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Path representation



SVG path commands

Command
Parameters Description

Abs Rel

M m (x, y)+ move

L l (x, y)+ line

H h x+ horizontal line

V v y+ vertical line

C c (x1, y1, x2, y2, x, y)+ cubic

S s (x2, y2, x, y)+ smooth cubic

Q q (x1, y1, x, y)+ quadratic

T t (x, y)+ smooth quadratic

A a (rx, ry, θx, `,o, x, y)+ elliptical arc

Z z close path
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Our representation

Input from SVG commands

• Relative control points converted to absolute

• H, V, S, T converted to generic segments

• A converted to rational quadratics (R command)

Convert other primitives to paths

path_data = shape : as_path_data ( )

Content visible using iterators
path_data : i t e r a t e {

begin_contour = funct ion ( se l f , x0 , y0 ) end

end_open_contour = funct ion ( se l f , x0 , y0 ) end

end_closed_contour = funct ion ( se l f , x0 , y0 ) end

l inear_segment = funct ion ( se l f , x0 , y0 , x1 , y1 ) end

quadratic_segment = funct ion ( se l f , x0 , y0 , x1 , y1 , x2 , y2 ) end

rat ional_quadrat ic_segment = funct ion ( se l f , x0 , y0 , x1 , y1 , w1 , x2 , y2 ) end

cubic_segment = funct ion ( se l f , x0 , y0 , x1 , y1 , x2 , y2 , x3 , y3 ) end

}
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Example of filter

Transform a path and forward results on
funct ion f i l te r .make_ input_path_f_x form ( xf , forward )

l oca l px , py −− previous cursor

l oca l xformer = { }

funct ion xformer : begin_contour ( x0 , y0 )

px , py = x f : apply ( x0 , y0 )

forward : begin_contour ( px , py )

end

funct ion xformer : end_closed_contour ( x0 , y0 )

forward : end_closed_contour ( px , py )

end

funct ion xformer : l inear_segment ( x0 , y0 , x1 , y1 )

x1 , y1 = x f : apply ( x1 , y1 )

forward : l inear_segment ( px , py , x1 , y1 )

px , py = x1 , y1

end

funct ion xformer : rat ional_quadrat ic_segment ( x0 , y0 , x1 , y1 , w1 , x2 , y2 )

x1 , y1 , w1 = x f : apply ( x1 , y1 , w1 )

x2 , y2 = x f : apply ( x2 , y2 )

forward : rat ional_quadrat ic_segment ( px , py , x1 , y1 , w1 , x2 , y2 )

px , py = x2 , y2

end

. . .

return xformer

end
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Example of filter chaining

Provided filter.make_input_path_f_xform transforms path

Implement monotonize to break into monotonic segments

Implement accelerate to convert and store in your representation

Chain transformation, monotonization, and acceleration

path_xf = shape : ge t_x f ( ) : transform ( cur_x f )

shape : as_path_data ( ) : i t e r a t e (

f i l te r .make_ input_path_f_x form ( path_xf ,

monotonize (

acce lera te ( acce l ) ) )
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Floating-point and root-finding



Floating-point numbers

All real numbers represented in a computer?

Impossible, of course. Finite memory!

Can only represent a finite set of values

Widely accepted IEEE floating-point standard

Formats, rounding, arithmetic operations

Represented by familiar scientific notation

NA = 6.022140857× 1023 qe = 1.60217662× 10−19

Except, in binary…
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Binary floating-point

(−1)s × (1.b−1b−2b−3 · · ·b−t)2 × 2e−z z = 2w−1 − 1

si
gn

ex
po
ne
nt

fra
ct
io
n

s e m = 1.b−1 · · ·b−t

One sign bit

w exponent bits

t fraction bits
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Representation details

(−1)s × (1.b−1b−2b−3 · · ·b−t)2 × 2e−z z = 2w−1 − 1

Normalized representation for mantissa m

• Ensures unique representation for mantissa

12 ≤ m < 102

• First bit is implicitly set to 1

Excess encoding for exponent e

• Allows for positive and negative exponents

• Therefore large and small magnitudes

• Subtract z = 2w−1 − 1 from encoded exponent

8
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Special values

Largest representable exponent is reserved

• m = 0 represents ±Inf (Infinity)

• m 6= 0 represents NaN (Not-a-Number)

NaN propagates and compares as false

• NaN� x → NaN

• NaN = NaN → false

Other special operations

x ÷ Inf = ±0 0÷ 0 = NaN

Inf × Inf = Inf Inf − Inf = NaN

x ÷ 0 = ±Inf Inf ÷ Inf = NaN

Inf + Inf = Inf Inf × 0 = NaN

9
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Denormalization

(−1)s × (1.b−1b−2b−3 · · ·b−t)2 × 2e−z z = 2w−1 − 1

Same number of values for each interval [2i, 2i+1]

What happens when exponent is the smallest?

Normalization causes abrupt underflow

• From 1.

t︷ ︸︸ ︷
00 · · · 1×2−z to 0

Instead, denormalized numbers were introduced

• When exponent is smallest, there is no implicit leading 1

0 1 2 3 4
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Summary of representation

normalized

si
gn

ex
po
ne
nt

fra
ct
io
n

± not 0 · · · 0 or 1 · · · 1 any

de-normalized ± 0 · · · 0 not 0 · · · 0

zero ± 0 · · · 0 0 · · · 0

Inf ± 1 · · · 1 0 · · · 0

NaN ± 1 · · · 1 not 0 · · · 0
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Common floating-point formats

Single precision Double precision

Total bits 32 64

Exponent bits 8 11

Fraction bits 23 52

Exponent range -126…127 -1022…1023

Smallest magnitude ≈ 10−45 ≈ 10−324

Decimal range ≈ [−1038, 1038] ≈ [−10308, 10308]

Decimal precision 7 16

12



Rounding, overflow, underflow

0 1 2 3 4

≈ 0 ≈ 2.5 ≈ ∞

Let’s try to represent 0.1 in floating-point

• Fraction is 0.0001100110011001100…

• No exact representation possible

Errors can grow and dominate results

Problem often happens in practice

13



Source of arithmetic errors

Addition may not be exact even when exponents are equal

• 1.1010+ 1.0101 = 1.01111× 21 → 1.1000× 21

Trouble when exponents differ

• Must pre-shift to match exponents

• 1.0000+ 1.0000× 2−5 = 1.00001 → 1.0000

• Frequent source of rounding errors

Multiplication is even worse

• Even with matching exponents, needs double number of bits!

14
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Other weirdness

Associative property does not hold!

• (a+ b) + c 6= a+ (b+ c)

• Beware of compiler optimizations

Equality operator is basically useless

• Returns true only when exactly equal

• Must use special function

15
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Standard model of arithmetic

The only guarantee is the following

fl(x � y) = (x � y)(1+ δ1), |δ1| ≤ u = 2−t

fl(x � y) =
x � y

1+ δ2
, |δ2| ≤ u

� = +,−,×,÷,
√

J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,

G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of

floating-point arithmetic. Birkhäuser, 2010

N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2nd

edition, 2002
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Examples of possible problems

How can you even compare two numbers for equality?

Problem with the Pythagoras formula
√
x2 + y2

• What if x or y too small or too large?

• Solution? (See the hypot function.)

Problems with the quadratic formula

• What if ∆ ≈ 0?

• What if a ≈ 0? Interpretation?

• Solution?

J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics

and Applications, 25(6):76–79, 2005

17
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J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics

and Applications, 25(6):76–79, 2005
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Iterative root-finding methods

Solve f (x) = 0 for x

Bisection

• Given an interval [a,b] with f (a)f (b) ≤ 0 and f continuous

• Guaranteed linear convergence

Newton-Raphson

• Given f differentiable and given t0 “near” root

• Quadratic convergence, but no guarantees

Safe Newton-Raphson

• Combines advantages of both methods
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Polynomial roots

Very simple method for finding roots of polynomial p(x) = 0, x ∈ [a,b]

• Solve for roots of p′(x) = 0 recursively

• Use roots of p′(x) to isolate roots of p(x) into brackets

• Use safe Newton-Raphson to refine one of p(x) in each bracket

What about in Bernstein basis?
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