2D COMPUTER GRAPHICS

Diego Nehab

Summer 2020

IMPA

GRADIENTS IN SVG [SVG, 2011]

A color ramp is a function c

 $c\colon [0,1]\to \mathrm{sRGBA}$

that maps the interval [0, 1] to colors with transparency

A color ramp is a function c

 $c\colon [0,1]\to \mathrm{sRGBA}$

that maps the interval [0,1] to colors with transparency

Defined by a list of *n* stops

 $(t_i, c_i) \in [0, 1] \times \mathrm{sRGBA}, \text{ with } i \in \{1, \dots, n\}, t_i < t_{i+1}$

A color ramp is a function c

 $c\colon [0,1]\to \mathrm{sRGBA}$

that maps the interval [0, 1] to colors with transparency

Defined by a list of *n* stops

 $(t_i, c_i) \in [0, 1] \times \mathrm{sRGBA}, \text{ with } i \in \{1, \dots, n\}, t_i < t_{i+1}$

c(t) is linear by parts

$$c(t) = \frac{(t_{i+1} - t)c_i + (t - t_i)c_{i+1}}{t_{i+1} - t_i}, \quad t_i \le t < t_{i+1}$$

WRAPPING FUNCTION (OR SPREAD METHOD)

A wrapping function s

$$s \colon \mathbf{R} \to [0, 1]$$

maps a real number to the domain of the color ramp

A wrapping function s

 $s\colon \boldsymbol{R} \to [0,1]$

maps a real number to the domain of the color ramp E.g., pad (or clamp), repeat (or wrap), and reflect (or mirror) pad(t) = min(1, max(0, t)) A wrapping function s

 $s\colon \boldsymbol{R} \to [0,1]$

maps a real number to the domain of the color ramp E.g., pad (or clamp), repeat (or wrap), and reflect (or mirror) pad(t) = min(1, max(0, t))repeat(t) = t - |t| A wrapping function s

 $s\colon \boldsymbol{R} \to [0,1]$

maps a real number to the domain of the color ramp

E.g., pad (or clamp), repeat (or wrap), and reflect (or mirror) pad(t) = min (1, max(0, t)) $repeat(t) = t - \lfloor t \rfloor$ $reflect(t) = 2 \left| \frac{1}{2}t - \lfloor \frac{1}{2}t + \frac{1}{2} \rfloor \right|$ A linear gradient mapping is a function ℓ $\ell \colon R^2 \to R$

parametrized by 2 control points p_1, p_2

A linear gradient mapping is a function ℓ $\ell \colon R^2 \to R$

parametrized by 2 control points p_1, p_2

A linear gradient mapping is a function ℓ $\ell \colon R^2 \to R$

parametrized by 2 control points p_1, p_2

It computes the normalized projected length of $p - p_1$ into $p_2 - p_1$ $\ell(p) = \frac{\langle p - p_1, p_2 - p_1 \rangle}{\langle p_2 - p_1, p_2 - p_1 \rangle}$

A radial gradient mapping is a function r $r: \mathbf{R}^2 \rightarrow \mathbf{R}$

parametrized by a center c, a radius r, and a focal point f

A radial gradient mapping is a function r $r: \mathbb{R}^2 \to \mathbb{R}$

parametrized by a center c, a radius r, and a focal point f

A radial gradient mapping is a function r

 $r: \mathbf{R}^2 \to \mathbf{R}$

parametrized by a center c, a radius r, and a focal point f

It computes the length ratio of from point p to f and q to f

$$r(p) = \frac{\|p - f\|}{\|q - f\|}$$

where q is the intersection between the ray from focal point f to point p and the circle centered at c with radius r

Every shape includes a transformation *T*_o that maps it from *object coordinates* (where the object is defined) to *scene coordinates* (where the object is placed on a scene)

Every shape includes a transformation T_o that maps it from *object* coordinates (where the object is defined) to scene coordinates (where the object is placed on a scene)

Similarly, every paint includes a transformation T_p that maps points from *paint coordinates* (where the color is computed) to *scene coordinates* (where the color is painted)

Every shape includes a transformation T_o that maps it from *object* coordinates (where the object is defined) to scene coordinates (where the object is placed on a scene)

Similarly, every paint includes a transformation T_p that maps points from *paint coordinates* (where the color is computed) to *scene coordinates* (where the color is painted)

If you want to apply a transformation *T* to a shape and want its paint to move with it, simply compose

 $T'_o = T \circ T_o$ $T'_p = T \circ T_p$

A *linear gradient* is a function

 $R^2 \to {\rm sRGBA}$

formed by the composition of a paint transform T_p , a linear gradient mapping ℓ , a wrapping function s, and a color ramp c

 $p \mapsto c(s(\ell(T_p^{-1}p)))$

A *linear gradient* is a function

 $R^2 \to {\rm sRGBA}$

formed by the composition of a paint transform T_p , a linear gradient mapping ℓ , a wrapping function s, and a color ramp c

$$p\mapsto c\bigl(s\bigl(\ell(T_p^{-1}\,p)\bigr)\bigr)$$

Show in Inkscape

EXAMPLES

A radial gradient is a function

 $R^2 \to {\rm sRGBA}$

formed by by the composition of a paint transform T_p , a radial gradient mapping r, a wrapping function s, and a color ramp c

 $p \mapsto c(s(r(T_p^{-1}p)))$

A radial gradient is a function

 $R^2 \to {\rm sRGBA}$

formed by by the composition of a paint transform T_p , a radial gradient mapping r, a wrapping function s, and a color ramp c

$$p\mapsto c\bigl(s\bigl(r(T_p^{-1}p)\bigr)\bigr)$$

Show in Inkscape

EXAMPLES

How to efficiently evaluate a ramp

• Linear search, binary search, uniform sampling

How to efficiently evaluate a ramp

• Linear search, binary search, uniform sampling

How to efficiently evaluate linear and radial mappings?

• How many parameters are really needed?

GRADIENTS IN POSTSCRIPT AND PDF

Type 1: Function-dictionary-based shading

- Basically texture mapping
- Show EPS file
- Will discuss in following classes

Type 1: Function-dictionary-based shading

- Basically texture mapping
- Show EPS file
- Will discuss in following classes
- Type 2: Axial shading
 - Same as linear gradient
 - Show EPS file

• Not the same radial gradient

- Not the same radial gradient
- Define $\gamma(p, r)$ to be the circle centered at p with radius r

- Not the same radial gradient
- Define $\gamma(p, r)$ to be the circle centered at p with radius r
- Inputs are centers and radii for 2 circles $(p_1, r_1), (p_2, r_2)$

- Not the same radial gradient
- Define $\gamma(p, r)$ to be the circle centered at p with radius r
- Inputs are centers and radii for 2 circles $(p_1, r_1), (p_2, r_2)$
- Maps the "interpolated" circle to the color from a ramp *c*

 $\gamma\big((1-t)(p_1,r_1)+t(p_2,r_2)\big)\mapsto c(t)$

- Not the same radial gradient
- Define $\gamma(p, r)$ to be the circle centered at p with radius r
- Inputs are centers and radii for 2 circles $(p_1, r_1), (p_2, r_2)$
- Maps the "interpolated" circle to the color from a ramp *c*

$$\gamma((1-t)(p_1,r_1)+t(p_2,r_2))\mapsto c(t)$$

• Show EPS file

Type 4: Free-form Gouraud-shaded triangle mesh

• Inputs are 3 vertices with colors $(p_1, c_1), (p_2, c_2), (p_3, c_3)$

Type 4: Free-form Gouraud-shaded triangle mesh

- Inputs are 3 vertices with colors $(p_1, c_1), (p_2, c_2), (p_3, c_3)$
- Maps convex combination of points to same combination of colors

Type 4: Free-form Gouraud-shaded triangle mesh

- Inputs are 3 vertices with colors $(p_1, c_1), (p_2, c_2), (p_3, c_3)$
- \cdot Maps convex combination of points to same combination of colors
- \cdot I.e., given 0 < s, t < 1, Gouraud maps

$$p(s,t) \mapsto c(s,t)$$

with

$$p(s,t) = s p_1 + t p_2 + (1 - s - t) p_3$$

$$c(s,t) = s c_1 + t c_2 + (1 - s - t) c_3$$

Type 4: Free-form Gouraud-shaded triangle mesh

- Inputs are 3 vertices with colors $(p_1, c_1), (p_2, c_2), (p_3, c_3)$
- $\cdot\,$ Maps convex combination of points to same combination of colors
- \cdot I.e., given 0 < s, t < 1, Gouraud maps

$$p(s,t) \mapsto c(s,t)$$

with

$$p(s,t) = s p_1 + t p_2 + (1 - s - t) p_3$$

$$c(s,t) = s c_1 + t c_2 + (1 - s - t) c_3$$

• Triangles can be independent, strips, or fans

Type 4: Free-form Gouraud-shaded triangle mesh

- Inputs are 3 vertices with colors $(p_1, c_1), (p_2, c_2), (p_3, c_3)$
- $\cdot\,$ Maps convex combination of points to same combination of colors
- \cdot I.e., given 0 < s, t < 1, Gouraud maps

$$p(s,t) \mapsto c(s,t)$$

with

$$p(s,t) = s p_1 + t p_2 + (1 - s - t) p_3$$

$$c(s,t) = s c_1 + t c_2 + (1 - s - t) c_3$$

- Triangles can be independent, strips, or fans
- Show EPS file and PDF file

Type 4: Free-form Gouraud-shaded triangle mesh

- Inputs are 3 vertices with colors $(p_1, c_1), (p_2, c_2), (p_3, c_3)$
- $\cdot\,$ Maps convex combination of points to same combination of colors
- \cdot I.e., given 0 < s, t < 1, Gouraud maps

$$p(s,t) \mapsto c(s,t)$$

with

$$p(s,t) = s p_1 + t p_2 + (1 - s - t) p_3$$

$$c(s,t) = s c_1 + t c_2 + (1 - s - t) c_3$$

- Triangles can be independent, strips, or fans
- Show EPS file and PDF file

Type 5: Lattice-form Gouraud-shaded triangle mesh

• Same, but for a "regular" grid of triangles

EXAMPLES

• Each patch is defined by 4 connected cubic Bézier segments

 $h_0(s), h_1(s), v_0(t), \text{ and } v_1(t)$

• Each patch is defined by 4 connected cubic Bézier segments

$$h_0(s), h_1(s), v_0(t), \text{ and } v_1(t)$$

• Curves are setup to share endpoints like such

$$v_{00} = v_0(0) = h_0(0) \qquad v_{01} = v_0(1) = h_1(0)$$

$$v_{10} = v_1(0) = h_0(1) \qquad v_{11} = v_1(1) = h_1(1)$$

• Each patch is defined by 4 connected cubic Bézier segments

$$h_0(s), h_1(s), v_0(t), \text{ and } v_1(t)$$

• Curves are setup to share endpoints like such

$$v_{00} = v_0(0) = h_0(0)$$
 $v_{01} = v_0(1) = h_1(0)$
 $v_{10} = v_1(0) = h_0(1)$ $v_{11} = v_1(1) = h_1(1)$

• Define $h: [0,1]^2 \rightarrow \mathbf{R}^2$ to interpolate between curves h_0, h_1

$$h(s,t) = (1-t) h_0(s) + t h_1(s)$$

• Each patch is defined by 4 connected cubic Bézier segments

$$h_0(s), h_1(s), v_0(t), \text{ and } v_1(t)$$

• Curves are setup to share endpoints like such

$$v_{00} = v_0(0) = h_0(0) \qquad v_{01} = v_0(1) = h_1(0)$$

$$v_{10} = v_1(0) = h_0(1) \qquad v_{11} = v_1(1) = h_1(1)$$

• Define $h: [0,1]^2 \rightarrow \mathbf{R}^2$ to interpolate between curves h_0, h_1

$$h(s,t) = (1-t) h_0(s) + t h_1(s)$$

- Define $v: [0,1]^2 \to \mathbf{R}^2$ to interpolate between v_0, v_1

$$v(s,t) = (1-s)v_0(t) + sv_1(t)$$

• Each patch is defined by 4 connected cubic Bézier segments

$$h_0(s), h_1(s), v_0(t), \text{ and } v_1(t)$$

• Curves are setup to share endpoints like such

$$v_{00} = v_0(0) = h_0(0) \qquad v_{01} = v_0(1) = h_1(0)$$

$$v_{10} = v_1(0) = h_0(1) \qquad v_{11} = v_1(1) = h_1(1)$$

• Define $h: [0,1]^2 \to \mathbf{R}^2$ to interpolate between curves h_0, h_1

$$h(s,t) = (1-t) h_0(s) + t h_1(s)$$

• Define $v: [0,1]^2 \rightarrow \mathbf{R}^2$ to interpolate between v_0, v_1

$$v(s,t) = (1-s)v_0(t) + sv_1(t)$$

• Note that v(s,t) and h(s,t) interpolate all shared vertices

Type 6: Coons patch mesh (continued)

- Define bilinear map $m: V^4 \times [0,1]^2 \rightarrow \mathbf{R}^2$

 $m_{c,d}^{a,b}(s,t) = (1-s)(1-t)a + (1-s)tb + s(1-t)c + std$

Type 6: Coons patch mesh (continued)

- Define bilinear map $m: V^4 \times [0,1]^2 \rightarrow \mathbf{R}^2$

 $m_{c,d}^{a,b}(s,t) = (1-s)(1-t)a + (1-s)tb + s(1-t)c + std$

• The bilinear map $m_{v_{10},v_{11}}^{v_{00},v_{01}}(s,t)$ also interpolates the shared vertices

Type 6: Coons patch mesh (continued)

- Define bilinear map $m: V^4 \times [0,1]^2 \rightarrow \mathbf{R}^2$

 $m_{c,d}^{a,b}(s,t) = (1-s)(1-t)a + (1-s)tb + s(1-t)c + std$

- The bilinear map $m_{v_{10},v_{11}}^{v_{00},v_{01}}(s,t)$ also interpolates the shared vertices
- Therefore, so does

$$p(s,t) = v(s,t) + h(s,t) - m_{v_{10},v_{11}}^{v_{00},v_{01}}(s,t)$$

Type 6: Coons patch mesh (continued)

- Define bilinear map $m: V^4 \times [0,1]^2 \rightarrow \mathbf{R}^2$

 $m_{c,d}^{a,b}(s,t) = (1-s)(1-t)a + (1-s)tb + s(1-t)c + std$

- The bilinear map $m_{v_{10},v_{11}}^{v_{00},v_{01}}(s,t)$ also interpolates the shared vertices
- Therefore, so does

$$p(s,t) = v(s,t) + h(s,t) - m_{v_{10},v_{11}}^{v_{00},v_{01}}(s,t)$$

• Given colors c_{00} , c_{01} , c_{10} , and c_{11} , the patch maps

 $p(s,t) \mapsto m_{c_{10},c_{11}}^{c_{00},c_{01}}(s,t)$

Type 6: Coons patch mesh (continued)

- Define bilinear map $m: V^4 \times [0,1]^2 \rightarrow \mathbf{R}^2$

 $m_{c,d}^{a,b}(s,t) = (1-s)(1-t)a + (1-s)tb + s(1-t)c + std$

- The bilinear map $m_{v_{10},v_{11}}^{v_{00},v_{01}}(s,t)$ also interpolates the shared vertices
- Therefore, so does

$$p(s,t) = v(s,t) + h(s,t) - m_{v_{10},v_{11}}^{v_{00},v_{01}}(s,t)$$

• Given colors c_{00} , c_{01} , c_{10} , and c_{11} , the patch maps

$$p(s,t)\mapsto m^{c_{00},c_{01}}_{c_{10},c_{11}}(s,t)$$

· Patches can be defined independently or connected by strips

Type 6: Coons patch mesh (continued)

- Define bilinear map $m: V^4 \times [0,1]^2 \rightarrow \mathbf{R}^2$

 $m_{c,d}^{a,b}(s,t) = (1-s)(1-t)a + (1-s)tb + s(1-t)c + std$

- The bilinear map $m_{v_{10},v_{11}}^{v_{00},v_{01}}(s,t)$ also interpolates the shared vertices
- Therefore, so does

$$p(s,t) = v(s,t) + h(s,t) - m_{v_{10},v_{11}}^{v_{00},v_{01}}(s,t)$$

• Given colors c_{00} , c_{01} , c_{10} , and c_{11} , the patch maps

$$p(s,t)\mapsto m^{c_{00},c_{01}}_{c_{10},c_{11}}(s,t)$$

- · Patches can be defined independently or connected by strips
- Show EPS file

Type 7: Tensor-product patch mesh

• This is just a generalization of Bézier curves to patches

Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
- Given control points $p_{i,j}$, for $i, j \in \{0, 1, 2, 3\}$, the tensor product is

$$p(s,t) = \sum_{i=0}^{3} \sum_{j=0}^{3} p_{i,j} b_{i,3}(s) b_{j,3}(t)$$

where $b_{i,3}, b_{j,3}$ are the cubic Bernstein polynomials

Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
- Given control points $p_{i,j}$, for $i, j \in \{0, 1, 2, 3\}$, the tensor product is

$$p(s,t) = \sum_{i=0}^{3} \sum_{j=0}^{3} p_{i,j} b_{i,3}(s) b_{j,3}(t)$$

where $b_{i,3}, b_{j,3}$ are the cubic Bernstein polynomials

• Given colors c_{00} , c_{01} , c_{10} , c_{11} , the patch maps

 $p(s,t) \mapsto m_{c_{10},c_{11}}^{c_{00},c_{01}}(s,t)$

Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
- Given control points $p_{i,j}$, for $i, j \in \{0, 1, 2, 3\}$, the tensor product is

$$p(s,t) = \sum_{i=0}^{3} \sum_{j=0}^{3} p_{i,j} b_{i,3}(s) b_{j,3}(t)$$

where $b_{i,3}, b_{j,3}$ are the cubic Bernstein polynomials

• Given colors c_{00} , c_{01} , c_{10} , c_{11} , the patch maps

 $p(s,t) \mapsto m_{c_{10},c_{11}}^{c_{00},c_{01}}(s,t)$

· Patches can be defined independently or connected by strips

Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
- Given control points $p_{i,j}$, for $i, j \in \{0, 1, 2, 3\}$, the tensor product is

$$p(s,t) = \sum_{i=0}^{3} \sum_{j=0}^{3} p_{i,j} b_{i,3}(s) b_{j,3}(t)$$

where $b_{i,3}, b_{j,3}$ are the cubic Bernstein polynomials

• Given colors c_{00} , c_{01} , c_{10} , c_{11} , the patch maps

 $p(s,t) \mapsto m_{c_{10},c_{11}}^{c_{00},c_{01}}(s,t)$

- · Patches can be defined independently or connected by strips
- (Coons patch is a special case of tensor-product patch)

Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
- Given control points $p_{i,j}$, for $i, j \in \{0, 1, 2, 3\}$, the tensor product is

$$p(s,t) = \sum_{i=0}^{3} \sum_{j=0}^{3} p_{i,j} b_{i,3}(s) b_{j,3}(t)$$

where $b_{i,3}, b_{j,3}$ are the cubic Bernstein polynomials

• Given colors c_{00} , c_{01} , c_{10} , c_{11} , the patch maps

 $p(s,t) \mapsto m_{c_{10},c_{11}}^{c_{00},c_{01}}(s,t)$

- · Patches can be defined independently or connected by strips
- (Coons patch is a special case of tensor-product patch)
- Show EPS file

EXAMPLES

EXAMPLES

References

- *PostScript Language Reference.* Adobe Systems Incorporated, third edition, 1999.
- Adobe Portable Document Format, v. 1.7. Adobe Systems Incorporated, sixth edition, 2006.
- SVG. Scalable Vector Graphics, v. 1.1. W3C, second edition, 2011.