2D Computer Graphics

Diego Nehab
Summer 2020

IMPA

Gradients in SVG [SVG, 2011]

COLOR RAMP

A color ramp is a function c

$$
c:[0,1] \rightarrow \mathrm{sRGBA}
$$

that maps the interval $[0,1]$ to colors with transparency

COLOR RAMP

A color ramp is a function c

$$
c:[0,1] \rightarrow \mathrm{sRGBA}
$$

that maps the interval $[0,1]$ to colors with transparency
Defined by a list of n stops

$$
\left(t_{i}, c_{i}\right) \in[0,1] \times \text { sRGBA, } \quad \text { with } \quad i \in\{1, \ldots, n\}, \quad t_{i}<t_{i+1}
$$

COLOR RAMP

A color ramp is a function c

$$
c:[0,1] \rightarrow \mathrm{sRGBA}
$$

that maps the interval $[0,1]$ to colors with transparency
Defined by a list of n stops

$$
\left(t_{i}, c_{i}\right) \in[0,1] \times \mathrm{sRGBA}, \quad \text { with } \quad i \in\{1, \ldots, n\}, \quad t_{i}<t_{i+1}
$$

$c(t)$ is linear by parts

$$
c(t)=\frac{\left(t_{i+1}-t\right) c_{i}+\left(t-t_{i}\right) c_{i+1}}{t_{i+1}-t_{i}}, \quad t_{i} \leq t<t_{i+1}
$$

WRAPPING FUNCTION (OR SPREAD METHOD)

A wrapping function s

$$
s: R \rightarrow[0,1]
$$

maps a real number to the domain of the color ramp

WRAPPING FUNCTION (OR SPREAD METHOD)

A wrapping function s

$$
s: R \rightarrow[0,1]
$$

maps a real number to the domain of the color ramp
E.g., pad (or clamp), repeat (or wrap), and reflect (or mirror)

$$
\operatorname{pad}(t)=\min (1, \max (0, t))
$$

WRAPPING FUNCTION (OR SPREAD METHOD)

A wrapping function s

$$
s: R \rightarrow[0,1]
$$

maps a real number to the domain of the color ramp
E.g., pad (or clamp), repeat (or wrap), and reflect (or mirror)

$$
\begin{aligned}
\operatorname{pad}(t) & =\min (1, \max (0, t)) \\
\operatorname{repeat}(t) & =t-\lfloor t\rfloor
\end{aligned}
$$

WRAPPING FUNCTION (OR SPREAD METHOD)

A wrapping function s

$$
s: R \rightarrow[0,1]
$$

maps a real number to the domain of the color ramp
E.g., pad (or clamp), repeat (or wrap), and reflect (or mirror)

$$
\begin{aligned}
\operatorname{pad}(t) & =\min (1, \max (0, t)) \\
\operatorname{repeat}(t) & =t-\lfloor t\rfloor \\
\operatorname{reflect}(t) & =2\left|\frac{1}{2} t-\left\lfloor\frac{1}{2} t+\frac{1}{2}\right\rfloor\right|
\end{aligned}
$$

LINEAR GRADIENT MAPPING

A linear gradient mapping is a function ℓ

$$
\ell: R^{2} \rightarrow R
$$

parametrized by 2 control points p_{1}, p_{2}

LINEAR GRADIENT MAPPING

A linear gradient mapping is a function ℓ

$$
\ell: R^{2} \rightarrow R
$$

parametrized by 2 control points p_{1}, p_{2}

LINEAR GRADIENT MAPPING

A linear gradient mapping is a function ℓ

$$
\ell: R^{2} \rightarrow R
$$

parametrized by 2 control points p_{1}, p_{2}

It computes the normalized projected length of $p-p_{1}$ into $p_{2}-p_{1}$

$$
\ell(p)=\frac{\left\langle p-p_{1}, p_{2}-p_{1}\right\rangle}{\left\langle p_{2}-p_{1}, p_{2}-p_{1}\right\rangle}
$$

RadIAL GRADIENT MAPPING

A radial gradient mapping is a function r

$$
r: \mathrm{R}^{2} \rightarrow \mathrm{R}
$$

parametrized by a center c , a radius r , and a focal point f

RadIAL GRADIENT MAPPING

A radial gradient mapping is a function r

$$
r: \mathrm{R}^{2} \rightarrow \mathrm{R}
$$

parametrized by a center c, a radius r, and a focal point f

RadIAL GRADIENT MAPPING

A radial gradient mapping is a function r

$$
r: \mathrm{R}^{2} \rightarrow \mathrm{R}
$$

parametrized by a center c, a radius r, and a focal point f

It computes the length ratio of from point p to f and q to f

$$
r(p)=\frac{\|p-f\|}{\|q-f\|}
$$

where q is the intersection between the ray from focal point f to point p and the circle centered at c with radius r

PAINT TRANSFORMS

Every shape includes a transformation T_{0} that maps it from object coordinates (where the object is defined) to scene coordinates (where the object is placed on a scene)

PAINT TRANSFORMS

Every shape includes a transformation T_{0} that maps it from object coordinates (where the object is defined) to scene coordinates (where the object is placed on a scene)

Similarly, every paint includes a transformation T_{p} that maps points from paint coordinates (where the color is computed) to scene coordinates (where the color is painted)

PAINT TRANSFORMS

Every shape includes a transformation T_{0} that maps it from object coordinates (where the object is defined) to scene coordinates (where the object is placed on a scene)

Similarly, every paint includes a transformation T_{p} that maps points from paint coordinates (where the color is computed) to scene coordinates (where the color is painted)

If you want to apply a transformation T to a shape and want its paint to move with it, simply compose

$$
\begin{aligned}
& T_{o}^{\prime}=T \circ T_{0} \\
& T_{p}^{\prime}=T \circ T_{p}
\end{aligned}
$$

Gradient paints

A linear gradient is a function

$$
\mathrm{R}^{2} \rightarrow \mathrm{sRGBA}
$$

formed by the composition of a paint transform T_{p}, a linear gradient mapping ℓ, a wrapping function s , and a color ramp c

$$
p \mapsto c\left(s\left(\ell\left(T_{p}^{-1} p\right)\right)\right)
$$

Gradient paints

A linear gradient is a function

$$
\mathrm{R}^{2} \rightarrow \mathrm{sRGBA}
$$

formed by the composition of a paint transform T_{p}, a linear gradient mapping ℓ, a wrapping function s , and a color ramp c

$$
p \mapsto c\left(s\left(\ell\left(T_{p}^{-1} p\right)\right)\right)
$$

Show in Inkscape

EXAMPLES

Gradient paints

A radial gradient is a function

$$
\mathrm{R}^{2} \rightarrow \mathrm{sRGBA}
$$

formed by by the composition of a paint transform T_{p}, a radial gradient mapping r, a wrapping function s, and a color ramp c

$$
p \mapsto c\left(s\left(r\left(T_{p}^{-1} p\right)\right)\right)
$$

Gradient paints

A radial gradient is a function

$$
\mathrm{R}^{2} \rightarrow \mathrm{sRGBA}
$$

formed by by the composition of a paint transform T_{p}, a radial gradient mapping r, a wrapping function s, and a color ramp c

$$
p \mapsto c\left(s\left(r\left(T_{p}^{-1} p\right)\right)\right)
$$

Show in Inkscape

EXAMPLES

Evaluating gradient paints

How to efficiently evaluate a ramp

- Linear search, binary search, uniform sampling

Evaluating gradient paints

How to efficiently evaluate a ramp

- Linear search, binary search, uniform sampling

How to efficiently evaluate linear and radial mappings?

- How many parameters are really needed?

Gradients in PostScript and PDF

SHADING TYPES

Type 1: Function-dictionary-based shading

- Basically texture mapping
- Show EPS file
- Will discuss in following classes

SHADING TYPES

Type 1: Function-dictionary-based shading

- Basically texture mapping
- Show EPS file
- Will discuss in following classes

Type 2: Axial shading

- Same as linear gradient
- Show EPS file

EXAMPLES

EXAMPLES

SHADING TYPES

Type 3: Radial shading

- Not the same radial gradient

SHADING TYPES

Type 3: Radial shading

- Not the same radial gradient
- Define $\gamma(p, r)$ to be the circle centered at p with radius r

SHADING TYPES

Type 3: Radial shading

- Not the same radial gradient
- Define $\gamma(p, r)$ to be the circle centered at p with radius r
- Inputs are centers and radii for 2 circles $\left(p_{1}, r_{1}\right),\left(p_{2}, r_{2}\right)$

SHADING TYPES

Type 3: Radial shading

- Not the same radial gradient
- Define $\gamma(p, r)$ to be the circle centered at p with radius r
- Inputs are centers and radii for 2 circles $\left(p_{1}, r_{1}\right),\left(p_{2}, r_{2}\right)$
- Maps the "interpolated" circle to the color from a ramp c

$$
\gamma\left((1-t)\left(p_{1}, r_{1}\right)+t\left(p_{2}, r_{2}\right)\right) \mapsto c(t)
$$

SHADING TYPES

Type 3: Radial shading

- Not the same radial gradient
- Define $\gamma(p, r)$ to be the circle centered at p with radius r
- Inputs are centers and radii for 2 circles $\left(p_{1}, r_{1}\right),\left(p_{2}, r_{2}\right)$
- Maps the "interpolated" circle to the color from a ramp c

$$
\gamma\left((1-t)\left(p_{1}, r_{1}\right)+t\left(p_{2}, r_{2}\right)\right) \mapsto c(t)
$$

- Show EPS file

EXAMPLES

SHADING TYPES

Type 4: Free-form Gouraud-shaded triangle mesh

- Inputs are 3 vertices with colors $\left(p_{1}, c_{1}\right),\left(p_{2}, c_{2}\right),\left(p_{3}, c_{3}\right)$

SHADING TYPES

Type 4: Free-form Gouraud-shaded triangle mesh

- Inputs are 3 vertices with colors $\left(p_{1}, c_{1}\right),\left(p_{2}, c_{2}\right),\left(p_{3}, c_{3}\right)$
- Maps convex combination of points to same combination of colors

SHADING TYPES

Type 4: Free-form Gouraud-shaded triangle mesh

- Inputs are 3 vertices with colors $\left(p_{1}, c_{1}\right),\left(p_{2}, c_{2}\right),\left(p_{3}, c_{3}\right)$
- Maps convex combination of points to same combination of colors
- I.e., given $0<s, t<1$, Gouraud maps

$$
p(s, t) \mapsto c(s, t)
$$

with

$$
\begin{aligned}
& p(s, t)=s p_{1}+t p_{2}+(1-s-t) p_{3} \\
& c(s, t)=s c_{1}+t c_{2}+(1-s-t) c_{3}
\end{aligned}
$$

SHADING TYPES

Type 4: Free-form Gouraud-shaded triangle mesh

- Inputs are 3 vertices with colors $\left(p_{1}, c_{1}\right),\left(p_{2}, c_{2}\right),\left(p_{3}, c_{3}\right)$
- Maps convex combination of points to same combination of colors
- I.e., given $0<s, t<1$, Gouraud maps

$$
p(s, t) \mapsto c(s, t)
$$

with

$$
\begin{aligned}
& p(s, t)=s p_{1}+t p_{2}+(1-s-t) p_{3} \\
& c(s, t)=s c_{1}+t c_{2}+(1-s-t) c_{3}
\end{aligned}
$$

- Triangles can be independent, strips, or fans

SHADING TYPES

Type 4: Free-form Gouraud-shaded triangle mesh

- Inputs are 3 vertices with colors $\left(p_{1}, c_{1}\right),\left(p_{2}, c_{2}\right),\left(p_{3}, c_{3}\right)$
- Maps convex combination of points to same combination of colors
- I.e., given $0<s, t<1$, Gouraud maps

$$
p(s, t) \mapsto c(s, t)
$$

with

$$
\begin{aligned}
& p(s, t)=s p_{1}+t p_{2}+(1-s-t) p_{3} \\
& c(s, t)=s c_{1}+t c_{2}+(1-s-t) c_{3}
\end{aligned}
$$

- Triangles can be independent, strips, or fans
- Show EPS file and PDF file

SHADING TYPES

Type 4: Free-form Gouraud-shaded triangle mesh

- Inputs are 3 vertices with colors $\left(p_{1}, c_{1}\right),\left(p_{2}, c_{2}\right),\left(p_{3}, c_{3}\right)$
- Maps convex combination of points to same combination of colors
- I.e., given $0<s, t<1$, Gouraud maps

$$
p(s, t) \mapsto c(s, t)
$$

with

$$
\begin{aligned}
& p(s, t)=s p_{1}+t p_{2}+(1-s-t) p_{3} \\
& c(s, t)=s c_{1}+t c_{2}+(1-s-t) c_{3}
\end{aligned}
$$

- Triangles can be independent, strips, or fans
- Show EPS file and PDF file

Type 5: Lattice-form Gouraud-shaded triangle mesh

- Same, but for a "regular" grid of triangles

EXAMPLES

EXAMPLES

SHADING TYPES

Type 6: Coons patch mesh

- Each patch is defined by 4 connected cubic Bézier segments

$$
h_{0}(s), \quad h_{1}(s), \quad v_{0}(t), \quad \text { and } \quad v_{1}(t)
$$

SHADING TYPES

Type 6: Coons patch mesh

- Each patch is defined by 4 connected cubic Bézier segments

$$
h_{0}(s), \quad h_{1}(s), \quad v_{0}(t), \quad \text { and } \quad v_{1}(t)
$$

- Curves are setup to share endpoints like such

$$
\begin{array}{ll}
v_{00}=v_{0}(0)=h_{0}(0) & v_{01}=v_{0}(1)=h_{1}(0) \\
v_{10}=v_{1}(0)=h_{0}(1) & v_{11}=v_{1}(1)=h_{1}(1)
\end{array}
$$

SHADING TYPES

Type 6: Coons patch mesh

- Each patch is defined by 4 connected cubic Bézier segments

$$
h_{0}(s), \quad h_{1}(s), \quad v_{0}(t), \quad \text { and } \quad v_{1}(t)
$$

- Curves are setup to share endpoints like such

$$
\begin{array}{ll}
v_{00}=v_{0}(0)=h_{0}(0) & v_{01}=v_{0}(1)=h_{1}(0) \\
v_{10}=v_{1}(0)=h_{0}(1) & v_{11}=v_{1}(1)=h_{1}(1)
\end{array}
$$

- Define $h:[0,1]^{2} \rightarrow R^{2}$ to interpolate between curves h_{0}, h_{1}

$$
h(s, t)=(1-t) h_{0}(s)+t h_{1}(s)
$$

SHADING TYPES

Type 6: Coons patch mesh

- Each patch is defined by 4 connected cubic Bézier segments

$$
h_{0}(s), \quad h_{1}(s), \quad v_{0}(t), \quad \text { and } \quad v_{1}(t)
$$

- Curves are setup to share endpoints like such

$$
\begin{array}{ll}
v_{00}=v_{0}(0)=h_{0}(0) & v_{01}=v_{0}(1)=h_{1}(0) \\
v_{10}=v_{1}(0)=h_{0}(1) & v_{11}=v_{1}(1)=h_{1}(1)
\end{array}
$$

- Define $h:[0,1]^{2} \rightarrow R^{2}$ to interpolate between curves h_{0}, h_{1}

$$
h(s, t)=(1-t) h_{0}(s)+t h_{1}(s)
$$

- Define $v:[0,1]^{2} \rightarrow R^{2}$ to interpolate between v_{0}, v_{1}

$$
v(s, t)=(1-s) v_{0}(t)+s v_{1}(t)
$$

SHADING TYPES

Type 6: Coons patch mesh

- Each patch is defined by 4 connected cubic Bézier segments

$$
h_{0}(s), \quad h_{1}(s), \quad v_{0}(t), \quad \text { and } \quad v_{1}(t)
$$

- Curves are setup to share endpoints like such

$$
\begin{array}{ll}
v_{00}=v_{0}(0)=h_{0}(0) & v_{01}=v_{0}(1)=h_{1}(0) \\
v_{10}=v_{1}(0)=h_{0}(1) & v_{11}=v_{1}(1)=h_{1}(1)
\end{array}
$$

- Define $h:[0,1]^{2} \rightarrow R^{2}$ to interpolate between curves h_{0}, h_{1}

$$
h(s, t)=(1-t) h_{0}(s)+t h_{1}(s)
$$

- Define $v:[0,1]^{2} \rightarrow R^{2}$ to interpolate between v_{0}, v_{1}

$$
v(s, t)=(1-s) v_{0}(t)+s v_{1}(t)
$$

- Note that $v(s, t)$ and $h(s, t)$ interpolate all shared vertices

SHADING TYPES

Type 6: Coons patch mesh (continued)

- Define bilinear map $m: V^{4} \times[0,1]^{2} \rightarrow R^{2}$

$$
m_{c, d}^{a, b}(s, t)=(1-s)(1-t) a+(1-s) t b+s(1-t) c+s t d
$$

SHADING TYPES

Type 6: Coons patch mesh (continued)

- Define bilinear map $m: V^{4} \times[0,1]^{2} \rightarrow R^{2}$

$$
m_{c, d}^{a, b}(s, t)=(1-s)(1-t) a+(1-s) t b+s(1-t) c+s t d
$$

- The bilinear map $m_{V_{10}, v_{11}}^{v_{00}, v_{01}}(s, t)$ also interpolates the shared vertices

SHADING TYPES

Type 6: Coons patch mesh (continued)

- Define bilinear map $m: V^{4} \times[0,1]^{2} \rightarrow R^{2}$

$$
m_{c, d}^{a, b}(s, t)=(1-s)(1-t) a+(1-s) t b+s(1-t) c+s t d
$$

- The bilinear map $m_{v_{10}, v_{11}}^{v_{00}, v_{01}}(s, t)$ also interpolates the shared vertices
- Therefore, so does

$$
p(s, t)=v(s, t)+h(s, t)-m_{v_{10}, v_{11}}^{v_{00}, v_{01}}(s, t)
$$

SHADING TYPES

Type 6: Coons patch mesh (continued)

- Define bilinear map $m: V^{4} \times[0,1]^{2} \rightarrow R^{2}$

$$
m_{c, d}^{a, b}(s, t)=(1-s)(1-t) a+(1-s) t b+s(1-t) c+s t d
$$

- The bilinear map $m_{v_{10}, v_{11}}^{v_{00}, v_{01}}(s, t)$ also interpolates the shared vertices
- Therefore, so does

$$
p(s, t)=v(s, t)+h(s, t)-m_{v_{10}, v_{11}}^{v_{00}, v_{01}}(s, t)
$$

- Given colors c_{00}, c_{01}, c_{10}, and c_{11}, the patch maps

$$
p(s, t) \mapsto m_{c_{10}, c_{11}}^{c_{00}, c_{01}}(s, t)
$$

SHADING TYPES

Type 6: Coons patch mesh (continued)

- Define bilinear map $m: V^{4} \times[0,1]^{2} \rightarrow R^{2}$

$$
m_{c, d}^{a, b}(s, t)=(1-s)(1-t) a+(1-s) t b+s(1-t) c+s t d
$$

- The bilinear map $m_{V_{1}, V_{11}}^{v_{00}, v_{1}}(s, t)$ also interpolates the shared vertices
- Therefore, so does

$$
p(s, t)=v(s, t)+h(s, t)-m_{v_{1}, v_{1}}^{v_{01}, v_{11}}(s, t)
$$

- Given colors c_{00}, c_{01}, c_{10}, and c_{11}, the patch maps

$$
p(s, t) \mapsto m_{c_{10}, c_{11}}^{c_{01}, c_{01}}(s, t)
$$

- Patches can be defined independently or connected by strips

SHADING TYPES

Type 6: Coons patch mesh (continued)

- Define bilinear map $m: V^{4} \times[0,1]^{2} \rightarrow R^{2}$

$$
m_{c, d}^{a, b}(s, t)=(1-s)(1-t) a+(1-s) t b+s(1-t) c+s t d
$$

- The bilinear map $m_{v_{1}, v_{11}}^{v_{00}, v_{11}}(s, t)$ also interpolates the shared vertices
- Therefore, so does

$$
p(s, t)=v(s, t)+h(s, t)-m_{v_{1}, v_{1}}^{v_{00}, v_{11}}(s, t)
$$

- Given colors c_{00}, c_{01}, c_{10}, and c_{11}, the patch maps

$$
p(s, t) \mapsto m_{c_{10}, c_{11}}^{c_{01}, c_{01}}(s, t)
$$

- Patches can be defined independently or connected by strips
- Show EPS file

EXAMPLES

SHADING TYPES

Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches

SHADING TYPES

Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
- Given control points $p_{i, j}$, for $i, j \in\{0,1,2,3\}$, the tensor product is

$$
p(s, t)=\sum_{i=0}^{3} \sum_{j=0}^{3} p_{i, j} b_{i, 3}(s) b_{j, 3}(t)
$$

where $b_{i, 3}, b_{j, 3}$ are the cubic Bernstein polynomials

SHADING TYPES

Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
- Given control points $p_{i, j}$, for $i, j \in\{0,1,2,3\}$, the tensor product is

$$
p(s, t)=\sum_{i=0}^{3} \sum_{j=0}^{3} p_{i, j} b_{i, 3}(s) b_{j, 3}(t)
$$

where $b_{i, 3}, b_{j, 3}$ are the cubic Bernstein polynomials

- Given colors $c_{00}, c_{01}, c_{10}, c_{11}$, the patch maps

$$
p(s, t) \mapsto m_{c_{10}, c_{11}}^{c_{00}, c_{01}}(s, t)
$$

SHADING TYPES

Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
- Given control points $p_{i, j}$, for $i, j \in\{0,1,2,3\}$, the tensor product is

$$
p(s, t)=\sum_{i=0}^{3} \sum_{j=0}^{3} p_{i, j} b_{i, 3}(s) b_{j, 3}(t)
$$

where $b_{i, 3}, b_{j, 3}$ are the cubic Bernstein polynomials

- Given colors $c_{00}, c_{01}, c_{10}, c_{11}$, the patch maps

$$
p(s, t) \mapsto m_{c_{10}, c_{11}}^{c_{00}, c_{01}}(s, t)
$$

- Patches can be defined independently or connected by strips

SHADING TYPES

Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
- Given control points $p_{i, j}$, for $i, j \in\{0,1,2,3\}$, the tensor product is

$$
p(s, t)=\sum_{i=0}^{3} \sum_{j=0}^{3} p_{i, j} b_{i, 3}(s) b_{j, 3}(t)
$$

where $b_{i, 3}, b_{j, 3}$ are the cubic Bernstein polynomials

- Given colors $c_{00}, c_{01}, c_{10}, c_{11}$, the patch maps

$$
p(s, t) \mapsto m_{c_{10}, c_{11}}^{c_{00}, c_{01}}(s, t)
$$

- Patches can be defined independently or connected by strips
- (Coons patch is a special case of tensor-product patch)

SHADING TYPES

Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
- Given control points $p_{i, j}$, for $i, j \in\{0,1,2,3\}$, the tensor product is

$$
p(s, t)=\sum_{i=0}^{3} \sum_{j=0}^{3} p_{i, j} b_{i, 3}(s) b_{j, 3}(t)
$$

where $b_{i, 3}, b_{j, 3}$ are the cubic Bernstein polynomials

- Given colors $c_{00}, c_{01}, c_{10}, c_{11}$, the patch maps

$$
p(s, t) \mapsto m_{c_{10}, c_{11}}^{c_{00}, c_{01}}(s, t)
$$

- Patches can be defined independently or connected by strips
- (Coons patch is a special case of tensor-product patch)
- Show EPS file

EXAMPLES

EXAMPLES

References

PostScript Language Reference. Adobe Systems Incorporated, third edition, 1999.

Adobe Portable Document Format, v. 1.7. Adobe Systems Incorporated, sixth edition, 2006.

SVG. Scalable Vector Graphics, v. 1.1. W3C, second edition, 2011.

