2D COMPUTER GRAPHICS

Diego Nehab

Summer 2020

IMPA

PATH REPRESENTATION

SVG path commands

Command		Parameters	Description
Abs	Rel		2 000112 0001
М	m	(x, y)+	move
L	l	(x, y) +	line
Н	h	<i>x</i> +	horizontal line
V	V	у+	vertical line
С	С	$(x_1, y_1, x_2, y_2, x, y) +$	cubic
S	S	$(x_2, y_2, x, y) +$	smooth cubic
Q	q	$(x_1, y_1, x, y) +$	quadratic
Т	t	(x, y)+	smooth quadratic
А	а	$(r_x, r_y, \theta_x, \ell, o, x, y) +$	elliptical arc
Ζ	Z		close path

OUR REPRESENTATION

Input from SVG commands

• Relative control points converted to absolute

OUR REPRESENTATION

Input from SVG commands

- Relative control points converted to absolute
- H, V, S, T converted to generic segments

- Relative control points converted to absolute
- H, V, S, T converted to generic segments
- A converted to rational quadratics (R command)

- · Relative control points converted to absolute
- H, V, S, T converted to generic segments
- A converted to rational quadratics (R command)

Convert other primitives to paths

```
path_data = shape:as_path_data()
```

Content visible using *iterators*

- · Relative control points converted to absolute
- H, V, S, T converted to generic segments
- A converted to rational quadratics (R command)

Convert other primitives to paths

```
path_data = shape:as_path_data()
```

Content visible using *iterators*

```
path_data:iterate{
    begin_contour = function(self, x0, y0) end
    end_open_contour = function(self, x0, y0) end
    end_closed_contour = function(self, x0, y0) end
    linear_segment = function(self, x0, y0, x1, y1) end
    quadratic_segment = function(self, x0, y0, x1, y1, x2, y2) end
    rational_quadratic_segment = function(self, x0, y0, x1, y1, x2, y2, end
    cubic_segment = function(self, x0, y0, x1, y1, x2, y2, x3, y3) end
}
```

EXAMPLE OF FILTER

Transform a path and forward results on

```
function filter.make input path f xform(xf, forward)
  local px, py --- previous cursor
 local x former = {}
  function xformer: begin contour(x0, v0)
      px, py = xf: apply(x0, y0)
      forward:begin contour(px, py)
 end
  function xformer:end closed contour(x0, y0)
      forward:end closed contour(px, py)
 end
  function xformer:linear_segment(x0, y0, x1, y1)
     x1, y1 = xf:apply(x1, y1)
     forward:linear_segment(px, py, x1, y1)
     px. py = x1. y1
 end
  function xformer: rational quadratic segment(x0, y0, x1, y1, w1, x2, y2)
      x1, y1, w1 = xf:apply(x1, y1, w1)
      x^2, y^2 = xf: apply(x^2, y^2)
      forward:rational quadratic segment(px, py, x1, y1, w1, x2, y2)
      px. py = x2. y2
 end
  return xformer
end
```

Provided filter.make_input_path_f_xform transforms path

Provided filter.make_input_path_f_xform transforms path

Implement monotonize to break into monotonic segments

Provided filter.make_input_path_f_xform transforms path Implement monotonize to break into monotonic segments Implement accelerate to convert and store in your representation Provided filter.make_input_path_f_xform transforms path

Implement monotonize to break into monotonic segments

Implement accelerate to convert and store in your representation

Chain transformation, monotonization, and acceleration

```
path_xf = shape:get_xf():transform(cur_xf)
shape:as_path_data():iterate(
    filter.make_input_path_f_xform(path_xf,
        monotonize(
        accelerate(accel)))
```

FLOATING-POINT AND ROOT-FINDING

All real numbers represented in a computer? Impossible, of course. Finite memory!

Impossible, of course. Finite memory!

Can only represent a finite set of values

- Impossible, of course. Finite memory!
- Can only represent a finite set of values
- Widely accepted IEEE floating-point standard

- All real numbers represented in a computer?
- Impossible, of course. Finite memory!
- Can only represent a finite set of values
- Widely accepted IEEE floating-point standard
- Formats, rounding, arithmetic operations

- All real numbers represented in a computer?
- Impossible, of course. Finite memory!
- Can only represent a finite set of values
- Widely accepted IEEE floating-point standard
- Formats, rounding, arithmetic operations
- Represented by familiar scientific notation

$$N_A = 6.022140857 \times 10^{23}$$
 $q_e = 1.60217662 \times 10^{-19}$

Impossible, of course. Finite memory!

Can only represent a finite set of values

Widely accepted IEEE floating-point standard

Formats, rounding, arithmetic operations

Represented by familiar scientific notation

 $N_A = 6.022140857 \times 10^{23}$ $q_e = 1.60217662 \times 10^{-19}$

Except, in binary...

$$(-1)^{s} \times (1.b_{-1}b_{-2}b_{-3}\cdots b_{-t})_{2} \times 2^{e-z} \qquad z = 2^{w-1} - 1$$

One sign bit

w exponent bits

t fraction bits

$$(-1)^{s} \times (1.b_{-1}b_{-2}b_{-3}\cdots b_{-t})_{2} \times 2^{e-z} \qquad z = 2^{w-1} - 1$$

Normalized representation for mantissa m

• Ensures unique representation for mantissa

 $1_2 \le m < 10_2$

• First bit is implicitly set to 1

$$(-1)^{s} \times (1.b_{-1}b_{-2}b_{-3}\cdots b_{-t})_{2} \times 2^{e-z} \qquad z = 2^{w-1} - 1$$

Normalized representation for mantissa m

• Ensures unique representation for mantissa

 $1_2 \le m < 10_2$

• First bit is implicitly set to 1

Excess encoding for exponent e

- · Allows for positive and negative exponents
- Therefore large and small magnitudes
- Subtract $z = 2^{w-1} 1$ from encoded exponent

SPECIAL VALUES

Largest representable exponent is reserved

- m = 0 represents $\pm Inf$ (Infinity)
- $m \neq 0$ represents *NaN* (Not-a-Number)

SPECIAL VALUES

Largest representable exponent is reserved

- m = 0 represents $\pm Inf$ (Infinity)
- $m \neq 0$ represents *NaN* (Not-a-Number)

NaN propagates and compares as false

- $NaN \odot x \rightarrow NaN$
- · $NaN = NaN \rightarrow \texttt{false}$

SPECIAL VALUES

Largest representable exponent is reserved

- m = 0 represents $\pm lnf$ (Infinity)
- $m \neq 0$ represents *NaN* (Not-a-Number)

NaN propagates and compares as false

- $NaN \odot x \rightarrow NaN$
- $\cdot \ \textit{NaN} = \textit{NaN} \rightarrow \texttt{false}$

Other special operations

 $x \div lnf = \pm 0$ $0 \div 0 = NaN$ $lnf \times lnf = lnf$ lnf - lnf = NaN $x \div 0 = \pm lnf$ $lnf \div lnf = NaN$ lnf + lnf = lnf $lnf \times 0 = NaN$

$$(-1)^{s} \times (1.b_{-1}b_{-2}b_{-3}\cdots b_{-t})_{2} \times 2^{e-z}$$
 $z = 2^{w-1} - 1$

$$(-1)^{s} \times (1.b_{-1}b_{-2}b_{-3}\cdots b_{-t})_{2} \times 2^{e-z}$$
 $z = 2^{w-1} - 1$

$$(-1)^{s} \times (1.b_{-1}b_{-2}b_{-3}\cdots b_{-t})_{2} \times 2^{e-z}$$
 $z = 2^{w-1} - 1$

$$(-1)^{s} \times (1.b_{-1}b_{-2}b_{-3}\cdots b_{-t})_{2} \times 2^{e-z}$$
 $z = 2^{w-1} - 1$

$$(-1)^{s} \times (1.b_{-1}b_{-2}b_{-3}\cdots b_{-t})_{2} \times 2^{e-z}$$
 $z = 2^{w-1} - 1$

Same number of values for each interval [2^{*i*}, 2^{*i*+1}] What happens when exponent is the smallest?

$$(-1)^{s} \times (1.b_{-1}b_{-2}b_{-3}\cdots b_{-t})_{2} \times 2^{e-z}$$
 $z = 2^{w-1} - 1$

What happens when exponent is the smallest?

Normalization causes abrupt underflow

$$(-1)^{s} \times (1.b_{-1}b_{-2}b_{-3}\cdots b_{-t})_{2} \times 2^{e-z} \qquad z = 2^{w-1} - 1$$

What happens when exponent is the smallest?

Normalization causes abrupt underflow

• From 1.
$$\overbrace{00\cdots 1}^{r} \times 2^{-z}$$
 to 0

4

Instead, denormalized numbers were introduced

• When exponent is smallest, there is no implicit leading 1

$$(-1)^{s} \times (1.b_{-1}b_{-2}b_{-3}\cdots b_{-t})_{2} \times 2^{e-z} \qquad z = 2^{w-1} - 1$$

What happens when exponent is the smallest?

Normalization causes abrupt underflow

• From 1.
$$\overbrace{00\cdots 1}^{r} \times 2^{-z}$$
 to 0

Instead, denormalized numbers were introduced

• When exponent is smallest, there is no implicit leading 1

SUMMARY OF REPRESENTATION

	Single precision	Double precision
Total bits	32	64
Exponent bits	8	11
Fraction bits	23	52
Exponent range	-126127	-10221023
Smallest magnitude	$pprox 10^{-45}$	$pprox 10^{-324}$
Decimal range	$pprox [-10^{38}, 10^{38}]$	$pprox [-10^{308}, 10^{308}]$
Decimal precision	7	16

ROUNDING, OVERFLOW, UNDERFLOW

Let's try to represent 0.1 in floating-point

- Fraction is 0.0001100110011001100...
- No exact representation possible

Errors can grow and dominate results Problem often happens in practice Addition may not be exact even when exponents are equal

· $1.1010 + 1.0101 = 1.01111 \times 2^1 → 1.1000 \times 2^1$

Addition may not be exact even when exponents are equal

· $1.1010 + 1.0101 = 1.01111 \times 2^1 \rightarrow 1.1000 \times 2^1$

Trouble when exponents differ

- Must pre-shift to match exponents
- · $1.0000 + 1.0000 \times 2^{-5} = 1.00001 → 1.0000$
- Frequent source of rounding errors

Addition may not be exact even when exponents are equal

· $1.1010 + 1.0101 = 1.01111 \times 2^1 → 1.1000 \times 2^1$

Trouble when exponents differ

- Must pre-shift to match exponents
- · $1.0000 + 1.0000 \times 2^{-5} = 1.00001 → 1.0000$
- Frequent source of rounding errors

Multiplication is even worse

• Even with matching exponents, needs double number of bits!

OTHER WEIRDNESS

Associative property does not hold!

- $\cdot (a+b) + c \neq a + (b+c)$
- Beware of compiler optimizations

OTHER WEIRDNESS

Associative property does not hold!

- $\cdot (a+b) + c \neq a + (b+c)$
- Beware of compiler optimizations

Equality operator is basically useless

- Returns true only when *exactly* equal
- Must use special function

The only guarantee is the following $fl(x \odot y) = (x \odot y)(1 + \delta_1), \qquad |\delta_1| \le u = 2^{-t}$ $fl(x \odot y) = \frac{x \odot y}{1 + \delta_2}, \qquad |\delta_2| \le u$

$$\odot = +, -, \times, \div, \sqrt{2}$$

The only guarantee is the following

$$fl(x \odot y) = (x \odot y)(1 + \delta_1), \qquad |\delta_1| \le u = 2^{-1}$$
$$fl(x \odot y) = \frac{x \odot y}{1 + \delta_2}, \qquad |\delta_2| \le u$$

 $\odot=+,-,\times,\div,\sqrt{}$

J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres. *Handbook of floating-point arithmetic*. Birkhäuser, 2010

N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2nd edition, 2002

How can you even compare two numbers for equality? Problem with the Pythagoras formula $\sqrt{x^2 + y^2}$

Problem with the Pythagoras formula $\sqrt{x^2 + y^2}$

• What if x or y too small or too large?

Problem with the Pythagoras formula $\sqrt{x^2 + y^2}$

- What if x or y too small or too large?
- Solution? (See the **hypot** function.)

Problem with the Pythagoras formula $\sqrt{x^2 + y^2}$

- What if x or y too small or too large?
- Solution? (See the **hypot** function.)

Problems with the quadratic formula

Problem with the Pythagoras formula $\sqrt{x^2 + y^2}$

- What if x or y too small or too large?
- Solution? (See the **hypot** function.)

Problems with the quadratic formula

• What if $\Delta \approx 0$?

Problem with the Pythagoras formula $\sqrt{x^2 + y^2}$

- What if x or y too small or too large?
- Solution? (See the **hypot** function.)

Problems with the quadratic formula

- What if $\Delta \approx 0$?
- What if $a \approx 0$? Interpretation?

Problem with the Pythagoras formula $\sqrt{x^2 + y^2}$

- What if x or y too small or too large?
- Solution? (See the **hypot** function.)

Problems with the quadratic formula

- What if $\Delta \approx 0$?
- What if $a \approx 0$? Interpretation?
- Solution?

Problem with the Pythagoras formula $\sqrt{x^2 + y^2}$

- What if x or y too small or too large?
- Solution? (See the **hypot** function.)

Problems with the quadratic formula

- What if $\Delta \approx 0$?
- What if $a \approx 0$? Interpretation?
- Solution?

J. F. Blinn. How to solve a quadratic equation. *IEEE Computer Graphics and Applications*, 25(6):76–79, 2005

ITERATIVE ROOT-FINDING METHODS

Solve f(x) = 0 for x

Solve f(x) = 0 for x

Bisection

- Given an interval [a, b] with $f(a)f(b) \le 0$ and f continuous
- Guaranteed linear convergence

Solve f(x) = 0 for x

Bisection

- Given an interval [a, b] with $f(a)f(b) \le 0$ and f continuous
- Guaranteed linear convergence

Newton-Raphson

- Given f differentiable and given t_0 "near" root
- Quadratic convergence, but no guarantees

Solve f(x) = 0 for x

Bisection

- Given an interval [a, b] with $f(a)f(b) \leq 0$ and f continuous
- Guaranteed linear convergence

Newton-Raphson

- Given f differentiable and given t_0 "near" root
- Quadratic convergence, but no guarantees

Safe Newton-Raphson

Combines advantages of both methods

Very simple method for finding roots of polynomial $p(x) = 0, x \in [a, b]$

Very simple method for finding roots of polynomial $p(x) = 0, x \in [a, b]$

- Solve for roots of p'(x) = 0 recursively
- Use roots of p'(x) to isolate roots of p(x) into brackets
- Use safe Newton-Raphson to refine one of p(x) in each bracket

Very simple method for finding roots of polynomial $p(x) = 0, x \in [a, b]$

- Solve for roots of p'(x) = 0 recursively
- Use roots of p'(x) to isolate roots of p(x) into brackets
- Use safe Newton-Raphson to refine one of p(x) in each bracket

What about in Bernstein basis?

References

- J. F. Blinn. How to solve a quadratic equation. *IEEE Computer Graphics and Applications*, 25(6):76–79, 2005.
- N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2nd edition, 2002.
- J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres. *Handbook of floating-point arithmetic*. Birkhäuser, 2010.