
2D Computer Graphics

Diego Nehab

Summer 2020

IMPA

1

Path representation

SVG path commands

Command
Parameters Description

Abs Rel

M m (x, y)+ move

L l (x, y)+ line

H h x+ horizontal line

V v y+ vertical line

C c (x1, y1, x2, y2, x, y)+ cubic

S s (x2, y2, x, y)+ smooth cubic

Q q (x1, y1, x, y)+ quadratic

T t (x, y)+ smooth quadratic

A a (rx, ry, θx, `,o, x, y)+ elliptical arc

Z z close path

2

Our representation

Input from SVG commands

• Relative control points converted to absolute

• H, V, S, T converted to generic segments

• A converted to rational quadratics (R command)

Convert other primitives to paths

path_data = shape : as_path_data ()

Content visible using iterators
path_data : i t e r a t e {

begin_contour = funct ion (se l f , x0 , y0) end

end_open_contour = funct ion (se l f , x0 , y0) end

end_closed_contour = funct ion (se l f , x0 , y0) end

l inear_segment = funct ion (se l f , x0 , y0 , x1 , y1) end

quadratic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , x2 , y2) end

rat ional_quadrat ic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , w1 , x2 , y2) end

cubic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , x2 , y2 , x3 , y3) end

}

3

Our representation

Input from SVG commands

• Relative control points converted to absolute

• H, V, S, T converted to generic segments

• A converted to rational quadratics (R command)

Convert other primitives to paths

path_data = shape : as_path_data ()

Content visible using iterators
path_data : i t e r a t e {

begin_contour = funct ion (se l f , x0 , y0) end

end_open_contour = funct ion (se l f , x0 , y0) end

end_closed_contour = funct ion (se l f , x0 , y0) end

l inear_segment = funct ion (se l f , x0 , y0 , x1 , y1) end

quadratic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , x2 , y2) end

rat ional_quadrat ic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , w1 , x2 , y2) end

cubic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , x2 , y2 , x3 , y3) end

}

3

Our representation

Input from SVG commands

• Relative control points converted to absolute

• H, V, S, T converted to generic segments

• A converted to rational quadratics (R command)

Convert other primitives to paths

path_data = shape : as_path_data ()

Content visible using iterators
path_data : i t e r a t e {

begin_contour = funct ion (se l f , x0 , y0) end

end_open_contour = funct ion (se l f , x0 , y0) end

end_closed_contour = funct ion (se l f , x0 , y0) end

l inear_segment = funct ion (se l f , x0 , y0 , x1 , y1) end

quadratic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , x2 , y2) end

rat ional_quadrat ic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , w1 , x2 , y2) end

cubic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , x2 , y2 , x3 , y3) end

}

3

Our representation

Input from SVG commands

• Relative control points converted to absolute

• H, V, S, T converted to generic segments

• A converted to rational quadratics (R command)

Convert other primitives to paths

path_data = shape : as_path_data ()

Content visible using iterators
path_data : i t e r a t e {

begin_contour = funct ion (se l f , x0 , y0) end

end_open_contour = funct ion (se l f , x0 , y0) end

end_closed_contour = funct ion (se l f , x0 , y0) end

l inear_segment = funct ion (se l f , x0 , y0 , x1 , y1) end

quadratic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , x2 , y2) end

rat ional_quadrat ic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , w1 , x2 , y2) end

cubic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , x2 , y2 , x3 , y3) end

}

3

Our representation

Input from SVG commands

• Relative control points converted to absolute

• H, V, S, T converted to generic segments

• A converted to rational quadratics (R command)

Convert other primitives to paths

path_data = shape : as_path_data ()

Content visible using iterators

path_data : i t e r a t e {

begin_contour = funct ion (se l f , x0 , y0) end

end_open_contour = funct ion (se l f , x0 , y0) end

end_closed_contour = funct ion (se l f , x0 , y0) end

l inear_segment = funct ion (se l f , x0 , y0 , x1 , y1) end

quadratic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , x2 , y2) end

rat ional_quadrat ic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , w1 , x2 , y2) end

cubic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , x2 , y2 , x3 , y3) end

}

3

Our representation

Input from SVG commands

• Relative control points converted to absolute

• H, V, S, T converted to generic segments

• A converted to rational quadratics (R command)

Convert other primitives to paths

path_data = shape : as_path_data ()

Content visible using iterators
path_data : i t e r a t e {

begin_contour = funct ion (se l f , x0 , y0) end

end_open_contour = funct ion (se l f , x0 , y0) end

end_closed_contour = funct ion (se l f , x0 , y0) end

l inear_segment = funct ion (se l f , x0 , y0 , x1 , y1) end

quadratic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , x2 , y2) end

rat ional_quadrat ic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , w1 , x2 , y2) end

cubic_segment = funct ion (se l f , x0 , y0 , x1 , y1 , x2 , y2 , x3 , y3) end

}

3

Example of filter

Transform a path and forward results on
funct ion f i l te r .make_ input_path_f_x form (xf , forward)

l oca l px , py −− previous cursor

l oca l xformer = { }

funct ion xformer : begin_contour (x0 , y0)

px , py = x f : apply (x0 , y0)

forward : begin_contour (px , py)

end

funct ion xformer : end_closed_contour (x0 , y0)

forward : end_closed_contour (px , py)

end

funct ion xformer : l inear_segment (x0 , y0 , x1 , y1)

x1 , y1 = x f : apply (x1 , y1)

forward : l inear_segment (px , py , x1 , y1)

px , py = x1 , y1

end

funct ion xformer : rat ional_quadrat ic_segment (x0 , y0 , x1 , y1 , w1 , x2 , y2)

x1 , y1 , w1 = x f : apply (x1 , y1 , w1)

x2 , y2 = x f : apply (x2 , y2)

forward : rat ional_quadrat ic_segment (px , py , x1 , y1 , w1 , x2 , y2)

px , py = x2 , y2

end

. . .

return xformer

end

4

Example of filter chaining

Provided filter.make_input_path_f_xform transforms path

Implement monotonize to break into monotonic segments

Implement accelerate to convert and store in your representation

Chain transformation, monotonization, and acceleration

path_xf = shape : ge t_x f () : transform (cur_x f)

shape : as_path_data () : i t e r a t e (

f i l te r .make_ input_path_f_x form (path_xf ,

monotonize (

acce lera te (acce l)))

5

Example of filter chaining

Provided filter.make_input_path_f_xform transforms path

Implement monotonize to break into monotonic segments

Implement accelerate to convert and store in your representation

Chain transformation, monotonization, and acceleration

path_xf = shape : ge t_x f () : transform (cur_x f)

shape : as_path_data () : i t e r a t e (

f i l te r .make_ input_path_f_x form (path_xf ,

monotonize (

acce lera te (acce l)))

5

Example of filter chaining

Provided filter.make_input_path_f_xform transforms path

Implement monotonize to break into monotonic segments

Implement accelerate to convert and store in your representation

Chain transformation, monotonization, and acceleration

path_xf = shape : ge t_x f () : transform (cur_x f)

shape : as_path_data () : i t e r a t e (

f i l te r .make_ input_path_f_x form (path_xf ,

monotonize (

acce lera te (acce l)))

5

Example of filter chaining

Provided filter.make_input_path_f_xform transforms path

Implement monotonize to break into monotonic segments

Implement accelerate to convert and store in your representation

Chain transformation, monotonization, and acceleration

path_xf = shape : ge t_x f () : transform (cur_x f)

shape : as_path_data () : i t e r a t e (

f i l te r .make_ input_path_f_x form (path_xf ,

monotonize (

acce lera te (acce l)))

5

Floating-point and root-finding

Floating-point numbers

All real numbers represented in a computer?

Impossible, of course. Finite memory!

Can only represent a finite set of values

Widely accepted IEEE floating-point standard

Formats, rounding, arithmetic operations

Represented by familiar scientific notation

NA = 6.022140857× 1023 qe = 1.60217662× 10−19

Except, in binary…

6

Floating-point numbers

All real numbers represented in a computer?

Impossible, of course. Finite memory!

Can only represent a finite set of values

Widely accepted IEEE floating-point standard

Formats, rounding, arithmetic operations

Represented by familiar scientific notation

NA = 6.022140857× 1023 qe = 1.60217662× 10−19

Except, in binary…

6

Floating-point numbers

All real numbers represented in a computer?

Impossible, of course. Finite memory!

Can only represent a finite set of values

Widely accepted IEEE floating-point standard

Formats, rounding, arithmetic operations

Represented by familiar scientific notation

NA = 6.022140857× 1023 qe = 1.60217662× 10−19

Except, in binary…

6

Floating-point numbers

All real numbers represented in a computer?

Impossible, of course. Finite memory!

Can only represent a finite set of values

Widely accepted IEEE floating-point standard

Formats, rounding, arithmetic operations

Represented by familiar scientific notation

NA = 6.022140857× 1023 qe = 1.60217662× 10−19

Except, in binary…

6

Floating-point numbers

All real numbers represented in a computer?

Impossible, of course. Finite memory!

Can only represent a finite set of values

Widely accepted IEEE floating-point standard

Formats, rounding, arithmetic operations

Represented by familiar scientific notation

NA = 6.022140857× 1023 qe = 1.60217662× 10−19

Except, in binary…

6

Floating-point numbers

All real numbers represented in a computer?

Impossible, of course. Finite memory!

Can only represent a finite set of values

Widely accepted IEEE floating-point standard

Formats, rounding, arithmetic operations

Represented by familiar scientific notation

NA = 6.022140857× 1023 qe = 1.60217662× 10−19

Except, in binary…

6

Floating-point numbers

All real numbers represented in a computer?

Impossible, of course. Finite memory!

Can only represent a finite set of values

Widely accepted IEEE floating-point standard

Formats, rounding, arithmetic operations

Represented by familiar scientific notation

NA = 6.022140857× 1023 qe = 1.60217662× 10−19

Except, in binary…

6

Binary floating-point

(−1)s × (1.b−1b−2b−3 · · ·b−t)2 × 2e−z z = 2w−1 − 1

si
gn

ex
po
ne
nt

fra
ct
io
n

s e m = 1.b−1 · · ·b−t

One sign bit

w exponent bits

t fraction bits

7

Representation details

(−1)s × (1.b−1b−2b−3 · · ·b−t)2 × 2e−z z = 2w−1 − 1

Normalized representation for mantissa m

• Ensures unique representation for mantissa

12 ≤ m < 102

• First bit is implicitly set to 1

Excess encoding for exponent e

• Allows for positive and negative exponents

• Therefore large and small magnitudes

• Subtract z = 2w−1 − 1 from encoded exponent

8

Representation details

(−1)s × (1.b−1b−2b−3 · · ·b−t)2 × 2e−z z = 2w−1 − 1

Normalized representation for mantissa m

• Ensures unique representation for mantissa

12 ≤ m < 102

• First bit is implicitly set to 1

Excess encoding for exponent e

• Allows for positive and negative exponents

• Therefore large and small magnitudes

• Subtract z = 2w−1 − 1 from encoded exponent

8

Special values

Largest representable exponent is reserved

• m = 0 represents ±Inf (Infinity)

• m 6= 0 represents NaN (Not-a-Number)

NaN propagates and compares as false

• NaN� x → NaN

• NaN = NaN → false

Other special operations

x ÷ Inf = ±0 0÷ 0 = NaN

Inf × Inf = Inf Inf − Inf = NaN

x ÷ 0 = ±Inf Inf ÷ Inf = NaN

Inf + Inf = Inf Inf × 0 = NaN

9

Special values

Largest representable exponent is reserved

• m = 0 represents ±Inf (Infinity)

• m 6= 0 represents NaN (Not-a-Number)

NaN propagates and compares as false

• NaN� x → NaN

• NaN = NaN → false

Other special operations

x ÷ Inf = ±0 0÷ 0 = NaN

Inf × Inf = Inf Inf − Inf = NaN

x ÷ 0 = ±Inf Inf ÷ Inf = NaN

Inf + Inf = Inf Inf × 0 = NaN

9

Special values

Largest representable exponent is reserved

• m = 0 represents ±Inf (Infinity)

• m 6= 0 represents NaN (Not-a-Number)

NaN propagates and compares as false

• NaN� x → NaN

• NaN = NaN → false

Other special operations

x ÷ Inf = ±0 0÷ 0 = NaN

Inf × Inf = Inf Inf − Inf = NaN

x ÷ 0 = ±Inf Inf ÷ Inf = NaN

Inf + Inf = Inf Inf × 0 = NaN

9

Denormalization

(−1)s × (1.b−1b−2b−3 · · ·b−t)2 × 2e−z z = 2w−1 − 1

Same number of values for each interval [2i, 2i+1]

What happens when exponent is the smallest?

Normalization causes abrupt underflow

• From 1.

t︷ ︸︸ ︷
00 · · · 1×2−z to 0

Instead, denormalized numbers were introduced

• When exponent is smallest, there is no implicit leading 1

0 1 2 3 4

10

Denormalization

(−1)s × (1.b−1b−2b−3 · · ·b−t)2 × 2e−z z = 2w−1 − 1

Same number of values for each interval [2i, 2i+1]

What happens when exponent is the smallest?

Normalization causes abrupt underflow

• From 1.

t︷ ︸︸ ︷
00 · · · 1×2−z to 0

Instead, denormalized numbers were introduced

• When exponent is smallest, there is no implicit leading 1

0 1 2 3 4

10

Denormalization

(−1)s × (1.b−1b−2b−3 · · ·b−t)2 × 2e−z z = 2w−1 − 1

Same number of values for each interval [2i, 2i+1]

What happens when exponent is the smallest?

Normalization causes abrupt underflow

• From 1.

t︷ ︸︸ ︷
00 · · · 1×2−z to 0

Instead, denormalized numbers were introduced

• When exponent is smallest, there is no implicit leading 1

0 1 2 3 4

10

Denormalization

(−1)s × (1.b−1b−2b−3 · · ·b−t)2 × 2e−z z = 2w−1 − 1

Same number of values for each interval [2i, 2i+1]

What happens when exponent is the smallest?

Normalization causes abrupt underflow

• From 1.

t︷ ︸︸ ︷
00 · · · 1×2−z to 0

Instead, denormalized numbers were introduced

• When exponent is smallest, there is no implicit leading 1

0 1 2 3 4

10

Denormalization

(−1)s × (1.b−1b−2b−3 · · ·b−t)2 × 2e−z z = 2w−1 − 1

Same number of values for each interval [2i, 2i+1]

What happens when exponent is the smallest?

Normalization causes abrupt underflow

• From 1.

t︷ ︸︸ ︷
00 · · · 1×2−z to 0

Instead, denormalized numbers were introduced

• When exponent is smallest, there is no implicit leading 1

0 1 2 3 4

10

Denormalization

(−1)s × (1.b−1b−2b−3 · · ·b−t)2 × 2e−z z = 2w−1 − 1

Same number of values for each interval [2i, 2i+1]

What happens when exponent is the smallest?

Normalization causes abrupt underflow

• From 1.

t︷ ︸︸ ︷
00 · · · 1×2−z to 0

Instead, denormalized numbers were introduced

• When exponent is smallest, there is no implicit leading 1

0 1 2 3 4

10

Denormalization

(−1)s × (1.b−1b−2b−3 · · ·b−t)2 × 2e−z z = 2w−1 − 1

Same number of values for each interval [2i, 2i+1]

What happens when exponent is the smallest?

Normalization causes abrupt underflow

• From 1.

t︷ ︸︸ ︷
00 · · · 1×2−z to 0

Instead, denormalized numbers were introduced

• When exponent is smallest, there is no implicit leading 1

0 1 2 3 4

10

Denormalization

(−1)s × (1.b−1b−2b−3 · · ·b−t)2 × 2e−z z = 2w−1 − 1

Same number of values for each interval [2i, 2i+1]

What happens when exponent is the smallest?

Normalization causes abrupt underflow

• From 1.

t︷ ︸︸ ︷
00 · · · 1×2−z to 0

Instead, denormalized numbers were introduced

• When exponent is smallest, there is no implicit leading 1

0 1 2 3 4

10

Summary of representation

normalized

si
gn

ex
po
ne
nt

fra
ct
io
n

± not 0 · · · 0 or 1 · · · 1 any

de-normalized ± 0 · · · 0 not 0 · · · 0

zero ± 0 · · · 0 0 · · · 0

Inf ± 1 · · · 1 0 · · · 0

NaN ± 1 · · · 1 not 0 · · · 0

11

Common floating-point formats

Single precision Double precision

Total bits 32 64

Exponent bits 8 11

Fraction bits 23 52

Exponent range -126…127 -1022…1023

Smallest magnitude ≈ 10−45 ≈ 10−324

Decimal range ≈ [−1038, 1038] ≈ [−10308, 10308]

Decimal precision 7 16

12

Rounding, overflow, underflow

0 1 2 3 4

≈ 0 ≈ 2.5 ≈ ∞

Let’s try to represent 0.1 in floating-point

• Fraction is 0.0001100110011001100…

• No exact representation possible

Errors can grow and dominate results

Problem often happens in practice

13

Source of arithmetic errors

Addition may not be exact even when exponents are equal

• 1.1010+ 1.0101 = 1.01111× 21 → 1.1000× 21

Trouble when exponents differ

• Must pre-shift to match exponents

• 1.0000+ 1.0000× 2−5 = 1.00001 → 1.0000

• Frequent source of rounding errors

Multiplication is even worse

• Even with matching exponents, needs double number of bits!

14

Source of arithmetic errors

Addition may not be exact even when exponents are equal

• 1.1010+ 1.0101 = 1.01111× 21 → 1.1000× 21

Trouble when exponents differ

• Must pre-shift to match exponents

• 1.0000+ 1.0000× 2−5 = 1.00001 → 1.0000

• Frequent source of rounding errors

Multiplication is even worse

• Even with matching exponents, needs double number of bits!

14

Source of arithmetic errors

Addition may not be exact even when exponents are equal

• 1.1010+ 1.0101 = 1.01111× 21 → 1.1000× 21

Trouble when exponents differ

• Must pre-shift to match exponents

• 1.0000+ 1.0000× 2−5 = 1.00001 → 1.0000

• Frequent source of rounding errors

Multiplication is even worse

• Even with matching exponents, needs double number of bits!

14

Other weirdness

Associative property does not hold!

• (a+ b) + c 6= a+ (b+ c)

• Beware of compiler optimizations

Equality operator is basically useless

• Returns true only when exactly equal

• Must use special function

15

Other weirdness

Associative property does not hold!

• (a+ b) + c 6= a+ (b+ c)

• Beware of compiler optimizations

Equality operator is basically useless

• Returns true only when exactly equal

• Must use special function

15

Standard model of arithmetic

The only guarantee is the following

fl(x � y) = (x � y)(1+ δ1), |δ1| ≤ u = 2−t

fl(x � y) =
x � y

1+ δ2
, |δ2| ≤ u

� = +,−,×,÷,
√

J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,

G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of

floating-point arithmetic. Birkhäuser, 2010

N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2nd

edition, 2002

16

Standard model of arithmetic

The only guarantee is the following

fl(x � y) = (x � y)(1+ δ1), |δ1| ≤ u = 2−t

fl(x � y) =
x � y

1+ δ2
, |δ2| ≤ u

� = +,−,×,÷,
√

J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,

G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of

floating-point arithmetic. Birkhäuser, 2010

N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2nd

edition, 2002

16

Examples of possible problems

How can you even compare two numbers for equality?

Problem with the Pythagoras formula
√
x2 + y2

• What if x or y too small or too large?

• Solution? (See the hypot function.)

Problems with the quadratic formula

• What if ∆ ≈ 0?

• What if a ≈ 0? Interpretation?

• Solution?

J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics

and Applications, 25(6):76–79, 2005

17

Examples of possible problems

How can you even compare two numbers for equality?

Problem with the Pythagoras formula
√
x2 + y2

• What if x or y too small or too large?

• Solution? (See the hypot function.)

Problems with the quadratic formula

• What if ∆ ≈ 0?

• What if a ≈ 0? Interpretation?

• Solution?

J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics

and Applications, 25(6):76–79, 2005

17

Examples of possible problems

How can you even compare two numbers for equality?

Problem with the Pythagoras formula
√
x2 + y2

• What if x or y too small or too large?

• Solution? (See the hypot function.)

Problems with the quadratic formula

• What if ∆ ≈ 0?

• What if a ≈ 0? Interpretation?

• Solution?

J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics

and Applications, 25(6):76–79, 2005

17

Examples of possible problems

How can you even compare two numbers for equality?

Problem with the Pythagoras formula
√
x2 + y2

• What if x or y too small or too large?

• Solution? (See the hypot function.)

Problems with the quadratic formula

• What if ∆ ≈ 0?

• What if a ≈ 0? Interpretation?

• Solution?

J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics

and Applications, 25(6):76–79, 2005

17

Examples of possible problems

How can you even compare two numbers for equality?

Problem with the Pythagoras formula
√
x2 + y2

• What if x or y too small or too large?

• Solution? (See the hypot function.)

Problems with the quadratic formula

• What if ∆ ≈ 0?

• What if a ≈ 0? Interpretation?

• Solution?

J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics

and Applications, 25(6):76–79, 2005

17

Examples of possible problems

How can you even compare two numbers for equality?

Problem with the Pythagoras formula
√
x2 + y2

• What if x or y too small or too large?

• Solution? (See the hypot function.)

Problems with the quadratic formula

• What if ∆ ≈ 0?

• What if a ≈ 0? Interpretation?

• Solution?

J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics

and Applications, 25(6):76–79, 2005

17

Examples of possible problems

How can you even compare two numbers for equality?

Problem with the Pythagoras formula
√
x2 + y2

• What if x or y too small or too large?

• Solution? (See the hypot function.)

Problems with the quadratic formula

• What if ∆ ≈ 0?

• What if a ≈ 0? Interpretation?

• Solution?

J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics

and Applications, 25(6):76–79, 2005

17

Examples of possible problems

How can you even compare two numbers for equality?

Problem with the Pythagoras formula
√
x2 + y2

• What if x or y too small or too large?

• Solution? (See the hypot function.)

Problems with the quadratic formula

• What if ∆ ≈ 0?

• What if a ≈ 0? Interpretation?

• Solution?

J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics

and Applications, 25(6):76–79, 2005

17

Examples of possible problems

How can you even compare two numbers for equality?

Problem with the Pythagoras formula
√
x2 + y2

• What if x or y too small or too large?

• Solution? (See the hypot function.)

Problems with the quadratic formula

• What if ∆ ≈ 0?

• What if a ≈ 0? Interpretation?

• Solution?

J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics

and Applications, 25(6):76–79, 2005

17

Iterative root-finding methods

Solve f (x) = 0 for x

Bisection

• Given an interval [a,b] with f (a)f (b) ≤ 0 and f continuous

• Guaranteed linear convergence

Newton-Raphson

• Given f differentiable and given t0 “near” root

• Quadratic convergence, but no guarantees

Safe Newton-Raphson

• Combines advantages of both methods

18

Iterative root-finding methods

Solve f (x) = 0 for x

Bisection

• Given an interval [a,b] with f (a)f (b) ≤ 0 and f continuous

• Guaranteed linear convergence

Newton-Raphson

• Given f differentiable and given t0 “near” root

• Quadratic convergence, but no guarantees

Safe Newton-Raphson

• Combines advantages of both methods

18

Iterative root-finding methods

Solve f (x) = 0 for x

Bisection

• Given an interval [a,b] with f (a)f (b) ≤ 0 and f continuous

• Guaranteed linear convergence

Newton-Raphson

• Given f differentiable and given t0 “near” root

• Quadratic convergence, but no guarantees

Safe Newton-Raphson

• Combines advantages of both methods

18

Iterative root-finding methods

Solve f (x) = 0 for x

Bisection

• Given an interval [a,b] with f (a)f (b) ≤ 0 and f continuous

• Guaranteed linear convergence

Newton-Raphson

• Given f differentiable and given t0 “near” root

• Quadratic convergence, but no guarantees

Safe Newton-Raphson

• Combines advantages of both methods

18

Polynomial roots

Very simple method for finding roots of polynomial p(x) = 0, x ∈ [a,b]

• Solve for roots of p′(x) = 0 recursively

• Use roots of p′(x) to isolate roots of p(x) into brackets

• Use safe Newton-Raphson to refine one of p(x) in each bracket

What about in Bernstein basis?

19

Polynomial roots

Very simple method for finding roots of polynomial p(x) = 0, x ∈ [a,b]

• Solve for roots of p′(x) = 0 recursively

• Use roots of p′(x) to isolate roots of p(x) into brackets

• Use safe Newton-Raphson to refine one of p(x) in each bracket

What about in Bernstein basis?

19

Polynomial roots

Very simple method for finding roots of polynomial p(x) = 0, x ∈ [a,b]

• Solve for roots of p′(x) = 0 recursively

• Use roots of p′(x) to isolate roots of p(x) into brackets

• Use safe Newton-Raphson to refine one of p(x) in each bracket

What about in Bernstein basis?

19

References

J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics

and Applications, 25(6):76–79, 2005.

N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2nd

edition, 2002.

J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,

G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of

floating-point arithmetic. Birkhäuser, 2010.

20

	Path representation
	Floating-point and root-finding
	References

