2D COMPUTER GRAPHICS

Diego Nehab

Summer 2020

IMPA

COLOR AND COMPOSITING

THE PRISM EXPERIMENT

Visible light: prism experiment (Newton, 1666)

Visible light: prism experiment (Newton, 1666) Infrared light: thermometers (Herschel, 1800) Visible light: prism experiment (Newton, 1666) Infrared light: thermometers (Herschel, 1800) Ultraviolet light: silver chloride (Ritter, 1801)

FULL ELECTROMAGNETIC SPECTRUM

Measurement of radiant energy in terms of absolute power

Measurement of radiant energy in terms of absolute power

Wave vs. particle

- Wavelength (λ), frequency ($\nu = \frac{c}{\lambda}$), and amplitude (A)
- Energy ($E = h\nu$, where *h* is Planck's constant) and flux (Φ)

Measurement of radiant energy in terms of absolute power Wave vs. particle

- Wavelength (λ), frequency ($\nu = \frac{c}{\lambda}$), and amplitude (A)
- Energy ($E = h\nu$, where *h* is Planck's constant) and flux (Φ)

Pure spectral light (monochromatic colors)

Measurement of radiant energy in terms of absolute power Wave vs. particle

- Wavelength (λ), frequency ($\nu = \frac{c}{\lambda}$), and amplitude (A)
- Energy ($E = h\nu$, where *h* is Planck's constant) and flux (Φ)
- Pure spectral light (monochromatic colors)

COLORS ARE SPECTRAL DISTRIBUTIONS

As a continuous function of $c(\lambda)$

 $c: \mathbf{R}_{>0} \to \mathbf{R}_{\geq 0}, \quad \lambda \mapsto A_{\lambda}$

As a continuous function of $c(\lambda)$

 $\mathsf{c}: \mathbf{R}_{>0} \to \mathbf{R}_{\geq 0}, \quad \lambda \mapsto \mathsf{A}_{\lambda}$

As a discrete set of values $c(\lambda_i)$

$$c: \{\lambda_1, \lambda_2, \ldots, \lambda_n\} \subset \mathbf{R}_{>0} \to \mathbf{R}_{\geq 0} \quad \lambda_i \mapsto A_{\lambda_i}$$

As a continuous function of $c(\lambda)$

 $\mathsf{c}: \mathbf{R}_{>0} \to \mathbf{R}_{\geq 0}, \quad \lambda \mapsto \mathsf{A}_{\lambda}$

As a discrete set of values $c(\lambda_i)$

$$c: \{\lambda_1, \lambda_2, \ldots, \lambda_n\} \subset \mathbf{R}_{>0} \to \mathbf{R}_{\geq 0} \quad \lambda_i \mapsto A_{\lambda_i}$$

Light emitter has a spectrum, material properties modulate the reflected spectrum (Fluorescence is something else)

Wavelength / nm

Measurement light in terms of perceived brightness to human eye

Measurement light in terms of perceived brightness to human eye Visible light $\lambda \in [390 \text{nm}, 700 \text{nm}]$ approximately

Measurement light in terms of perceived brightness to human eye Visible light $\lambda \in [390 nm, 700 nm]$ approximately

Cones: Three types of retinal cells with distinct spectral responses

Cones: Three types of retinal cells with distinct spectral responses

Highly concentrated on fovea

Cones: Three types of retinal cells with distinct spectral responses

Highly concentrated on fovea

Response curves S (short λ), M (medium λ), L (long λ)

- Peaks at $\lambda = 420 \mathrm{nm}$, $\lambda = 534 \mathrm{nm}$, and $\lambda = 564 \mathrm{nm}$
- Overlap each other
- Not R, G, and B

Cones: Three types of retinal cells with distinct spectral responses

Highly concentrated on fovea

Response curves S (short λ), M (medium λ), L (long λ)

- Peaks at $\lambda = 420 \mathrm{nm}$, $\lambda = 534 \mathrm{nm}$, and $\lambda = 564 \mathrm{nm}$
- Overlap each other
- Not R, G, and B

What about the color-blind?

Cones: Three types of retinal cells with distinct spectral responses

Highly concentrated on fovea

Response curves S (short λ), M (medium λ), L (long λ)

- Peaks at $\lambda = 420 \mathrm{nm}$, $\lambda = 534 \mathrm{nm}$, and $\lambda = 564 \mathrm{nm}$
- Overlap each other
- Not R, G, and B

What about the color-blind?

Are there tetrachromats among us?

Rods: One type of retinal cell

- Rods: One type of retinal cell
- Mostly peripheral

- Rods: One type of retinal cell
- Mostly peripheral
- $20\times$ more numerous, $1000\times$ more sensitive than cones

- Low-light conditions
- Rods: One type of retinal cell
- Mostly peripheral
- $20 \times$ more numerous, $1000 \times$ more sensitive than cones
- Response curve
 - + R: peak at $\lambda = 498 \mathrm{nm}$ (between S and M)

- Low-light conditions
- Rods: One type of retinal cell
- Mostly peripheral
- $20 \times$ more numerous, $1000 \times$ more sensitive than cones
- Response curve
 - R: peak at $\lambda = 498 \mathrm{nm}$ (between S and M)
- Things look "gray-bluish" at night

HUMAN PHOTORECEPTOR DISTRIBUTION

12

Spectral sensitivity $V(\lambda)$ of human perception of brightness

Spectral sensitivity $V(\lambda)$ of human perception of *brightness* Different for photopic and scotopic vision Spectral sensitivity $V(\lambda)$ of human perception of *brightness* Different for photopic and scotopic vision Immense dynamic range 1 : 10¹⁰ (brightness adaptation) Spectral sensitivity $V(\lambda)$ of human perception of *brightness* Different for photopic and scotopic vision Immense dynamic range 1 : 10¹⁰ (brightness adaptation) Convert radiant intensity (W/sr) to luminous intensity (cd)

$$v(c) = \int_{\lambda} c(\lambda) V(\lambda) d\lambda$$
PHOTOPIC LUMINOUS EFFICIENCY FUNCTION

Nonlinear perceptual response to brightness

LIGHTNESS

Nonlinear perceptual response to brightness

Power law

$$L^* \approx \frac{116}{100} \left(\frac{Y}{Y_0}\right)^{\frac{1}{3}} - 0.16$$

LIGHTNESS

Nonlinear perceptual response to brightness

Power law

$$L^* \approx \frac{116}{100} \left(\frac{Y}{Y_0}\right)^{\frac{1}{3}} - 0.16$$

Weber law of just noticeable difference $\Delta L^* \approx \frac{\gamma}{100}$

Created to compensate for input-output characteristic of CRT displays

$$Y = V^{2.5} = V^{\gamma}$$

16

Created to compensate for input-output characteristic of CRT displays $\mathbf{Y} = \mathbf{V}^{2.5} = \mathbf{V}^{\gamma}$

Today, due to remarkable coincidence, it is used for encoding efficiency

Created to compensate for input-output characteristic of CRT displays $\mathbf{Y} = \mathbf{V}^{2.5} = \mathbf{V}^{\gamma}$

Today, due to remarkable coincidence, it is used for encoding efficiency

Created to compensate for input-output characteristic of CRT displays $\mathbf{Y} = \mathbf{V}^{2.5} = \mathbf{V}^{\gamma}$

Today, due to remarkable coincidence, it is used for encoding efficiency

ILLUSION

1st attempt: Measure spectral distribution of stimulus

- · Convex combinations of monochromatic colors
- Could use spectrophotometer to measure $c(\lambda)$.
- But how to would you reproduce it?

1st attempt: Measure spectral distribution of stimulus

- · Convex combinations of monochromatic colors
- Could use spectrophotometer to measure $c(\lambda)$.
- But how to would you reproduce it?
- 2nd attempt: Measure optical nerve response
 - Remove eye, attach wires to cones: The Matrix
 - Re-inject signal to reproduce
 - Painful, but only 3 values per color

Measuring

 \cdot $c(\lambda)$ is the target color's spectral distribution

Measuring

- \cdot $c(\lambda)$ is the target color's spectral distribution
- $L(\lambda)$, $M(\lambda)$, and $S(\lambda)$ the spectral sensitivities for the cones

Measuring

- \cdot $c(\lambda)$ is the target color's spectral distribution
- $L(\lambda)$, $M(\lambda)$, and $S(\lambda)$ the spectral sensitivities for the cones
- Inner-product functions f and g is

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(\lambda) g(\lambda) d\lambda$$

Measuring

- \cdot $c(\lambda)$ is the target color's spectral distribution
- $L(\lambda)$, $M(\lambda)$, and $S(\lambda)$ the spectral sensitivities for the cones
- Inner-product functions f and g is

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(\lambda) g(\lambda) d\lambda$$

• The cone responses to c must be

$$S_c = \langle c, S \rangle, \qquad M_c = \langle c, M \rangle, \text{ and } L_c = \langle c, L \rangle$$

CONE SPECTRAL SENSITIVITIES (NOT TO SCALE)

• Assume 3 different stimuli colors $r(\lambda)$, $g(\lambda)$, and $b(\lambda)$

- Assume 3 different stimuli colors $r(\lambda)$, $g(\lambda)$, and $b(\lambda)$
- Find stimuli intensities R_c , G_c and B_c that correspond to c

- Assume 3 different stimuli colors $r(\lambda)$, $g(\lambda)$, and $b(\lambda)$
- Find stimuli intensities R_c , G_c and B_c that correspond to c
- I.e., intensities that reproduce responses S_c , M_c , and L_c

- Assume 3 different stimuli colors $r(\lambda)$, $g(\lambda)$, and $b(\lambda)$
- Find stimuli intensities R_c , G_c and B_c that correspond to c
- I.e., intensities that reproduce responses S_c , M_c , and L_c

 $\begin{cases} \langle R_c r + G_c g + B_c b, S \rangle = S_c \\ \langle R_c r + G_c g + B_c b, M \rangle = M_c \\ \langle R_c r + G_c g + B_c b, L \rangle = L_c \end{cases}$

- Assume 3 different stimuli colors $r(\lambda)$, $g(\lambda)$, and $b(\lambda)$
- Find stimuli intensities R_c , G_c and B_c that correspond to c
- I.e., intensities that reproduce responses S_c , M_c , and L_c

$$\begin{cases} \langle R_c r + G_c g + B_c b, S \rangle = S_c \\ \langle R_c r + G_c g + B_c b, M \rangle = M_c \\ \langle R_c r + G_c g + B_c b, L \rangle = L_c \end{cases} \Leftrightarrow \begin{bmatrix} S_r & S_g & S_b \\ M_r & M_g & M_b \\ L_r & L_g & L_b \end{bmatrix} \begin{bmatrix} R_c \\ G_c \\ B_c \end{bmatrix} = \begin{bmatrix} S_c \\ M_c \\ L_c \end{bmatrix}$$

- Assume 3 different stimuli colors $r(\lambda)$, $g(\lambda)$, and $b(\lambda)$
- Find stimuli intensities R_c , G_c and B_c that correspond to c
- I.e., intensities that reproduce responses S_c , M_c , and L_c

$$\begin{cases} \langle R_c r + G_c g + B_c b, S \rangle = S_c \\ \langle R_c r + G_c g + B_c b, M \rangle = M_c \\ \langle R_c r + G_c g + B_c b, L \rangle = L_c \end{cases} \Leftrightarrow \begin{bmatrix} S_r & S_g & S_b \\ M_r & M_g & M_b \\ L_r & L_g & L_b \end{bmatrix} \begin{bmatrix} R_c \\ G_c \\ B_c \end{bmatrix} = \begin{bmatrix} S_c \\ M_c \\ L_c \end{bmatrix}$$

Stimuli must be linearly independent

- Assume 3 different stimuli colors $r(\lambda)$, $g(\lambda)$, and $b(\lambda)$
- Find stimuli intensities R_c , G_c and B_c that correspond to c
- I.e., intensities that reproduce responses S_c , M_c , and L_c

$$\begin{cases} \langle R_c r + G_c g + B_c b, S \rangle = S_c \\ \langle R_c r + G_c g + B_c b, M \rangle = M_c \\ \langle R_c r + G_c g + B_c b, L \rangle = L_c \end{cases} \Leftrightarrow \begin{bmatrix} S_r & S_g & S_b \\ M_r & M_g & M_b \\ L_r & L_g & L_b \end{bmatrix} \begin{bmatrix} R_c \\ G_c \\ B_c \end{bmatrix} = \begin{bmatrix} S_c \\ M_c \\ L_c \end{bmatrix}$$

Stimuli must be linearly independent

Result R_c , G_c , or B_c could be non-convex

• There is no negative light...

• Could use entire spectrum

• Could use entire spectrum

Unnecessary (most of the time) due to metamerism

- Different spectra result in same perceived color $\begin{bmatrix} S & M & L \end{bmatrix}$
- E.g., c and $R_c r + G_c g + B_c b$

• Could use entire spectrum

Unnecessary (most of the time) due to *metamerism*

- Different spectra result in same perceived color $\begin{bmatrix} S & M & L \end{bmatrix}$
- E.g., c and $R_c r + G_c g + B_c b$

Obtain R_c, G_c, and B_c directly from c and RGB color matching functions

$$R_c = \langle c, R \rangle$$
 $G_c = \langle c, G \rangle$ $B_c = \langle c, B \rangle.$

• Could use entire spectrum

Unnecessary (most of the time) due to metamerism

- Different spectra result in same perceived color $\begin{bmatrix} S & M & L \end{bmatrix}$
- E.g., c and $R_c r + G_c g + B_c b$

Obtain R_c, G_c, and B_c directly from c and RGB color matching functions

$$R_c = \langle c, R \rangle$$
 $G_c = \langle c, G \rangle$ $B_c = \langle c, B \rangle.$

How to measure color matching functions R, G, and B

CIE 1931 RGB COLOR MATCHING FUNCTIONS

Linear transformation to R, G, B

- Visible colors always use non-negative coordinates
- Linear transformation to R, G, B
- Y is the photopic luminosity function

Linear transformation to R, G, B

Y is the photopic luminosity function

Equal-energy radiator (constant SPD in visible spectrum, illuminant E) is at $\begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$

- Linear transformation to R, G, B
- Y is the photopic luminosity function

Equal-energy radiator (constant SPD in visible spectrum, illuminant E) is at $\begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$

Z ended up almost equal to S

XYZ COLOR MATCHING FUNCTIONS

Similar to ${\bf R}{\bf P}^2$

- Given $\alpha > 0$, $\begin{bmatrix} \alpha X & \alpha Y & \alpha Z \end{bmatrix}$ have same chromaticity
- Different brightness
Similar to ${\bf R}{\bf P}^2$

- Given $\alpha > 0$, $\begin{bmatrix} \alpha X & \alpha Y & \alpha Z \end{bmatrix}$ have same chromaticity
- Different brightness

Separation of chromaticity and brightness

$$x = \frac{X}{X + Y + Z} \qquad \qquad y = \frac{Y}{X + Y + Z}$$

CIE CHROMATICITY DIAGRAM

C.I.E. 1931 Chromaticity Diagram

Locus of monochromatic colors

- Locus of monochromatic colors
- Locus of black-body colors

- Locus of monochromatic colors
- Locus of black-body colors
- Line of purples

- Horseshoe shape
- Locus of monochromatic colors
- Locus of black-body colors
- Line of purples
- Color gamut

- Horseshoe shape
- Locus of monochromatic colors
- Locus of black-body colors
- Line of purples
- Color gamut
- Color calibration and matching

$$\begin{bmatrix} R\\ G\\ B \end{bmatrix} = \begin{bmatrix} \gamma(R_{\ell})\\ \gamma(G_{\ell})\\ \gamma(B_{\ell}) \end{bmatrix}, \begin{bmatrix} R_{\ell}\\ G_{\ell}\\ B_{\ell} \end{bmatrix} = \begin{bmatrix} 3.2406 & -1.5372 & -0.4986\\ -0.9689 & 1.8758 & 0.0415\\ 0.0557 & -0.2040 & 1.0570 \end{bmatrix} \begin{bmatrix} X_{D65}\\ Y_{D65}\\ Z_{D65} \end{bmatrix}$$
$$\gamma(u) = \begin{cases} 12.92u & u < 0.0031308\\ 1.055u^{1/2.4} - 0.055 & \text{otherwise} \end{cases}$$

$$\begin{bmatrix} R\\ G\\ B \end{bmatrix} = \begin{bmatrix} \gamma(R_{\ell})\\ \gamma(G_{\ell})\\ \gamma(B_{\ell}) \end{bmatrix}, \begin{bmatrix} R_{\ell}\\ G_{\ell}\\ B_{\ell} \end{bmatrix} = \begin{bmatrix} 3.2406 & -1.5372 & -0.4986\\ -0.9689 & 1.8758 & 0.0415\\ 0.0557 & -0.2040 & 1.0570 \end{bmatrix} \begin{bmatrix} X_{D65}\\ Y_{D65}\\ Z_{D65} \end{bmatrix}$$
$$\gamma(u) = \begin{cases} 12.92u & u < 0.0031308\\ 1.055u^{1/2.4} - 0.055 & \text{otherwise} \end{cases}$$

Munsel (HSV and HSL)

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} \gamma(R_{\ell}) \\ \gamma(G_{\ell}) \\ \gamma(B_{\ell}) \end{bmatrix}, \begin{bmatrix} R_{\ell} \\ G_{\ell} \\ B_{\ell} \end{bmatrix} = \begin{bmatrix} 3.2406 & -1.5372 & -0.4986 \\ -0.9689 & 1.8758 & 0.0415 \\ 0.0557 & -0.2040 & 1.0570 \end{bmatrix} \begin{bmatrix} X_{D65} \\ Y_{D65} \\ Z_{D65} \end{bmatrix}$$
$$\gamma(u) = \begin{cases} 12.92u & u < 0.0031308 \\ 1.055u^{1/2.4} - 0.055 & \text{otherwise} \end{cases}$$

Munsel (HSV and HSL)

Additive (CMY and CMYK)

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} \gamma(R_{\ell}) \\ \gamma(G_{\ell}) \\ \gamma(B_{\ell}) \end{bmatrix}, \begin{bmatrix} R_{\ell} \\ G_{\ell} \\ B_{\ell} \end{bmatrix} = \begin{bmatrix} 3.2406 & -1.5372 & -0.4986 \\ -0.9689 & 1.8758 & 0.0415 \\ 0.0557 & -0.2040 & 1.0570 \end{bmatrix} \begin{bmatrix} X_{D65} \\ Y_{D65} \\ Z_{D65} \end{bmatrix}$$
$$\gamma(u) = \begin{cases} 12.92u & u < 0.0031308 \\ 1.055u^{1/2.4} - 0.055 & \text{otherwise} \end{cases}$$

Munsel (HSV and HSL)

Additive (CMY and CMYK)

TV (PAL YUV, NTSC YIQ)

$$\begin{bmatrix} R\\ G\\ B \end{bmatrix} = \begin{bmatrix} \gamma(R_{\ell})\\ \gamma(G_{\ell})\\ \gamma(B_{\ell}) \end{bmatrix}, \quad \begin{bmatrix} R_{\ell}\\ G_{\ell}\\ B_{\ell} \end{bmatrix} = \begin{bmatrix} 3.2406 & -1.5372 & -0.4986\\ -0.9689 & 1.8758 & 0.0415\\ 0.0557 & -0.2040 & 1.0570 \end{bmatrix} \begin{bmatrix} X_{D65}\\ Y_{D65}\\ Z_{D65} \end{bmatrix}$$
$$\gamma(u) = \begin{cases} 12.92u & u < 0.0031308\\ 1.055u^{1/2.4} - 0.055 & \text{otherwise} \end{cases}$$

Munsel (HSV and HSL)

Additive (CMY and CMYK)

TV (PAL YUV, NTSC YIQ)

Perceptual (CIE L*a*b*)

$$\begin{bmatrix} R\\ G\\ B \end{bmatrix} = \begin{bmatrix} \gamma(R_{\ell})\\ \gamma(G_{\ell})\\ \gamma(B_{\ell}) \end{bmatrix}, \quad \begin{bmatrix} R_{\ell}\\ G_{\ell}\\ B_{\ell} \end{bmatrix} = \begin{bmatrix} 3.2406 & -1.5372 & -0.4986\\ -0.9689 & 1.8758 & 0.0415\\ 0.0557 & -0.2040 & 1.0570 \end{bmatrix} \begin{bmatrix} X_{D65}\\ Y_{D65}\\ Z_{D65} \end{bmatrix}$$
$$\gamma(u) = \begin{cases} 12.92u & u < 0.0031308\\ 1.055u^{1/2.4} - 0.055 & \text{otherwise} \end{cases}$$

Munsel (HSV and HSL)

Additive (CMY and CMYK)

TV (PAL YUV, NTSC YIQ)

Perceptual (CIE L*a*b*)

Opponent color models

TRANSPARENCY

Seminal work by Porter and Duff [1984]

Semitransparent color f on top of opaque background color b

- Assume probability of light hitting f is α
- Reflected color (integrated over small area) is

$$f, \alpha \oplus b = \alpha f + (1 - \alpha)b$$

• This is what we call *alpha blending* or the *over* operator

Compositing

Now imagine f_1, α_1 on top of f_2, α_2 on top of b

• Reflected color is

 $f_1, \alpha_1 \oplus (f_2, \alpha_2 \oplus b) = \alpha_1 f_1 + (1 - \alpha_1) (\alpha_2 f_2 + (1 - \alpha_2) b)$

Compositing

Now imagine f_1, α_1 on top of f_2, α_2 on top of b

• Reflected color is

$$f_1, \alpha_1 \oplus (f_2, \alpha_2 \oplus b) = \alpha_1 f_1 + (1 - \alpha_1) \big(\alpha_2 f_2 + (1 - \alpha_2) b \big)$$

Can we combine f_1 , α_1 and f_2 , α_2 into a single material f, α ?

$$\alpha f + (1 - \alpha)b = \alpha_1 f_1 + (1 - \alpha_1)(\alpha_2 f_2 + (1 - \alpha_2)b)$$

= $\alpha_1 f_1 + (1 - \alpha_1)\alpha_2 f_2 + (1 - \alpha_1)(1 - \alpha_2)b$

Now imagine f_1, α_1 on top of f_2, α_2 on top of b

• Reflected color is

$$f_1, \alpha_1 \oplus (f_2, \alpha_2 \oplus b) = \alpha_1 f_1 + (1 - \alpha_1) \big(\alpha_2 f_2 + (1 - \alpha_2) b \big)$$

Can we combine f_1 , α_1 and f_2 , α_2 into a single material f, α ?

$$\alpha f + (1 - \alpha)b = \alpha_1 f_1 + (1 - \alpha_1)(\alpha_2 f_2 + (1 - \alpha_2)b)$$

= $\alpha_1 f_1 + (1 - \alpha_1)\alpha_2 f_2 + (1 - \alpha_1)(1 - \alpha_2)b$

So we have

$$\begin{cases} (1-\alpha)b = (1-\alpha_1)(1-\alpha_2)b\\ \alpha f = \alpha_1 f_1 + (1-\alpha_1)\alpha_2 f_2 \end{cases} \Rightarrow \begin{cases} \alpha = \alpha_1 + (1-\alpha_1)\alpha_2\\ \alpha f = \alpha_1 f_1 + (1-\alpha_1)\alpha_2 f_2 \end{cases}$$

$$\begin{cases} (1-\alpha)b = (1-\alpha_1)(1-\alpha_2)b\\ \alpha f = \alpha_1 f_1 + (1-\alpha_1)\alpha_2 f_2 \end{cases} \Rightarrow \begin{cases} \alpha = \alpha_1 + (1-\alpha_1)\alpha_2\\ \alpha f = \alpha_1 f_1 + (1-\alpha_1)\alpha_2 f_2 \end{cases}$$

$$\begin{cases} (1-\alpha)b = (1-\alpha_1)(1-\alpha_2)b\\ \alpha f = \alpha_1 f_1 + (1-\alpha_1)\alpha_2 f_2 \end{cases} \Rightarrow \begin{cases} \alpha = \alpha_1 + (1-\alpha_1)\alpha_2\\ \alpha f = \alpha_1 f_1 + (1-\alpha_1)\alpha_2 f_2 \end{cases}$$

Setting
$$\tilde{f} = \alpha f$$
, $\tilde{f}_1 = \alpha_1 f_1$, and $\tilde{f}_2 = \alpha_2 f_2$, we obtain

$$\begin{cases} \alpha = \alpha_1 + (1 - \alpha_1)\alpha_2 \\ \tilde{f} = \tilde{f}_1 + (1 - \alpha_1)\tilde{f}_2 \end{cases}$$

$$\begin{cases} (1-\alpha)b = (1-\alpha_1)(1-\alpha_2)b\\ \alpha f = \alpha_1 f_1 + (1-\alpha_1)\alpha_2 f_2 \end{cases} \Rightarrow \begin{cases} \alpha = \alpha_1 + (1-\alpha_1)\alpha_2\\ \alpha f = \alpha_1 f_1 + (1-\alpha_1)\alpha_2 f_2 \end{cases}$$

Setting
$$\tilde{f} = \alpha f$$
, $\tilde{f}_1 = \alpha_1 f_1$, and $\tilde{f}_2 = \alpha_2 f_2$, we obtain

$$\begin{cases} \alpha = \alpha_1 + (1 - \alpha_1)\alpha_2 \\ \tilde{f} = \tilde{f}_1 + (1 - \alpha_1)\tilde{f}_2 \end{cases}$$

This is what we call pre-multiplied alpha

$$\begin{cases} (1-\alpha)b = (1-\alpha_1)(1-\alpha_2)b\\ \alpha f = \alpha_1 f_1 + (1-\alpha_1)\alpha_2 f_2 \end{cases} \Rightarrow \begin{cases} \alpha = \alpha_1 + (1-\alpha_1)\alpha_2\\ \alpha f = \alpha_1 f_1 + (1-\alpha_1)\alpha_2 f_2 \end{cases}$$

Setting
$$\tilde{f} = \alpha f$$
, $\tilde{f}_1 = \alpha_1 f_1$, and $\tilde{f}_2 = \alpha_2 f_2$, we obtain

$$\begin{cases} \alpha = \alpha_1 + (1 - \alpha_1)\alpha_2 \\ \tilde{f} = \tilde{f}_1 + (1 - \alpha_1)\tilde{f}_2 \end{cases}$$

This is what we call pre-multiplied alpha

Blending becomes associative

$$\tilde{f}_1, \alpha_1 \oplus (\tilde{f}_2, \alpha_2 \oplus b) = (\tilde{f}_1, \alpha_1 \oplus \tilde{f}_2, \alpha_2) \oplus b$$

Compositing

$$\begin{cases} (1-\alpha)b = (1-\alpha_1)(1-\alpha_2)b\\ \alpha f = \alpha_1 f_1 + (1-\alpha_1)\alpha_2 f_2 \end{cases} \Rightarrow \begin{cases} \alpha = \alpha_1 + (1-\alpha_1)\alpha_2\\ \alpha f = \alpha_1 f_1 + (1-\alpha_1)\alpha_2 f_2 \end{cases}$$

Setting
$$\tilde{f} = \alpha f$$
, $\tilde{f}_1 = \alpha_1 f_1$, and $\tilde{f}_2 = \alpha_2 f_2$, we obtain

$$\begin{cases} \alpha = \alpha_1 + (1 - \alpha_1)\alpha_2 \\ \tilde{f} = \tilde{f}_1 + (1 - \alpha_1)\tilde{f}_2 \end{cases}$$

This is what we call pre-multiplied alpha

Blending becomes associative

$$\tilde{f}_1, \alpha_1 \oplus (\tilde{f}_2, \alpha_2 \oplus b) = (\tilde{f}_1, \alpha_1 \oplus \tilde{f}_2, \alpha_2) \oplus b$$

Should we blend front-to-back or back-to-front?

References

IEC Project Team 61966. Colour measurement and management in multimedia systems and equipment. IEC/4WD 61966-2-1, 1998. Part 2.1: Default RGB colour space — sRGB.

- B. MacEvoy. Hardprint: Color vision, 2015. URL http://www.handprint.com/LS/CVS/color.html.
- T. Porter and T. Duff. Compositing digital images. *Computer Graphics* (*Proceedings of ACM SIGGRAPH 1984*), 18(3):253–259, 1984.