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Gradients in SVG [SVG, 2011]



Color ramp

A color ramp is a function c

c : [0, 1] → sRGBA
that maps the interval [0, 1] to colors with transparency

Defined by a list of n stops

(ti, ci) ∈ [0, 1]× sRGBA, with i ∈ {1, . . . ,n}, ti < ti+1

c(t) is linear by parts

c(t) =
(ti+1 − t) ci + (t − ti) ci+1

ti+1 − ti
, ti ≤ t < ti+1
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Wrapping function (or spread method)

A wrapping function s

s : R → [0, 1]

maps a real number to the domain of the color ramp

E.g., pad (or clamp), repeat (or wrap), and reflect (or mirror)

pad(t) = min
(
1,max(0, t)

)

repeat(t) = t − btc
reflect(t) = 2

∣∣ 1
2 t − b 1

2 t +
1
2c
∣∣
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Linear gradient mapping

A linear gradient mapping is a function `

` : R2 → R

parametrized by 2 control points p1,p2

p1

p2

p

It computes the normalized projected length of p− p1 into p2 − p1

`(p) =
〈p− p1, p2 − p1〉
〈p2 − p1, p2 − p1〉
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Radial gradient mapping

A radial gradient mapping is a function r

r : R2 → R

parametrized by a center c, a radius r, and a focal point f

c

pf

q

It computes the length ratio of from point p to f and q to f

r(p) =
‖p− f‖
‖q− f‖

where q is the intersection between the ray from focal point f to

point p and the circle centered at c with radius r
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Paint transforms

Every shape includes a transformation To that maps it from object

coordinates (where the object is defined) to scene coordinates (where

the object is placed on a scene)

Similarly, every paint includes a transformation Tp that maps points

from paint coordinates (where the color is computed) to scene

coordinates (where the color is painted)

If you want to apply a transformation T to a shape and want its paint to

move with it, simply compose

T ′o = T ◦ To
T ′p = T ◦ Tp
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Gradient paints

A linear gradient is a function

R2 → sRGBA
formed by the composition of a paint transform Tp, a linear gradient

mapping `, a wrapping function s, and a color ramp c

p 7→ c
(
s
(
`(T−1

p p)
))

Show in Inkscape
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Evaluating gradient paints

How to efficiently evaluate a ramp

• Linear search, binary search, uniform sampling

How to efficiently evaluate linear and radial mappings?

• How many parameters are really needed?
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Gradients in PostScript and PDF



Shading types

Type 1: Function-dictionary-based shading

• Basically texture mapping

• Show EPS file

• Will discuss in following classes

Type 2: Axial shading

• Same as linear gradient

• Show EPS file
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Shading types

Type 3: Radial shading

• Not the same radial gradient

• Define γ(p, r) to be the circle centered at p with radius r

• Inputs are centers and radii for 2 circles (p1, r1), (p2, r2)

• Maps the “interpolated” circle to the color from a ramp c

γ
(
(1− t) (p1, r1) + t (p2, r2)

)
7→ c(t)

• Show EPS file
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Shading types

Type 4: Free-form Gouraud-shaded triangle mesh

• Inputs are 3 vertices with colors (p1, c1), (p2, c2), (p3, c3)

• Maps convex combination of points to same combination of colors

• I.e., given 0 < s, t < 1, Gouraud maps

p(s, t) 7→ c(s, t)

with

p(s, t) = s p1 + t p2 + (1− s− t)p3

c(s, t) = s c1 + t c2 + (1− s− t) c3

• Triangles can be independent, strips, or fans

• Show EPS file and PDF file

Type 5: Lattice-form Gouraud-shaded triangle mesh

• Same, but for a “regular” grid of triangles
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Shading types

Type 6: Coons patch mesh

• Each patch is defined by 4 connected cubic Bézier segments

h0(s), h1(s), v0(t), and v1(t)

• Curves are setup to share endpoints like such

v00 = v0(0) = h0(0) v01 = v0(1) = h1(0)

v10 = v1(0) = h0(1) v11 = v1(1) = h1(1)

• Define h : [0, 1]2 → R2 to interpolate between curves h0,h1

h(s, t) = (1− t)h0(s) + t h1(s)

• Define v : [0, 1]2 → R2 to interpolate between v0, v1

v(s, t) = (1− s) v0(t) + s v1(t)

• Note that v(s, t) and h(s, t) interpolate all shared vertices

20
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Shading types

Type 6: Coons patch mesh (continued)

• Define bilinear map m : V4 × [0, 1]2 → R2

m
a,b
c,d(s, t) = (1− s)(1− t)a+ (1− s) t b+ s (1− t) c + s t d

• The bilinear map m
v00,v01
v10,v11 (s, t) also interpolates the shared vertices

• Therefore, so does

p(s, t) = v(s, t) + h(s, t)−m
v00,v01
v10,v11 (s, t)

• Given colors c00, c01, c10, and c11, the patch maps

p(s, t) 7→ m
c00,c01
c10,c11 (s, t)

• Patches can be defined independently or connected by strips

• Show EPS file

21



Shading types
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Shading types

Type 6: Coons patch mesh (continued)
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Shading types
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Shading types

Type 6: Coons patch mesh (continued)
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Shading types

Type 7: Tensor-product patch mesh

• This is just a generalization of Bézier curves to patches

• Given control points pi,j, for i, j ∈ {0, 1, 2, 3}, the tensor product is

p(s, t) =
3∑

i=0

3∑
j=0

pi,j bi,3(s)bj,3(t)

where bi,3,bj,3 are the cubic Bernstein polynomials

• Given colors c00, c01, c10, c11, the patch maps

p(s, t) 7→ m
c00,c01
c10,c11 (s, t)

• Patches can be defined independently or connected by strips

• (Coons patch is a special case of tensor-product patch)

• Show EPS file
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