2D Computer Graphics

Diego Nehab
Summer 2020

IMPA

COLOR AND COMPOSITING

THE PRISM EXPERIMENT

MORE THAN VISIBLE LIGHT

Visible light: prism experiment (Newton, 1666)

MORE THAN VISIBLE LIGHT

Visible light: prism experiment (Newton, 1666)
Infrared light: thermometers (Herschel, 1800)

MORE THAN VISIBLE LIGHT

Visible light: prism experiment (Newton, 1666)
Infrared light: thermometers (Herschel, 1800)
Ultraviolet light: silver chloride (Ritter, 1801)

FULL ELECTROMAGNETIC SPECTRUM

RADIOMETRY

Measurement of radiant energy in terms of absolute power

RADIOMETRY

Measurement of radiant energy in terms of absolute power Wave vs. particle

- Wavelength (λ), frequency $\left(\nu=\frac{c}{\lambda}\right)$, and amplitude (A)
- Energy ($E=h \nu$, where h is Planck's constant) and flux (Φ)

RADIOMETRY

Measurement of radiant energy in terms of absolute power Wave vs. particle

- Wavelength (λ), frequency $\left(\nu=\frac{c}{\lambda}\right)$, and amplitude (A)
- Energy ($E=h \nu$, where h is Planck's constant) and flux (Φ)

Pure spectral light (monochromatic colors)

RADIOMETRY

Measurement of radiant energy in terms of absolute power Wave vs. particle

- Wavelength (λ), frequency $\left(\nu=\frac{c}{\lambda}\right)$, and amplitude (A)
- Energy ($E=h \nu$, where h is Planck's constant) and flux (Φ)

Pure spectral light (monochromatic colors)

COLORS ARE SPECTRAL DISTRIBUTIONS

WAVELENGTH (nanometers)

Spectral representation

As a continuous function of $c(\lambda)$

$$
c: R_{>0} \rightarrow R_{\geq 0}, \quad \lambda \mapsto A_{\lambda}
$$

Spectral representation

As a continuous function of $c(\lambda)$

$$
c: R_{>0} \rightarrow R_{\geq 0}, \quad \lambda \mapsto A_{\lambda}
$$

As a discrete set of values $c\left(\lambda_{i}\right)$

$$
c:\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\} \subset \mathrm{R}_{>0} \rightarrow \mathrm{R}_{\geq 0} \quad \lambda_{i} \mapsto A_{\lambda_{i}}
$$

SPECTRAL REPRESENTATION

As a continuous function of $c(\lambda)$

$$
c: R_{>0} \rightarrow R_{\geq 0}, \quad \lambda \mapsto A_{\lambda}
$$

As a discrete set of values $c\left(\lambda_{i}\right)$

$$
c:\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\} \subset \mathrm{R}_{>0} \rightarrow \mathrm{R}_{\geq 0} \quad \lambda_{i} \mapsto A_{\lambda_{i}}
$$

Light emitter has a spectrum, material properties modulate the reflected spectrum (Fluorescence is something else)

BLACK-BODY RADIATION

$$
B(\nu, T)=\frac{2 h \nu^{3}}{c^{2}}\left(e^{\frac{h \nu}{k_{B} T}}-1\right)^{-1}, \quad \text { where } k_{B} \text { is Boltsmann's constant }
$$

РнотOMETRY

Measurement light in terms of perceived brightness to human eye

PHOTOMETRY

Measurement light in terms of perceived brightness to human eye Visible light $\lambda \in[390 \mathrm{~nm}, 700 \mathrm{~nm}]$ approximately

Photometry

Measurement light in terms of perceived brightness to human eye Visible light $\lambda \in[390 \mathrm{~nm}, 700 \mathrm{~nm}]$ approximately

Prism

РHotopic vision

Well-lit conditions

PHOTOPIC VISION

Well-lit conditions
Cones: Three types of retinal cells with distinct spectral responses

PHOTOPIC VISION

Well-lit conditions
Cones: Three types of retinal cells with distinct spectral responses Highly concentrated on fovea

PHOTOPIC VISION

Well-lit conditions
Cones: Three types of retinal cells with distinct spectral responses
Highly concentrated on fovea
Response curves S (short λ), M (medium λ), L (long λ)

- Peaks at $\lambda=420 \mathrm{~nm}, \lambda=534 \mathrm{~nm}$, and $\lambda=564 \mathrm{~nm}$
- Overlap each other
- Not R, G, and B

РHOTOPIC VISION

Well-lit conditions
Cones: Three types of retinal cells with distinct spectral responses
Highly concentrated on fovea
Response curves S (short λ), M (medium λ), L (long λ)

- Peaks at $\lambda=420 \mathrm{~nm}, \lambda=534 \mathrm{~nm}$, and $\lambda=564 \mathrm{~nm}$
- Overlap each other
- Not R, G, and B

What about the color-blind?

PHOTOPIC VISION

Well-lit conditions
Cones: Three types of retinal cells with distinct spectral responses
Highly concentrated on fovea
Response curves S (short λ), M (medium λ), L (long λ)

- Peaks at $\lambda=420 \mathrm{~nm}, \lambda=534 \mathrm{~nm}$, and $\lambda=564 \mathrm{~nm}$
- Overlap each other
- Not R, G, and B

What about the color-blind?
Are there tetrachromats among us?

Scotopic vision

Low-light conditions

SCOTOPIC VISION

Low-light conditions
Rods: One type of retinal cell

SCOTOPIC VISION

Low-light conditions
Rods: One type of retinal cell
Mostly peripheral

SCOTOPIC VISION

Low-light conditions
Rods: One type of retinal cell
Mostly peripheral
$20 \times$ more numerous, $1000 \times$ more sensitive than cones

SCOTOPIC VISION

Low-light conditions
Rods: One type of retinal cell
Mostly peripheral
$20 \times$ more numerous, $1000 \times$ more sensitive than cones
Response curve

- R: peak at $\lambda=498 \mathrm{~nm}$ (between S and M)

SCOTOPIC VISION

Low-light conditions
Rods: One type of retinal cell
Mostly peripheral
$20 \times$ more numerous, $1000 \times$ more sensitive than cones
Response curve

- R: peak at $\lambda=498 \mathrm{~nm}$ (between S and M)

Things look "gray-bluish" at night

HUMAN PHOTORECEPTOR DISTRIBUTION

LUMINOUS EFFICIENCY FUNCTION

Spectral sensitivity $V(\lambda)$ of human perception of brightness

LUMINOUS EFFICIENCY FUNCTION

Spectral sensitivity $V(\lambda)$ of human perception of brightness Different for photopic and scotopic vision

LUMINOUS EFFICIENCY FUNCTION

Spectral sensitivity $V(\lambda)$ of human perception of brightness Different for photopic and scotopic vision Immense dynamic range 1:1010 (brightness adaptation)

LUMINOUS EFFICIENCY FUNCTION

Spectral sensitivity $V(\lambda)$ of human perception of brightness
Different for photopic and scotopic vision Immense dynamic range 1:1010 (brightness adaptation)

Convert radiant intensity (W/sr) to luminous intensity (cd)

$$
v(c)=\int_{\lambda} c(\lambda) V(\lambda) d \lambda
$$

Photopic luminous efficiency function

Photopic luminous efficiency function

LIgHTNESS

Nonlinear perceptual response to brightness

LIGHTNESS

Nonlinear perceptual response to brightness
Power law

$$
L^{*} \approx \frac{116}{100}\left(\frac{Y}{Y_{0}}\right)^{\frac{1}{3}}-0.16
$$

LIGHTNESS

Nonlinear perceptual response to brightness
Power law

$$
L^{*} \approx \frac{116}{100}\left(\frac{Y}{Y_{0}}\right)^{\frac{1}{3}}-0.16
$$

Weber law of just noticeable difference

$$
\Delta L^{*} \approx \frac{Y}{100}
$$

GAMMA CORRECTION

Created to compensate for input-output characteristic of CRT displays

$$
Y=V^{2.5}=V^{\gamma}
$$

GAMMA CORRECTION

Created to compensate for input-output characteristic of CRT displays

$$
Y=V^{2.5}=V^{\gamma}
$$

Today, due to remarkable coincidence, it is used for encoding efficiency

GAMMA CORRECTION

Created to compensate for input-output characteristic of CRT displays

$$
Y=V^{2.5}=V^{\gamma}
$$

Today, due to remarkable coincidence, it is used for encoding efficiency

GAMMA CORRECTION

Created to compensate for input-output characteristic of CRT displays

$$
Y=V^{2.5}=V^{\gamma}
$$

Today, due to remarkable coincidence, it is used for encoding efficiency

ILLusion

MODELING COLOR PERCEPTION

1st attempt: Measure spectral distribution of stimulus

- Convex combinations of monochromatic colors
- Could use spectrophotometer to measure $c(\lambda)$.
- But how to would you reproduce it?

Modeling color perception

1st attempt: Measure spectral distribution of stimulus

- Convex combinations of monochromatic colors
- Could use spectrophotometer to measure $c(\lambda)$.
- But how to would you reproduce it?

2nd attempt: Measure optical nerve response

- Remove eye, attach wires to cones: The Matrix
- Re-inject signal to reproduce
- Painful, but only 3 values per color

MODELING COLOR PERCEPTION

3rd attempt: Linear algebra

Modeling color perception

3rd attempt: Linear algebra
Measuring

- $c(\lambda)$ is the target color's spectral distribution

MODELING COLOR PERCEPTION

3rd attempt: Linear algebra
Measuring

- $c(\lambda)$ is the target color's spectral distribution
- $L(\lambda), M(\lambda)$, and $S(\lambda)$ the spectral sensitivities for the cones

MODELING COLOR PERCEPTION

3rd attempt: Linear algebra
Measuring

- $c(\lambda)$ is the target color's spectral distribution
- $L(\lambda), M(\lambda)$, and $S(\lambda)$ the spectral sensitivities for the cones
- Inner-product functions f and g is

$$
\langle f, g\rangle=\int_{-\infty}^{\infty} f(\lambda) g(\lambda) d \lambda
$$

MODELING COLOR PERCEPTION

3rd attempt: Linear algebra
Measuring

- $c(\lambda)$ is the target color's spectral distribution
- $L(\lambda), M(\lambda)$, and $S(\lambda)$ the spectral sensitivities for the cones
- Inner-product functions f and g is

$$
\langle f, g\rangle=\int_{-\infty}^{\infty} f(\lambda) g(\lambda) d \lambda
$$

- The cone responses to c must be

$$
S_{C}=\langle c, S\rangle, \quad M_{C}=\langle c, M\rangle, \quad \text { and } \quad L_{C}=\langle c, L\rangle
$$

Cone spectral sensitivities (not to scale)

Cone spectral sensitivities

MODELING COLOR PERCEPTION

Reproduction

- Assume 3 different stimuli colors $r(\lambda), g(\lambda)$, and $b(\lambda)$

MODELING COLOR PERCEPTION

Reproduction

- Assume 3 different stimuli colors $r(\lambda), g(\lambda)$, and $b(\lambda)$
- Find stimuli intensities R_{C}, G_{C} and B_{C} that correspond to c

MODELING COLOR PERCEPTION

Reproduction

- Assume 3 different stimuli colors $r(\lambda), g(\lambda)$, and $b(\lambda)$
- Find stimuli intensities R_{c}, G_{C} and B_{C} that correspond to C
- I.e., intensities that reproduce responses S_{c}, M_{c}, and L_{c}

Modeling color perception

Reproduction

- Assume 3 different stimuli colors $r(\lambda), g(\lambda)$, and $b(\lambda)$
- Find stimuli intensities R_{c}, G_{c} and B_{c} that correspond to c
- I.e., intensities that reproduce responses S_{c}, M_{c}, and L_{c}

$$
\left\{\begin{array}{l}
\left\langle R_{c} r+G_{c} g+B_{c} b, S\right\rangle=S_{c} \\
\left\langle R_{c} r+G_{c} g+B_{c} b, M\right\rangle=M_{c} \\
\left\langle R_{c} r+G_{c} g+B_{c} b, L\right\rangle=L_{c}
\end{array}\right.
$$

Modeling color perception

Reproduction

- Assume 3 different stimuli colors $r(\lambda), g(\lambda)$, and $b(\lambda)$
- Find stimuli intensities R_{c}, G_{c} and B_{c} that correspond to c
- I.e., intensities that reproduce responses S_{C}, M_{c}, and L_{c}

$$
\left\{\begin{array}{l}
\left\langle R_{c} r+G_{c} g+B_{c} b, S\right\rangle=S_{c} \\
\left\langle R_{c} r+G_{c} g+B_{c} b, M\right\rangle=M_{c} \\
\left\langle R_{c} r+G_{c} g+B_{c} b, L\right\rangle=L_{c}
\end{array} \quad \Leftrightarrow\left[\begin{array}{ccc}
S_{r} & S_{g} & S_{b} \\
M_{r} & M_{g} & M_{b} \\
L_{r} & L_{g} & L_{b}
\end{array}\right]\left[\begin{array}{l}
R_{c} \\
G_{c} \\
B_{c}
\end{array}\right]=\left[\begin{array}{c}
S_{c} \\
M_{c} \\
L_{c}
\end{array}\right]\right.
$$

Modeling color perception

Reproduction

- Assume 3 different stimuli colors $r(\lambda), g(\lambda)$, and $b(\lambda)$
- Find stimuli intensities R_{c}, G_{c} and B_{c} that correspond to c
- I.e., intensities that reproduce responses S_{C}, M_{c}, and L_{c}

$$
\left\{\begin{array}{l}
\left\langle R_{c} r+G_{c} g+B_{c} b, S\right\rangle=S_{c} \\
\left\langle R_{c} r+G_{c} g+B_{c} b, M\right\rangle=M_{c} \\
\left\langle R_{c} r+G_{c} g+B_{c} b, L\right\rangle=L_{c}
\end{array} \quad \Leftrightarrow\left[\begin{array}{ccc}
S_{r} & S_{g} & S_{b} \\
M_{r} & M_{g} & M_{b} \\
L_{r} & L_{g} & L_{b}
\end{array}\right]\left[\begin{array}{l}
R_{c} \\
G_{c} \\
B_{c}
\end{array}\right]=\left[\begin{array}{c}
S_{c} \\
M_{c} \\
L_{c}
\end{array}\right]\right.
$$

Stimuli must be linearly independent

Modeling color perception

Reproduction

- Assume 3 different stimuli colors $r(\lambda), g(\lambda)$, and $b(\lambda)$
- Find stimuli intensities R_{C}, G_{C} and B_{C} that correspond to C
- I.e., intensities that reproduce responses S_{C}, M_{c}, and L_{c}

$$
\left\{\begin{array}{l}
\left\langle R_{c} r+G_{c} g+B_{c} b, S\right\rangle=S_{c} \\
\left\langle R_{c} r+G_{c} g+B_{c} b, M\right\rangle=M_{c} \\
\left\langle R_{c} r+G_{c} g+B_{c} b, L\right\rangle=L_{c}
\end{array} \quad \Leftrightarrow\left[\begin{array}{ccc}
S_{r} & S_{g} & S_{b} \\
M_{r} & M_{g} & M_{b} \\
L_{r} & L_{g} & L_{b}
\end{array}\right]\left[\begin{array}{l}
R_{c} \\
G_{c} \\
B_{c}
\end{array}\right]=\left[\begin{array}{c}
S_{c} \\
M_{c} \\
L_{c}
\end{array}\right]\right.
$$

Stimuli must be linearly independent
Result R_{c}, G_{c}, or B_{c} could be non-convex

- There is no negative light...

SpACE OF VISIBLE COLORS

All convex combinations of visible monochromatic colors

- Could use entire spectrum

SpACE OF VISIBLE COLORS

All convex combinations of visible monochromatic colors

- Could use entire spectrum

Unnecessary (most of the time) due to metamerism

- Different spectra result in same perceived color $\left[\begin{array}{lll}S & M & L\end{array}\right]$
- E.g., c and $R_{C} r+G_{c} g+B_{c} b$

SpACE OF VISIBLE COLORS

All convex combinations of visible monochromatic colors

- Could use entire spectrum

Unnecessary (most of the time) due to metamerism

- Different spectra result in same perceived color $\left[\begin{array}{lll}S & M & L\end{array}\right]$
- E.g., c and $R_{c} r+G_{c} g+B_{c} b$

Obtain R_{c}, G_{c}, and B_{c} directly from c and $R G B$ color matching functions

$$
R_{c}=\langle C, R\rangle \quad G_{c}=\langle C, G\rangle \quad B_{c}=\langle c, B\rangle .
$$

SpACE OF VISIBLE COLORS

All convex combinations of visible monochromatic colors

- Could use entire spectrum

Unnecessary (most of the time) due to metamerism

- Different spectra result in same perceived color $\left[\begin{array}{lll}S & M & L\end{array}\right]$
- E.g., c and $R_{c} r+G_{c} g+B_{c} b$

Obtain R_{c}, G_{c}, and B_{c} directly from c and $R G B$ color matching functions

$$
R_{c}=\langle C, R\rangle \quad G_{C}=\langle C, G\rangle \quad B_{C}=\langle C, B\rangle .
$$

How to measure color matching functions R, G, and B

CIE 1931 RGB COLOR MATCHING FUNCTIONS

RGB color matching functions

XYZ COLOR MATCHING FUNCTIONS

Visible colors always use non-negative coordinates

XYZ COLOR MATCHING FUNCTIONS

Visible colors always use non-negative coordinates
Linear transformation to R, G, B

XYZ COLOR MATCHING FUNCTIONS

Visible colors always use non-negative coordinates
Linear transformation to R, G, B
Y is the photopic luminosity function

XYZ COLOR MATCHING FUNCTIONS

Visible colors always use non-negative coordinates
Linear transformation to R, G, B
Y is the photopic luminosity function
Equal-energy radiator (constant SPD in visible spectrum, illuminant E) is at $\left[\begin{array}{lll}\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\end{array}\right]$

XYZ COLOR MATCHING FUNCTIONS

Visible colors always use non-negative coordinates
Linear transformation to R, G, B
Y is the photopic luminosity function
Equal-energy radiator (constant SPD in visible spectrum, illuminant E) is at $\left[\begin{array}{lll}\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\end{array}\right]$
Z ended up almost equal to S

XYZ COLOR MATCHING FUNCTIONS

XYZ color matching functions

CIE CHROMATICITY DIAGRAM

Similar to RP^{2}

- Given $\alpha>0,\left[\begin{array}{lll}\alpha X & \alpha Y & \alpha Z\end{array}\right]$ have same chromaticity
- Different brightness

CIE CHROMATICITY DIAGRAM

Similar to RP^{2}

- Given $\alpha>0,\left[\begin{array}{lll}\alpha X & \alpha Y & \alpha Z\end{array}\right]$ have same chromaticity
- Different brightness

Separation of chromaticity and brightness

$$
x=\frac{X}{X+Y+Z}
$$

$$
y=\frac{Y}{X+Y+Z}
$$

CIE CHROMATICITY DIAGRAM

C.I.E. 1931 Chromaticity Diagram

CIE CHROMATICITY DIAGRAM

Horseshoe shape

CIE CHROMATICITY DIAGRAM

Horseshoe shape
Locus of monochromatic colors

CIE CHROMATICITY DIAGRAM

Horseshoe shape
Locus of monochromatic colors
Locus of black-body colors

CIE CHROMATICITY DIAGRAM

Horseshoe shape
Locus of monochromatic colors
Locus of black-body colors
Line of purples

CIE CHROMATICITY DIAGRAM

Horseshoe shape
Locus of monochromatic colors
Locus of black-body colors
Line of purples
Color gamut

CIE CHROMATICITY DIAGRAM

Horseshoe shape
Locus of monochromatic colors
Locus of black-body colors
Line of purples
Color gamut
Color calibration and matching

Other color spaces

sRGB [IEC Project Team 61966, 1998]

$$
\begin{gathered}
{\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=\left[\begin{array}{l}
\gamma\left(R_{\ell}\right) \\
\gamma\left(G_{\ell}\right) \\
\gamma\left(B_{\ell}\right)
\end{array}\right],} \\
\quad\left[\begin{array}{l}
R_{\ell} \\
G_{\ell} \\
B_{\ell}
\end{array}\right]=\left[\begin{array}{ccc}
3.2406 & -1.5372 & -0.4986 \\
-0.9689 & 1.8758 & 0.0415 \\
0.0557 & -0.2040 & 1.0570
\end{array}\right]\left[\begin{array}{l}
X_{D 65} \\
Y_{D 65} \\
Z_{D 65}
\end{array}\right] \\
1.05<0<0.0031308 \\
12.92 u
\end{gathered}
$$

Other color spaces

sRGB [IEC Project Team 61966, 1998]

$$
\begin{gathered}
{\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=\left[\begin{array}{l}
\gamma\left(R_{\ell}\right) \\
\gamma\left(G_{\ell}\right) \\
\gamma\left(B_{\ell}\right)
\end{array}\right],}
\end{gathered} \begin{aligned}
& \quad\left[\begin{array}{l}
R_{\ell} \\
G_{\ell} \\
B_{\ell}
\end{array}\right]=\left[\begin{array}{ccc}
3.2406 & -1.5372 & -0.4986 \\
-0.9689 & 1.8758 & 0.0415 \\
0.0557 & -0.2040 & 1.0570
\end{array}\right]\left[\begin{array}{l}
X_{D 65} \\
Y_{D 65} \\
Z_{D 65}
\end{array}\right] \\
& \gamma(u)= \begin{cases}12.92 u & u<0.0031308 \\
1.055 u^{1 / 2.4}-0.055 & \text { otherwise }\end{cases}
\end{aligned}
$$

Munsel (HSV and HSL)

Other color spaces

sRGB [IEC Project Team 61966, 1998]

$$
\begin{gathered}
{\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=\left[\begin{array}{l}
\gamma\left(R_{\ell}\right) \\
\gamma\left(G_{\ell}\right) \\
\gamma\left(B_{\ell}\right)
\end{array}\right],} \\
\quad\left[\begin{array}{l}
R_{\ell} \\
G_{\ell} \\
B_{\ell}
\end{array}\right]=\left[\begin{array}{ccc}
3.2406 & -1.5372 & -0.4986 \\
-0.9689 & 1.8758 & 0.0415 \\
0.0557 & -0.2040 & 1.0570
\end{array}\right]\left[\begin{array}{l}
X_{D 65} \\
Y_{D 65} \\
Z_{D 65}
\end{array}\right] \\
1.0500 .0031308 \\
12.92 u
\end{gathered} \begin{aligned}
& \text { otherwise }
\end{aligned}
$$

Munsel (HSV and HSL)
Additive (CMY and CMYK)

Other color spaces

sRGB [IEC Project Team 61966, 1998]

$$
\begin{gathered}
{\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=\left[\begin{array}{l}
\gamma\left(R_{\ell}\right) \\
\gamma\left(G_{\ell}\right) \\
\gamma\left(B_{\ell}\right)
\end{array}\right],} \\
\quad\left[\begin{array}{l}
R_{\ell} \\
G_{\ell} \\
B_{\ell}
\end{array}\right]=\left[\begin{array}{ccc}
3.2406 & -1.5372 & -0.4986 \\
-0.9689 & 1.8758 & 0.0415 \\
0.0557 & -0.2040 & 1.0570
\end{array}\right]\left[\begin{array}{l}
X_{D 65} \\
Y_{D 65} \\
Z_{D 65}
\end{array}\right] \\
1.05<0.0031308 \\
12.92 u
\end{gathered} \begin{aligned}
& \text { otherwise }
\end{aligned}
$$

Munsel (HSV and HSL)
Additive (CMY and CMYK)
TV (PAL YUV, NTSC YIQ)

Other color spaces

sRGB [IEC Project Team 61966, 1998]

$$
\begin{gathered}
{\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=\left[\begin{array}{l}
\gamma\left(R_{\ell}\right) \\
\gamma\left(G_{\ell}\right) \\
\gamma\left(B_{\ell}\right)
\end{array}\right],} \\
\quad\left[\begin{array}{l}
R_{\ell} \\
G_{\ell} \\
B_{\ell}
\end{array}\right]=\left[\begin{array}{ccc}
3.2406 & -1.5372 & -0.4986 \\
-0.9689 & 1.8758 & 0.0415 \\
0.0557 & -0.2040 & 1.0570
\end{array}\right]\left[\begin{array}{l}
X_{D 65} \\
Y_{D 65} \\
Z_{D 65}
\end{array}\right] \\
1.055 u^{1 / 2.4}-0.055 \\
= \begin{cases}12.92 u & \text { otherwise }\end{cases}
\end{gathered}
$$

Munsel (HSV and HSL)
Additive (CMY and CMYK)
TV (PAL YUV, NTSC YIQ)
Perceptual (CIE L*a* ${ }^{*}$)

Other color spaces

sRGB [IEC Project Team 61966, 1998]

$$
\begin{gathered}
{\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=\left[\begin{array}{l}
\gamma\left(R_{\ell}\right) \\
\gamma\left(G_{\ell}\right) \\
\gamma\left(B_{\ell}\right)
\end{array}\right],} \\
\quad, \quad\left[\begin{array}{l}
R_{\ell} \\
G_{\ell} \\
B_{\ell}
\end{array}\right]=\left[\begin{array}{ccc}
3.2406 & -1.5372 & -0.4986 \\
-0.9689 & 1.8758 & 0.0415 \\
0.0557 & -0.2040 & 1.0570
\end{array}\right]\left[\begin{array}{l}
X_{D 65} \\
Y_{D 65} \\
Z_{D 65}
\end{array}\right] \\
1.05<0.0031308 \\
12.92 u
\end{gathered} \begin{aligned}
& \text { otherwise }
\end{aligned}
$$

Munsel (HSV and HSL)
Additive (CMY and CMYK)
TV (PAL YUV, NTSC YIQ)
Perceptual (CIE L*a* ${ }^{*}$)
Opponent color models

TRANSPARENCY

Seminal work by Porter and Duff [1984]

Semitransparent color f on top of opaque background color b

- Assume probability of light hitting f is α
- Reflected color (integrated over small area) is

$$
f, \alpha \oplus b=\alpha f+(1-\alpha) b
$$

- This is what we call alpha blending or the over operator

Compositing

Now imagine f_{1}, α_{1} on top of f_{2}, α_{2} on top of b

- Reflected color is

$$
f_{1}, \alpha_{1} \oplus\left(f_{2}, \alpha_{2} \oplus b\right)=\alpha_{1} f_{1}+\left(1-\alpha_{1}\right)\left(\alpha_{2} f_{2}+\left(1-\alpha_{2}\right) b\right)
$$

Compositing

Now imagine f_{1}, α_{1} on top of f_{2}, α_{2} on top of b

- Reflected color is

$$
f_{1}, \alpha_{1} \oplus\left(f_{2}, \alpha_{2} \oplus b\right)=\alpha_{1} f_{1}+\left(1-\alpha_{1}\right)\left(\alpha_{2} f_{2}+\left(1-\alpha_{2}\right) b\right)
$$

Can we combine f_{1}, α_{1} and f_{2}, α_{2} into a single material f, α ?

$$
\begin{aligned}
\alpha f+(1-\alpha) b & =\alpha_{1} f_{1}+\left(1-\alpha_{1}\right)\left(\alpha_{2} f_{2}+\left(1-\alpha_{2}\right) b\right) \\
& =\alpha_{1} f_{1}+\left(1-\alpha_{1}\right) \alpha_{2} f_{2}+\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) b
\end{aligned}
$$

COMPOSITING

Now imagine f_{1}, α_{1} on top of f_{2}, α_{2} on top of b

- Reflected color is

$$
f_{1}, \alpha_{1} \oplus\left(f_{2}, \alpha_{2} \oplus b\right)=\alpha_{1} f_{1}+\left(1-\alpha_{1}\right)\left(\alpha_{2} f_{2}+\left(1-\alpha_{2}\right) b\right)
$$

Can we combine f_{1}, α_{1} and f_{2}, α_{2} into a single material f, α ?

$$
\begin{aligned}
\alpha f+(1-\alpha) b & =\alpha_{1} f_{1}+\left(1-\alpha_{1}\right)\left(\alpha_{2} f_{2}+\left(1-\alpha_{2}\right) b\right) \\
& =\alpha_{1} f_{1}+\left(1-\alpha_{1}\right) \alpha_{2} f_{2}+\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) b
\end{aligned}
$$

So we have

$$
\left\{\begin{array} { l }
{ (1 - \alpha) b = (1 - \alpha _ { 1 }) (1 - \alpha _ { 2 }) b } \\
{ \alpha f = \alpha _ { 1 } f _ { 1 } + (1 - \alpha _ { 1 }) \alpha _ { 2 } f _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\alpha=\alpha_{1}+\left(1-\alpha_{1}\right) \alpha_{2} \\
\alpha f=\alpha_{1} f_{1}+\left(1-\alpha_{1}\right) \alpha_{2} f_{2}
\end{array}\right.\right.
$$

Compositing

$$
\left\{\begin{array} { l }
{ (1 - \alpha) b = (1 - \alpha _ { 1 }) (1 - \alpha _ { 2 }) b } \\
{ \alpha f = \alpha _ { 1 } f _ { 1 } + (1 - \alpha _ { 1 }) \alpha _ { 2 } f _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\alpha=\alpha_{1}+\left(1-\alpha_{1}\right) \alpha_{2} \\
\alpha f=\alpha_{1} f_{1}+\left(1-\alpha_{1}\right) \alpha_{2} f_{2}
\end{array}\right.\right.
$$

Compositing

$$
\left\{\begin{array} { l }
{ (1 - \alpha) b = (1 - \alpha _ { 1 }) (1 - \alpha _ { 2 }) b } \\
{ \alpha f = \alpha _ { 1 } f _ { 1 } + (1 - \alpha _ { 1 }) \alpha _ { 2 } f _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\alpha=\alpha_{1}+\left(1-\alpha_{1}\right) \alpha_{2} \\
\alpha f=\alpha_{1} f_{1}+\left(1-\alpha_{1}\right) \alpha_{2} f_{2}
\end{array}\right.\right.
$$

Setting $\tilde{f}=\alpha f, \quad \tilde{f}_{1}=\alpha_{1} f_{1}, \quad$ and $\tilde{f}_{2}=\alpha_{2} f_{2}$, we obtain

$$
\left\{\begin{array}{l}
\alpha=\alpha_{1}+\left(1-\alpha_{1}\right) \alpha_{2} \\
\tilde{f}=\tilde{f}_{1}+\left(1-\alpha_{1}\right) \tilde{f}_{2}
\end{array}\right.
$$

Compositing

$$
\left\{\begin{array} { l }
{ (1 - \alpha) b = (1 - \alpha _ { 1 }) (1 - \alpha _ { 2 }) b } \\
{ \alpha f = \alpha _ { 1 } f _ { 1 } + (1 - \alpha _ { 1 }) \alpha _ { 2 } f _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\alpha=\alpha_{1}+\left(1-\alpha_{1}\right) \alpha_{2} \\
\alpha f=\alpha_{1} f_{1}+\left(1-\alpha_{1}\right) \alpha_{2} f_{2}
\end{array}\right.\right.
$$

Setting $\tilde{f}=\alpha f, \quad \tilde{f}_{1}=\alpha_{1} f_{1}, \quad$ and $\tilde{f_{2}}=\alpha_{2} f_{2}$, we obtain

$$
\left\{\begin{array}{l}
\alpha=\alpha_{1}+\left(1-\alpha_{1}\right) \alpha_{2} \\
\tilde{f}=\tilde{f}_{1}+\left(1-\alpha_{1}\right) \tilde{f}_{2}
\end{array}\right.
$$

This is what we call pre-multiplied alpha

Compositing

$$
\left\{\begin{array} { l }
{ (1 - \alpha) b = (1 - \alpha _ { 1 }) (1 - \alpha _ { 2 }) b } \\
{ \alpha f = \alpha _ { 1 } f _ { 1 } + (1 - \alpha _ { 1 }) \alpha _ { 2 } f _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\alpha=\alpha_{1}+\left(1-\alpha_{1}\right) \alpha_{2} \\
\alpha f=\alpha_{1} f_{1}+\left(1-\alpha_{1}\right) \alpha_{2} f_{2}
\end{array}\right.\right.
$$

Setting $\tilde{f}=\alpha f, \quad \tilde{f}_{1}=\alpha_{1} f_{1}, \quad$ and $\tilde{f_{2}}=\alpha_{2} f_{2}$, we obtain

$$
\left\{\begin{array}{l}
\alpha=\alpha_{1}+\left(1-\alpha_{1}\right) \alpha_{2} \\
\tilde{f}=\tilde{f}_{1}+\left(1-\alpha_{1}\right) \tilde{f}_{2}
\end{array}\right.
$$

This is what we call pre-multiplied alpha
Blending becomes associative

$$
\tilde{f}_{1}, \alpha_{1} \oplus\left(\tilde{f}_{2}, \alpha_{2} \oplus b\right)=\left(\tilde{f}_{1}, \alpha_{1} \oplus \tilde{f}_{2}, \alpha_{2}\right) \oplus b
$$

Compositing

$$
\left\{\begin{array} { l }
{ (1 - \alpha) b = (1 - \alpha _ { 1 }) (1 - \alpha _ { 2 }) b } \\
{ \alpha f = \alpha _ { 1 } f _ { 1 } + (1 - \alpha _ { 1 }) \alpha _ { 2 } f _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\alpha=\alpha_{1}+\left(1-\alpha_{1}\right) \alpha_{2} \\
\alpha f=\alpha_{1} f_{1}+\left(1-\alpha_{1}\right) \alpha_{2} f_{2}
\end{array}\right.\right.
$$

Setting $\tilde{f}=\alpha f, \quad \tilde{f}_{1}=\alpha_{1} f_{1}, \quad$ and $\tilde{f}_{2}=\alpha_{2} f_{2}$, we obtain

$$
\left\{\begin{array}{l}
\alpha=\alpha_{1}+\left(1-\alpha_{1}\right) \alpha_{2} \\
\tilde{f}=\tilde{f}_{1}+\left(1-\alpha_{1}\right) \tilde{f}_{2}
\end{array}\right.
$$

This is what we call pre-multiplied alpha
Blending becomes associative

$$
\tilde{f}_{1}, \alpha_{1} \oplus\left(\tilde{f}_{2}, \alpha_{2} \oplus b\right)=\left(\tilde{f}_{1}, \alpha_{1} \oplus \tilde{f}_{2}, \alpha_{2}\right) \oplus b
$$

Should we blend front-to-back or back-to-front?

References

IEC Project Team 61966. Colour measurement and management in multimedia systems and equipment. IEC/4WD 61966-2-1, 1998. Part 2.1: Default RGB colour space - sRGB.
B. MacEvoy. Hardprint: Color vision, 2015. URL http://www.handprint.com/LS/CVS/color.html.
T. Porter and T. Duff. Compositing digital images. Computer Graphics (Proceedings of ACM SIGGRAPH 1984), 18(3):253-259, 1984.

