p

It computes the normalized projected length of p− p1 into p2 − p1

`(p) =
〈p− p1, p2 − p1〉
〈p2 − p1, p2 − p1〉

4



Radial gradient mapping

A radial gradient mapping is a function r

r : R2 → R

parametrized by a center c, a radius r, and a focal point f

c

pf

q

It computes the length ratio of from point p to f and q to f

r(p) =
‖p− f‖
‖q− f‖

where q is the intersection between the ray from focal point f to

point p and the circle centered at c with radius r

5



Radial gradient mapping

A radial gradient mapping is a function r

r : R2 → R

parametrized by a center c, a radius r, and a focal point f

c

pf

q

It computes the length ratio of from point p to f and q to f

r(p) =
‖p− f‖
‖q− f‖

where q is the intersection between the ray from focal point f to

point p and the circle centered at c with radius r

5



Radial gradient mapping

A radial gradient mapping is a function r

r : R2 → R

parametrized by a center c, a radius r, and a focal point f

c

pf

q

It computes the length ratio of from point p to f and q to f

r(p) =
‖p− f‖
‖q− f‖

where q is the intersection between the ray from focal point f to

point p and the circle centered at c with radius r
5



Paint transforms

Every shape includes a transformation To that maps it from object

coordinates (where the object is defined) to scene coordinates (where

the object is placed on a scene)

Similarly, every paint includes a transformation Tp that maps points

from paint coordinates (where the color is computed) to scene

coordinates (where the color is painted)

If you want to apply a transformation T to a shape and want its paint to

move with it, simply compose

T ′o = T ◦ To
T ′p = T ◦ Tp

6



Paint transforms

Every shape includes a transformation To that maps it from object

coordinates (where the object is defined) to scene coordinates (where

the object is placed on a scene)

Similarly, every paint includes a transformation Tp that maps points

from paint coordinates (where the color is computed) to scene

coordinates (where the color is painted)

If you want to apply a transformation T to a shape and want its paint to

move with it, simply compose

T ′o = T ◦ To
T ′p = T ◦ Tp

6



Paint transforms

Every shape includes a transformation To that maps it from object

coordinates (where the object is defined) to scene coordinates (where

the object is placed on a scene)

Similarly, every paint includes a transformation Tp that maps points

from paint coordinates (where the color is computed) to scene

coordinates (where the color is painted)

If you want to apply a transformation T to a shape and want its paint to

move with it, simply compose

T ′o = T ◦ To
T ′p = T ◦ Tp

6



Gradient paints

A linear gradient is a function

R2 → sRGBA
formed by the composition of a paint transform Tp, a linear gradient

mapping `, a wrapping function s, and a color ramp c

p 7→ c
(
s
(
`(T−1

p p)
))

Show in Inkscape

7



Gradient paints

A linear gradient is a function

R2 → sRGBA
formed by the composition of a paint transform Tp, a linear gradient

mapping `, a wrapping function s, and a color ramp c

p 7→ c
(
s
(
`(T−1

p p)
))

Show in Inkscape

7



Examples

8



Gradient paints

A radial gradient is a function

R2 → sRGBA
formed by by the composition of a paint transform Tp, a radial gradient

mapping r, a wrapping function s, and a color ramp c

p 7→ c
(
s
(
r(T−1

p p)
))

Show in Inkscape

9



Gradient paints

A radial gradient is a function

R2 → sRGBA
formed by by the composition of a paint transform Tp, a radial gradient

mapping r, a wrapping function s, and a color ramp c

p 7→ c
(
s
(
r(T−1

p p)
))

Show in Inkscape

9



Examples

10



Evaluating gradient paints

How to efficiently evaluate a ramp

• Linear search, binary search, uniform sampling

How to efficiently evaluate linear and radial mappings?

• How many parameters are really needed?

11



Evaluating gradient paints

How to efficiently evaluate a ramp

• Linear search, binary search, uniform sampling

How to efficiently evaluate linear and radial mappings?

• How many parameters are really needed?

11



Gradients in PostScript and PDF



Shading types

Type 1: Function-dictionary-based shading

• Basically texture mapping

• Show EPS file

• Will discuss in following classes

Type 2: Axial shading

• Same as linear gradient

• Show EPS file

12



Shading types

Type 1: Function-dictionary-based shading

• Basically texture mapping

• Show EPS file

• Will discuss in following classes

Type 2: Axial shading

• Same as linear gradient

• Show EPS file

12



Examples

13



Examples

14



Shading types

Type 3: Radial shading

• Not the same radial gradient

• Define γ(p, r) to be the circle centered at p with radius r

• Inputs are centers and radii for 2 circles (p1, r1), (p2, r2)

• Maps the “interpolated” circle to the color from a ramp c

γ
(
(1− t) (p1, r1) + t (p2, r2)

)
7→ c(t)

• Show EPS file

15



Shading types

Type 3: Radial shading

• Not the same radial gradient

• Define γ(p, r) to be the circle centered at p with radius r

• Inputs are centers and radii for 2 circles (p1, r1), (p2, r2)

• Maps the “interpolated” circle to the color from a ramp c

γ
(
(1− t) (p1, r1) + t (p2, r2)

)
7→ c(t)

• Show EPS file

15



Shading types

Type 3: Radial shading

• Not the same radial gradient

• Define γ(p, r) to be the circle centered at p with radius r

• Inputs are centers and radii for 2 circles (p1, r1), (p2, r2)

• Maps the “interpolated” circle to the color from a ramp c

γ
(
(1− t) (p1, r1) + t (p2, r2)

)
7→ c(t)

• Show EPS file

15



Shading types

Type 3: Radial shading

• Not the same radial gradient

• Define γ(p, r) to be the circle centered at p with radius r

• Inputs are centers and radii for 2 circles (p1, r1), (p2, r2)

• Maps the “interpolated” circle to the color from a ramp c

γ
(
(1− t) (p1, r1) + t (p2, r2)

)
7→ c(t)

• Show EPS file

15



Shading types

Type 3: Radial shading

• Not the same radial gradient

• Define γ(p, r) to be the circle centered at p with radius r

• Inputs are centers and radii for 2 circles (p1, r1), (p2, r2)

• Maps the “interpolated” circle to the color from a ramp c

γ
(
(1− t) (p1, r1) + t (p2, r2)

)
7→ c(t)

• Show EPS file

15



Examples

16



Shading types

Type 4: Free-form Gouraud-shaded triangle mesh

• Inputs are 3 vertices with colors (p1, c1), (p2, c2), (p3, c3)

• Maps convex combination of points to same combination of colors

• I.e., given 0 < s, t < 1, Gouraud maps

p(s, t) 7→ c(s, t)

with

p(s, t) = s p1 + t p2 + (1− s− t)p3

c(s, t) = s c1 + t c2 + (1− s− t) c3

• Triangles can be independent, strips, or fans

• Show EPS file and PDF file

Type 5: Lattice-form Gouraud-shaded triangle mesh

• Same, but for a “regular” grid of triangles

17



Shading types

Type 4: Free-form Gouraud-shaded triangle mesh

• Inputs are 3 vertices with colors (p1, c1), (p2, c2), (p3, c3)

• Maps convex combination of points to same combination of colors

• I.e., given 0 < s, t < 1, Gouraud maps

p(s, t) 7→ c(s, t)

with

p(s, t) = s p1 + t p2 + (1− s− t)p3

c(s, t) = s c1 + t c2 + (1− s− t) c3

• Triangles can be independent, strips, or fans

• Show EPS file and PDF file

Type 5: Lattice-form Gouraud-shaded triangle mesh

• Same, but for a “regular” grid of triangles

17



Shading types

Type 4: Free-form Gouraud-shaded triangle mesh

• Inputs are 3 vertices with colors (p1, c1), (p2, c2), (p3, c3)

• Maps convex combination of points to same combination of colors

• I.e., given 0 < s, t < 1, Gouraud maps

p(s, t) 7→ c(s, t)

with

p(s, t) = s p1 + t p2 + (1− s− t)p3

c(s, t) = s c1 + t c2 + (1− s− t) c3

• Triangles can be independent, strips, or fans

• Show EPS file and PDF file

Type 5: Lattice-form Gouraud-shaded triangle mesh

• Same, but for a “regular” grid of triangles

17



Shading types

Type 4: Free-form Gouraud-shaded triangle mesh

• Inputs are 3 vertices with colors (p1, c1), (p2, c2), (p3, c3)

• Maps convex combination of points to same combination of colors

• I.e., given 0 < s, t < 1, Gouraud maps

p(s, t) 7→ c(s, t)

with

p(s, t) = s p1 + t p2 + (1− s− t)p3

c(s, t) = s c1 + t c2 + (1− s− t) c3

• Triangles can be independent, strips, or fans

• Show EPS file and PDF file

Type 5: Lattice-form Gouraud-shaded triangle mesh

• Same, but for a “regular” grid of triangles

17



Shading types

Type 4: Free-form Gouraud-shaded triangle mesh

• Inputs are 3 vertices with colors (p1, c1), (p2, c2), (p3, c3)

• Maps convex combination of points to same combination of colors

• I.e., given 0 < s, t < 1, Gouraud maps

p(s, t) 7→ c(s, t)

with

p(s, t) = s p1 + t p2 + (1− s− t)p3

c(s, t) = s c1 + t c2 + (1− s− t) c3

• Triangles can be independent, strips, or fans

• Show EPS file and PDF file

Type 5: Lattice-form Gouraud-shaded triangle mesh

• Same, but for a “regular” grid of triangles

17



Shading types

Type 4: Free-form Gouraud-shaded triangle mesh

• Inputs are 3 vertices with colors (p1, c1), (p2, c2), (p3, c3)

• Maps convex combination of points to same combination of colors

• I.e., given 0 < s, t < 1, Gouraud maps

p(s, t) 7→ c(s, t)

with

p(s, t) = s p1 + t p2 + (1− s− t)p3

c(s, t) = s c1 + t c2 + (1− s− t) c3

• Triangles can be independent, strips, or fans

• Show EPS file and PDF file

Type 5: Lattice-form Gouraud-shaded triangle mesh

• Same, but for a “regular” grid of triangles
17



Examples

18



Examples

19



Shading types

Type 6: Coons patch mesh

• Each patch is defined by 4 connected cubic Bézier segments

h0(s), h1(s), v0(t), and v1(t)

• Curves are setup to share endpoints like such

v00 = v0(0) = h0(0) v01 = v0(1) = h1(0)

v10 = v1(0) = h0(1) v11 = v1(1) = h1(1)

• Define h : [0, 1]2 → R2 to interpolate between curves h0,h1

h(s, t) = (1− t)h0(s) + t h1(s)

• Define v : [0, 1]2 → R2 to interpolate between v0, v1

v(s, t) = (1− s) v0(t) + s v1(t)

• Note that v(s, t) and h(s, t) interpolate all shared vertices

20



Shading types

Type 6: Coons patch mesh

• Each patch is defined by 4 connected cubic Bézier segments

h0(s), h1(s), v0(t), and v1(t)

• Curves are setup to share endpoints like such

v00 = v0(0) = h0(0) v01 = v0(1) = h1(0)

v10 = v1(0) = h0(1) v11 = v1(1) = h1(1)

• Define h : [0, 1]2 → R2 to interpolate between curves h0,h1

h(s, t) = (1− t)h0(s) + t h1(s)

• Define v : [0, 1]2 → R2 to interpolate between v0, v1

v(s, t) = (1− s) v0(t) + s v1(t)

• Note that v(s, t) and h(s, t) interpolate all shared vertices

20



Shading types

Type 6: Coons patch mesh

• Each patch is defined by 4 connected cubic Bézier segments

h0(s), h1(s), v0(t), and v1(t)

• Curves are setup to share endpoints like such

v00 = v0(0) = h0(0) v01 = v0(1) = h1(0)

v10 = v1(0) = h0(1) v11 = v1(1) = h1(1)

• Define h : [0, 1]2 → R2 to interpolate between curves h0,h1

h(s, t) = (1− t)h0(s) + t h1(s)

• Define v : [0, 1]2 → R2 to interpolate between v0, v1

v(s, t) = (1− s) v0(t) + s v1(t)

• Note that v(s, t) and h(s, t) interpolate all shared vertices

20



Shading types

Type 6: Coons patch mesh

• Each patch is defined by 4 connected cubic Bézier segments

h0(s), h1(s), v0(t), and v1(t)

• Curves are setup to share endpoints like such

v00 = v0(0) = h0(0) v01 = v0(1) = h1(0)

v10 = v1(0) = h0(1) v11 = v1(1) = h1(1)

• Define h : [0, 1]2 → R2 to interpolate between curves h0,h1

h(s, t) = (1− t)h0(s) + t h1(s)

• Define v : [0, 1]2 → R2 to interpolate between v0, v1

v(s, t) = (1− s) v0(t) + s v1(t)

• Note that v(s, t) and h(s, t) interpolate all shared vertices

20



Shading types

Type 6: Coons patch mesh

• Each patch is defined by 4 connected cubic Bézier segments

h0(s), h1(s), v0(t), and v1(t)

• Curves are setup to share endpoints like such

v00 = v0(0) = h0(0) v01 = v0(1) = h1(0)

v10 = v1(0) = h0(1) v11 = v1(1) = h1(1)

• Define h : [0, 1]2 → R2 to interpolate between curves h0,h1

h(s, t) = (1− t)h0(s) + t h1(s)

• Define v : [0, 1]2 → R2 to interpolate between v0, v1

v(s, t) = (1− s) v0(t) + s v1(t)

• Note that v(s, t) and h(s, t) interpolate all shared vertices

20



Shading types

Type 6: Coons patch mesh (continued)

• Define bilinear map m : V4 × [0, 1]2 → R2

m
a,b
c,d(s, t) = (1− s)(1− t)a+ (1− s) t b+ s (1− t) c + s t d

• The bilinear map m
v00,v01
v10,v11 (s, t) also interpolates the shared vertices

• Therefore, so does

p(s, t) = v(s, t) + h(s, t)−m
v00,v01
v10,v11 (s, t)

• Given colors c00, c01, c10, and c11, the patch maps

p(s, t) 7→ m
c00,c01
c10,c11 (s, t)

• Patches can be defined independently or connected by strips

• Show EPS file

21



Shading types

Type 6: Coons patch mesh (continued)

• Define bilinear map m : V4 × [0, 1]2 → R2

m
a,b
c,d(s, t) = (1− s)(1− t)a+ (1− s) t b+ s (1− t) c + s t d

• The bilinear map m
v00,v01
v10,v11 (s, t) also interpolates the shared vertices

• Therefore, so does

p(s, t) = v(s, t) + h(s, t)−m
v00,v01
v10,v11 (s, t)

• Given colors c00, c01, c10, and c11, the patch maps

p(s, t) 7→ m
c00,c01
c10,c11 (s, t)

• Patches can be defined independently or connected by strips

• Show EPS file

21



Shading types

Type 6: Coons patch mesh (continued)

• Define bilinear map m : V4 × [0, 1]2 → R2

m
a,b
c,d(s, t) = (1− s)(1− t)a+ (1− s) t b+ s (1− t) c + s t d

• The bilinear map m
v00,v01
v10,v11 (s, t) also interpolates the shared vertices

• Therefore, so does

p(s, t) = v(s, t) + h(s, t)−m
v00,v01
v10,v11 (s, t)

• Given colors c00, c01, c10, and c11, the patch maps

p(s, t) 7→ m
c00,c01
c10,c11 (s, t)

• Patches can be defined independently or connected by strips

• Show EPS file

21



Shading types

Type 6: Coons patch mesh (continued)

• Define bilinear map m : V4 × [0, 1]2 → R2

m
a,b
c,d(s, t) = (1− s)(1− t)a+ (1− s) t b+ s (1− t) c + s t d

• The bilinear map m
v00,v01
v10,v11 (s, t) also interpolates the shared vertices

• Therefore, so does

p(s, t) = v(s, t) + h(s, t)−m
v00,v01
v10,v11 (s, t)

• Given colors c00, c01, c10, and c11, the patch maps

p(s, t) 7→ m
c00,c01
c10,c11 (s, t)

• Patches can be defined independently or connected by strips

• Show EPS file

21



Shading types

Type 6: Coons patch mesh (continued)

• Define bilinear map m : V4 × [0, 1]2 → R2

m
a,b
c,d(s, t) = (1− s)(1− t)a+ (1− s) t b+ s (1− t) c + s t d

• The bilinear map m
v00,v01
v10,v11 (s, t) also interpolates the shared vertices

• Therefore, so does

p(s, t) = v(s, t) + h(s, t)−m
v00,v01
v10,v11 (s, t)

• Given colors c00, c01, c10, and c11, the patch maps

p(s, t) 7→ m
c00,c01
c10,c11 (s, t)

• Patches can be defined independently or connected by strips

• Show EPS file

21



Shading types

Type 6: Coons patch mesh (continued)

• Define bilinear map m : V4 × [0, 1]2 → R2

m
a,b
c,d(s, t) = (1− s)(1− t)a+ (1− s) t b+ s (1− t) c + s t d

• The bilinear map m
v00,v01
v10,v11 (s, t) also interpolates the shared vertices

• Therefore, so does

p(s, t) = v(s, t) + h(s, t)−m
v00,v01
v10,v11 (s, t)

• Given colors c00, c01, c10, and c11, the patch maps

p(s, t) 7→ m
c00,c01
c10,c11 (s, t)

• Patches can be defined independently or connected by strips

• Show EPS file

21



Examples

22



Shading types

Type 7: Tensor-product patch mesh

• This is just a generalization of Bézier curves to patches

• Given control points pi,j, for i, j ∈ {0, 1, 2, 3}, the tensor product is

p(s, t) =
3∑

i=0

3∑
j=0

pi,j bi,3(s)bj,3(t)

where bi,3,bj,3 are the cubic Bernstein polynomials

• Given colors c00, c01, c10, c11, the patch maps

p(s, t) 7→ m
c00,c01
c10,c11 (s, t)

• Patches can be defined independently or connected by strips

• (Coons patch is a special case of tensor-product patch)

• Show EPS file

23



Shading types

Type 7: Tensor-product patch mesh

• This is just a generalization of Bézier curves to patches

• Given control points pi,j, for i, j ∈ {0, 1, 2, 3}, the tensor product is

p(s, t) =
3∑

i=0

3∑
j=0

pi,j bi,3(s)bj,3(t)

where bi,3,bj,3 are the cubic Bernstein polynomials

• Given colors c00, c01, c10, c11, the patch maps

p(s, t) 7→ m
c00,c01
c10,c11 (s, t)

• Patches can be defined independently or connected by strips

• (Coons patch is a special case of tensor-product patch)

• Show EPS file

23



Shading types

Type 7: Tensor-product patch mesh

• This is just a generalization of Bézier curves to patches

• Given control points pi,j, for i, j ∈ {0, 1, 2, 3}, the tensor product is

p(s, t) =
3∑

i=0

3∑
j=0

pi,j bi,3(s)bj,3(t)

where bi,3,bj,3 are the cubic Bernstein polynomials

• Given colors c00, c01, c10, c11, the patch maps

p(s, t) 7→ m
c00,c01
c10,c11 (s, t)

• Patches can be defined independently or connected by strips

• (Coons patch is a special case of tensor-product patch)

• Show EPS file

23



Shading types

Type 7: Tensor-product patch mesh

• This is just a generalization of Bézier curves to patches

• Given control points pi,j, for i, j ∈ {0, 1, 2, 3}, the tensor product is

p(s, t) =
3∑

i=0

3∑
j=0

pi,j bi,3(s)bj,3(t)

where bi,3,bj,3 are the cubic Bernstein polynomials

• Given colors c00, c01, c10, c11, the patch maps

p(s, t) 7→ m
c00,c01
c10,c11 (s, t)

• Patches can be defined independently or connected by strips

• (Coons patch is a special case of tensor-product patch)

• Show EPS file

23



Shading types

Type 7: Tensor-product patch mesh

• This is just a generalization of Bézier curves to patches

• Given control points pi,j, for i, j ∈ {0, 1, 2, 3}, the tensor product is

p(s, t) =
3∑

i=0

3∑
j=0

pi,j bi,3(s)bj,3(t)

where bi,3,bj,3 are the cubic Bernstein polynomials

• Given colors c00, c01, c10, c11, the patch maps

p(s, t) 7→ m
c00,c01
c10,c11 (s, t)

• Patches can be defined independently or connected by strips

• (Coons patch is a special case of tensor-product patch)

• Show EPS file

23



Shading types

Type 7: Tensor-product patch mesh

• This is just a generalization of Bézier curves to patches

• Given control points pi,j, for i, j ∈ {0, 1, 2, 3}, the tensor product is

p(s, t) =
3∑

i=0

3∑
j=0

pi,j bi,3(s)bj,3(t)

where bi,3,bj,3 are the cubic Bernstein polynomials

• Given colors c00, c01, c10, c11, the patch maps

p(s, t) 7→ m
c00,c01
c10,c11 (s, t)

• Patches can be defined independently or connected by strips

• (Coons patch is a special case of tensor-product patch)

• Show EPS file

23



Examples

24



Examples

25



References

PostScript Language Reference. Adobe Systems Incorporated, third

edition, 1999.

Adobe Portable Document Format, v. 1.7. Adobe Systems Incorporated,

sixth edition, 2006.

SVG. Scalable Vector Graphics, v. 1.1. W3C, second edition, 2011.

26


	Gradients in SVG SVG11
	Gradients in PostScript and PDF
	References

