2D Computer Graphics

Diego Nehab
Summer 2020

IMPA

Path Representation

SVG PATH COMMANDS

OUR REPRESENTATION

Input from SVG commands

OUR REPRESENTATION

Input from SVG commands

- Relative control points converted to absolute

OUR REPRESENTATION

Input from SVG commands

- Relative control points converted to absolute
- H, V, S, T converted to generic segments

OUR REPRESENTATION

Input from SVG commands

- Relative control points converted to absolute
- H, V, S, T converted to generic segments
- A converted to rational quadratics (R command)

OUR REPRESENTATION

Input from SVG commands

- Relative control points converted to absolute
- H, V, S, T converted to generic segments
- A converted to rational quadratics (R command)

Convert other primitives to paths

```
path_data = shape:as_path_data()
```

Content visible using iterators

OUR REPRESENTATION

Input from SVG commands

- Relative control points converted to absolute
- H, V, S, T converted to generic segments
- A converted to rational quadratics (R command)

Convert other primitives to paths

```
path_data = shape:as_path_data()
```

Content visible using iterators

```
path_data:iterate{
    begin_contour = function(self, x0, y0) end
    end_open_contour = function(self, x0, y0) end
    end_closed_contour = function(self, x0, y0) end
    linear_segment = function(self, x0, y0, x1, y1) end
    quadratic_segment = function(self, x0, y0, x1, y1, x2, y2) end
    rational_quadratic_segment = function(self, x0, y0, x1, y1, w1, x2, y2) end
    cubic_segment = function(self, x0, y0, x1, y1, x2, y2, x3, y3) end
}
```


EXAMPLE OF FILTER

Transform a path and forward results on

```
function filter.make_input_path_f_xform(xf, forward)
    local px, py-previous cursor
    local xformer = {}
    function xformer:begin_contour(x0, y0)
        px, py = xf:apply(x0, y0)
        forward:begin_contour(px, py)
    end
    function xformer:end_closed_contour(x0, yo)
        forward:end_closed_contour(px, py)
    end
    function xformer:linear_segment(x0, y0, x1, y1)
        x1, y1 = xf:apply(x1,y1)
        forward:linear_segment(px, py, x1, y1)
        px, py = x1, y1
    end
    function xformer:rational_quadratic_segment(x0, y0, x1, y1, w1, x2, y2)
        x1, y1, w1 = xf:apply(x1, y1, w1)
        x2, y2 = xf:apply(x2,y2)
        forward:rational_quadratic_segment(px, py, x1, y1, w1, x2, y2)
        px, py = x2, y2
    end
    return xformer
end
```


EXAMPLE OF FILTER CHAINING

Provided filter.make_input_path_f_xform transforms path

EXAMPLE OF FILTER CHAINING

Provided filter.make_input_path_f_xform transforms path Implement monotonize to break into monotonic segments

EXAMPLE OF FILTER CHAINING

Provided filter.make_input_path_f_xform transforms path Implement monotonize to break into monotonic segments Implement accelerate to convert and store in your representation

EXAMPLE OF FILTER CHAINING

Provided filter.make_input_path_f_xform transforms path Implement monotonize to break into monotonic segments Implement accelerate to convert and store in your representation Chain transformation, monotonization, and acceleration

```
path_xf = shape:get_xf():transform(cur_xf)
shape:as_path_data(): iterate(
    filter.make_input_path_f_xform(path_xf,
        monotonize(
        accelerate(accel)))
```

FLOAtING-POINT AND ROOT-FINDING

FLOATING-POINT NUMBERS

All real numbers represented in a computer?

FLOATING-POINT NUMBERS

All real numbers represented in a computer?
Impossible, of course. Finite memory!

FLOATING-POINT NUMBERS

All real numbers represented in a computer?
Impossible, of course. Finite memory!
Can only represent a finite set of values

FLOATING-POINT NUMBERS

All real numbers represented in a computer?
Impossible, of course. Finite memory!
Can only represent a finite set of values
Widely accepted IEEE floating-point standard

FLOATING-POINT NUMBERS

All real numbers represented in a computer?
Impossible, of course. Finite memory!
Can only represent a finite set of values
Widely accepted IEEE floating-point standard
Formats, rounding, arithmetic operations

FLOATING-POINT NUMBERS

All real numbers represented in a computer?
Impossible, of course. Finite memory!
Can only represent a finite set of values
Widely accepted IEEE floating-point standard
Formats, rounding, arithmetic operations
Represented by familiar scientific notation

$$
N_{A}=6.022140857 \times 10^{23} \quad q_{e}=1.60217662 \times 10^{-19}
$$

FLOATING-POINT NUMBERS

All real numbers represented in a computer?
Impossible, of course. Finite memory!
Can only represent a finite set of values
Widely accepted IEEE floating-point standard
Formats, rounding, arithmetic operations
Represented by familiar scientific notation

$$
N_{A}=6.022140857 \times 10^{23} \quad q_{e}=1.60217662 \times 10^{-19}
$$

Except, in binary...

BINARY FLOATING-POINT

$$
(-1)^{s} \times\left(1 . b_{-1} b_{-2} b_{-3} \cdots b_{-t}\right)_{2} \times 2^{e-z} \quad z=2^{w-1}-1
$$

One sign bit
w exponent bits
t fraction bits

Representation details

$$
(-1)^{s} \times\left(1 . b_{-1} b_{-2} b_{-3} \cdots b_{-t}\right)_{2} \times 2^{e-z} \quad z=2^{w-1}-1
$$

Normalized representation for mantissa m

- Ensures unique representation for mantissa

$$
1_{2} \leq m<10_{2}
$$

- First bit is implicitly set to 1

Representation details

$$
(-1)^{s} \times\left(1 . b_{-1} b_{-2} b_{-3} \cdots b_{-t}\right)_{2} \times 2^{e-z} \quad z=2^{w-1}-1
$$

Normalized representation for mantissa m

- Ensures unique representation for mantissa

$$
1_{2} \leq m<10_{2}
$$

- First bit is implicitly set to 1

Excess encoding for exponent e

- Allows for positive and negative exponents
- Therefore large and small magnitudes
- Subtract $z=2^{w-1}-1$ from encoded exponent

Special values

Largest representable exponent is reserved

- $m=0$ represents $\pm \operatorname{lnf}$ (Infinity)
- $m \neq 0$ represents NaN (Not-a-Number)

Special values

Largest representable exponent is reserved

- $m=0$ represents $\pm \operatorname{lnf}$ (Infinity)
- $m \neq 0$ represents NaN (Not-a-Number)

NaN propagates and compares as false

- NaN $\odot x \rightarrow \mathrm{NaN}$
- $N a N=N a N \rightarrow$ false

Special values

Largest representable exponent is reserved

- $m=0$ represents $\pm \operatorname{lnf}$ (Infinity)
- $m \neq 0$ represents NaN (Not-a-Number)

NaN propagates and compares as false

- NaN $\odot x \rightarrow \mathrm{NaN}$
- $N a N=N a N \rightarrow$ false

Other special operations

$$
\begin{array}{rlrl}
x \div \ln f & = \pm 0 & 0 \div 0 & =\mathrm{NaN} \\
\ln f \times \ln f & =\ln f & \operatorname{lnf}-\ln f & =\mathrm{NaN} \\
x \div 0 & = \pm \ln f & \operatorname{lnf} \div \operatorname{lnf} & =\mathrm{NaN} \\
\ln f+\ln f & =\ln f & \operatorname{lnf} \times 0 & =\mathrm{NaN}
\end{array}
$$

DENORMALIZATION

$$
(-1)^{s} \times\left(1 . b_{-1} b_{-2} b_{-3} \cdots b_{-t}\right)_{2} \times 2^{e-z} \quad z=2^{w-1}-1
$$

Same number of values for each interval $\left[2^{i}, 2^{i+1}\right]$

$\longleftrightarrow 0$	1	2	3	4

DENORMALIZATION

$$
(-1)^{s} \times\left(1 . b_{-1} b_{-2} b_{-3} \cdots b_{-t}\right)_{2} \times 2^{e-z} \quad z=2^{w-1}-1
$$

Same number of values for each interval $\left[2^{i}, 2^{i+1}\right]$

DENORMALIZATION

$$
(-1)^{s} \times\left(1 . b_{-1} b_{-2} b_{-3} \cdots b_{-t}\right)_{2} \times 2^{e-z} \quad z=2^{w-1}-1
$$

Same number of values for each interval $\left[2^{i}, 2^{i+1}\right]$

DENORMALIZATION

$$
(-1)^{s} \times\left(1 . b_{-1} b_{-2} b_{-3} \cdots b_{-t}\right)_{2} \times 2^{e-z} \quad z=2^{w-1}-1
$$

Same number of values for each interval $\left[2^{i}, 2^{i+1}\right]$

DENORMALIZATION

$$
(-1)^{s} \times\left(1 . b_{-1} b_{-2} b_{-3} \cdots b_{-t}\right)_{2} \times 2^{e-z} \quad z=2^{w-1}-1
$$

Same number of values for each interval $\left[2^{i}, 2^{i+1}\right]$
What happens when exponent is the smallest?

DENORMALIZATION

$$
(-1)^{s} \times\left(1 . b_{-1} b_{-2} b_{-3} \cdots b_{-t}\right)_{2} \times 2^{e-z} \quad z=2^{w-1}-1
$$

Same number of values for each interval $\left[2^{i}, 2^{i+1}\right]$
What happens when exponent is the smallest?
Normalization causes abrupt underflow

- From $1 . \overbrace{00 \cdots 1}^{t} \times 2^{-z}$ to 0

DENORMALIZATION

$$
(-1)^{s} \times\left(1 . b_{-1} b_{-2} b_{-3} \cdots b_{-t}\right)_{2} \times 2^{e-z} \quad z=2^{w-1}-1
$$

Same number of values for each interval $\left[2^{i}, 2^{i+1}\right]$
What happens when exponent is the smallest?
Normalization causes abrupt underflow

- From $1 . \overbrace{00 \cdots 1}^{t} \times 2^{-z}$ to 0

Instead, denormalized numbers were introduced

- When exponent is smallest, there is no implicit leading 1

DENORMALIZATION

$$
(-1)^{s} \times\left(1 . b_{-1} b_{-2} b_{-3} \cdots b_{-t}\right)_{2} \times 2^{e-z} \quad z=2^{w-1}-1
$$

Same number of values for each interval $\left[2^{i}, 2^{i+1}\right]$
What happens when exponent is the smallest?
Normalization causes abrupt underflow

- From $1 . \overbrace{00 \cdots 1}^{t} \times 2^{-z}$ to 0

Instead, denormalized numbers were introduced

- When exponent is smallest, there is no implicit leading 1

SUMMARY OF REPRESENTATION

normalized
\pm not $0 \cdots 0$ or $1 \cdots 1 \quad$ any
de-normalized

not $0 \cdots 0$
zero

NaN

$\pm 1 \cdots 1$	not $0 \cdots 0$

COMMON FLOATING-POINT FORMATS

Single precision Double precision

Total bits	32	64
Exponent bits	8	11
Fraction bits	23	52
Exponent range	$-126 \ldots 127$	$-1022 . . .1023$
Smallest magnitude	$\approx 10^{-45}$	$\approx 10^{-324}$
Decimal range	$\approx\left[-10^{38}, 10^{38}\right]$	$\approx\left[-10^{308}, 10^{308}\right]$
Decimal precision	7	16

Rounding, OVERFLOW, UNDERFLOW

Let's try to represent 0.1 in floating-point

- Fraction is 0.0001100110011001100...
- No exact representation possible

Errors can grow and dominate results
Problem often happens in practice

SOURCE OF ARITHMETIC ERRORS

Addition may not be exact even when exponents are equal $\cdot 1.1010+1.0101=1.01111 \times 2^{1} \rightarrow 1.1000 \times 2^{1}$

SOURCE OF ARITHMETIC ERRORS

Addition may not be exact even when exponents are equal
$\cdot 1.1010+1.0101=1.01111 \times 2^{1} \rightarrow 1.1000 \times 2^{1}$
Trouble when exponents differ

- Must pre-shift to match exponents
- $1.0000+1.0000 \times 2^{-5}=1.00001 \rightarrow 1.0000$
- Frequent source of rounding errors

SOURCE OF ARITHMETIC ERRORS

Addition may not be exact even when exponents are equal
$\cdot 1.1010+1.0101=1.01111 \times 2^{1} \rightarrow 1.1000 \times 2^{1}$
Trouble when exponents differ

- Must pre-shift to match exponents
- $1.0000+1.0000 \times 2^{-5}=1.00001 \rightarrow 1.0000$
- Frequent source of rounding errors

Multiplication is even worse

- Even with matching exponents, needs double number of bits!

Other weirdness

Associative property does not hold!

- $(a+b)+c \neq a+(b+c)$
- Beware of compiler optimizations

Other weirdness

Associative property does not hold!
$\cdot(a+b)+c \neq a+(b+c)$

- Beware of compiler optimizations

Equality operator is basically useless

- Returns true only when exactly equal
- Must use special function

STANDARD MODEL OF ARITHMETIC

The only guarantee is the following

$$
\begin{array}{cl}
f l(x \odot y)=(x \odot y)\left(1+\delta_{1}\right), & \left|\delta_{1}\right| \leq u=2^{-t} \\
f l(x \odot y)=\frac{x \odot y}{1+\delta_{2}}, & \left|\delta_{2}\right| \leq u \\
\odot=+,-, x, \div, \sqrt{ } &
\end{array}
$$

STANDARD MODEL OF ARITHMETIC

The only guarantee is the following

$$
\begin{array}{cl}
f l(x \odot y)=(x \odot y)\left(1+\delta_{1}\right), & \left|\delta_{1}\right| \leq u=2^{-t} \\
f l(x \odot y)=\frac{x \odot y}{1+\delta_{2}}, & \left|\delta_{2}\right| \leq u \\
\qquad \odot=+,-, x, \div, \sqrt{ } &
\end{array}
$$

J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of floating-point arithmetic. Birkhäuser, 2010
N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2nd edition, 2002

EXAMPLES OF POSSIBLE PROBLEMS

How can you even compare two numbers for equality?

EXAMPLES OF POSSIBLE PROBLEMS

How can you even compare two numbers for equality?
Problem with the Pythagoras formula $\sqrt{x^{2}+y^{2}}$

EXAMPLES OF POSSIBLE PROBLEMS

How can you even compare two numbers for equality?
Problem with the Pythagoras formula $\sqrt{x^{2}+y^{2}}$
-What if x or y too small or too large?

EXAMPLES OF POSSIBLE PROBLEMS

How can you even compare two numbers for equality?
Problem with the Pythagoras formula $\sqrt{x^{2}+y^{2}}$
-What if x or y too small or too large?

- Solution? (See the hypot function.)

EXAMPLES OF POSSIBLE PROBLEMS

How can you even compare two numbers for equality?
Problem with the Pythagoras formula $\sqrt{x^{2}+y^{2}}$
-What if x or y too small or too large?

- Solution? (See the hypot function.)

Problems with the quadratic formula

EXAMPLES OF POSSIBLE PROBLEMS

How can you even compare two numbers for equality?
Problem with the Pythagoras formula $\sqrt{x^{2}+y^{2}}$
-What if x or y too small or too large?

- Solution? (See the hypot function.)

Problems with the quadratic formula

- What if $\Delta \approx 0$?

EXAMPLES OF POSSIBLE PROBLEMS

How can you even compare two numbers for equality?
Problem with the Pythagoras formula $\sqrt{x^{2}+y^{2}}$
-What if x or y too small or too large?

- Solution? (See the hypot function.)

Problems with the quadratic formula

- What if $\Delta \approx 0$?
-What if $a \approx 0$? Interpretation?

EXAMPLES OF POSSIBLE PROBLEMS

How can you even compare two numbers for equality?
Problem with the Pythagoras formula $\sqrt{x^{2}+y^{2}}$
-What if x or y too small or too large?

- Solution? (See the hypot function.)

Problems with the quadratic formula

- What if $\Delta \approx 0$?
-What if $a \approx 0$? Interpretation?
- Solution?

EXAMPLES OF POSSIBLE PROBLEMS

How can you even compare two numbers for equality?
Problem with the Pythagoras formula $\sqrt{x^{2}+y^{2}}$
-What if x or y too small or too large?

- Solution? (See the hypot function.)

Problems with the quadratic formula

- What if $\Delta \approx 0$?
-What if $a \approx 0$? Interpretation?
- Solution?
J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics and Applications, 25(6):76-79, 2005

ITERATIVE ROOT-FINDING METHODS

Solve $f(x)=0$ for x

ITERATIVE ROOT-FINDING METHODS

Solve $f(x)=0$ for x
Bisection

- Given an interval $[a, b]$ with $f(a) f(b) \leq 0$ and f continuous
- Guaranteed linear convergence

ITERATIVE ROOT-FINDING METHODS

Solve $f(x)=0$ for x
Bisection

- Given an interval $[a, b]$ with $f(a) f(b) \leq 0$ and f continuous
- Guaranteed linear convergence

Newton-Raphson

- Given f differentiable and given t_{0} "near" root
- Quadratic convergence, but no guarantees

ITERATIVE ROOT-FINDING METHODS

Solve $f(x)=0$ for x
Bisection

- Given an interval $[a, b]$ with $f(a) f(b) \leq 0$ and f continuous
- Guaranteed linear convergence

Newton-Raphson

- Given f differentiable and given t_{0} "near" root
- Quadratic convergence, but no guarantees

Safe Newton-Raphson

- Combines advantages of both methods

POLYNOMIAL ROOTS

Very simple method for finding roots of polynomial $p(x)=0, x \in[a, b]$

POLYNOMIAL ROOTS

Very simple method for finding roots of polynomial $p(x)=0, x \in[a, b]$

- Solve for roots of $p^{\prime}(x)=0$ recursively
- Use roots of $p^{\prime}(x)$ to isolate roots of $p(x)$ into brackets
- Use safe Newton-Raphson to refine one of $p(x)$ in each bracket

POLYNOMIAL ROOTS

Very simple method for finding roots of polynomial $p(x)=0, x \in[a, b]$

- Solve for roots of $p^{\prime}(x)=0$ recursively
- Use roots of $p^{\prime}(x)$ to isolate roots of $p(x)$ into brackets
- Use safe Newton-Raphson to refine one of $p(x)$ in each bracket

What about in Bernstein basis?

References

J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics and Applications, 25(6):76-79, 2005.
N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2nd edition, 2002.
J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of floating-point arithmetic. Birkhäuser, 2010.

