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Bézier curves



Curve modeling by splines

2



Curve modeling by splines

Thin strip of wood used in building construction

Anchored in place by lead weights called ducks

Physical process

Interpolating, smooth, energy minimizing 3

No local control 7
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Burmester curve
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Lagrangian interpolation

Computational process

k+ 1 vertices {p0, . . . ,pk} define a curve

γ(t) =
k∑

i=0

pi

∏
j 6=i(t − j)∏
j 6=i(i− j)

, t ∈ [0, k]

Similar issues
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B-splines

Define a family of generating functions βn recursively

β0(t) =

1, − 1
2 ≤ t < 1

2

0, otherwise

βn = βn−1 ∗ β0, n ∈ N

Notation for convolution

h = f ∗ g ⇔ h(t) =

∫ ∞

−∞
f (u)g(u− t)dt
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B-splines

Examples

β0(t) =

1, − 1
2 ≤ t < 1

2

0, otherwise

β1(t) =


1+ t, −1 ≤ t < 0

1− t, 0 ≤ t < 1

0, otherwise

β2(t) =



1
8(3+ 2t)2, − 3

2 ≤ t < − 1
2

1
4(3− 4t2), − 1

2 ≤ t < 1
2

1
8(9− 12t + 4t2), 1

2 ≤ t < 2
2

0, otherwise
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B-splines

k+ 1 vertices {p0, . . . ,pk} and generating function βn define a curve

γ(t) =
k∑

i=0

βn(t − i)pi, t ∈ [0, k]

Local control 3

Differentiable n times everywhere 3

Non-interpolating 7

• Interpolation requires solving a banded linear system 3

Many, many interesting properties
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Polylines

k+ 1 vertices {p0, . . . ,pk} define k segments{
γ0(t), . . . , γk−1(t)

}
, t ∈ [0, 1]

Each segment defined by linear interpolation

γi(t) = (1− t)pi + t pi+1, i ∈ {0, . . . , k− 1}

Local control 3

Interpolates all control points 3

Not differentiable at interpolated points 7
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Bézier curves

Generalization of linear interpolation

kn+ 1 vertices {p0, . . . ,pkn} define k segments of degree n{
γn0 (t), γ

n
n(t), . . . , γ

n
(k−1)n(t)

}
, t ∈ [0, 1]

Defined recursively, for j ∈ {0, . . . , k− 1}
γ0i (t) = pi, i ∈

{
nj, . . . ,n(j+ 1)

}
,

γmi (t) = (1− t) γm−1
i

(t) + t γm−1
i+1

(t), i ∈
{
nj, . . . ,n(j+ 1)−m

}
De Casteljau algorithm

Geometric interpretation
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Bernstein polynomials

Algebraic interpretation

Expanding and collecting the pi terms,

γni (t) =
n∑

j=0

(
n
j

)
(1− t)n−j tj pi+j

Using Bernstein polynomials

γni (t) =
n∑

j=0

bj,n(t)pi+j with bj,n(t) =
(
n
j

)
(1− t)n−j tj

Basis for the space of polynomials Pn with degree n or less (Why?)

11
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Control points and blending weights

In matrix form

γni (t) =
[
pni pni+1 · · · pni+n

]

︸ ︷︷ ︸
Bézier control points CB

i


b0,n(t)

b1,n(t)
...

bn,n(t)



 blending weights Bn(t)

= CBi Bn(t)

Linear invariance is quite obvious in this form

12



Control points and blending weights

In matrix form

γni (t) =
[
pni pni+1 · · · pni+n

]
︸ ︷︷ ︸

Bézier control points CB
i


b0,n(t)

b1,n(t)
...

bn,n(t)


 blending weights Bn(t)

= CBi Bn(t)

Linear invariance is quite obvious in this form

12



Control points and blending weights

In matrix form

γni (t) =
[
pni pni+1 · · · pni+n

]
︸ ︷︷ ︸

Bézier control points CB
i


b0,n(t)

b1,n(t)
...

bn,n(t)


 blending weights Bn(t)

= CBi Bn(t)

Linear invariance is quite obvious in this form

12



Control points and blending weights

In matrix form

γni (t) =
[
pni pni+1 · · · pni+n

]
︸ ︷︷ ︸

Bézier control points CB
i


b0,n(t)

b1,n(t)
...

bn,n(t)


 blending weights Bn(t)

= CBi Bn(t)

Linear invariance is quite obvious in this form

12



Change of basis

Can be converted back and forth to power basis

Pn(t) =
[
1 t · · · tn

]T
Bn(t) = Bn Pn(t)

Examples

B1 =

[
1 −1

0 1

]
B2 =

1 −2 1

0 2 −2

0 0 1

 B3 =


1 −3 3 −1

0 3 −6 3

0 0 3 −3

0 0 0 1



γni (t) = CBi Bn(t) = CBi

Change of basis︷︸︸︷
Bn︸ ︷︷ ︸

Power basis control points CP
i

Pn(t) = CPi Pn(t)
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Bézier curves

Local control 3

Interpolates every nth point 3

Differentiable except (perhaps) at interpolation points 3

PostScript, SVG (Inkscape), RVG

Mathematica
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Affine invariance of Bézier segments

Let T be an affine transformation and let

γn(t) =
n∑

j=0

bj,n(t)pj

be a Bézier curve segment.

We want to show that

T
( n∑

j=0

bj,n(t)pj

)
=

n∑
j=0

bj,n(t) T(pj).

This will be true if and only if all points in the Bézier curve are affine

combinations of the control points.

15
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Affine invariance of Bézier segments

Indeed,
n∑

j=0

bj,n(t) =
n∑

j=0

(
n
j

)
(1− t)n−j tj

=
(
(1− t) + t

)n
= 1n = 1.

The Bernstein polynomials therefore form a partition of unity

To apply an affine transformation to a Bézier curve, simply transform

the control points

16
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Convex hull property for Bézier segments

p =
∑

i αipi is a convex combination of {pi} if
∑

i αi = 1 and αi ≥ 0.

A set of points C is convex if every convex combination of points in C

also belongs to C

The convex hull of a set points S is the smallest convex set that

contains S

If γ is a Bézier curve, then
{
γ(t) | t ∈ [0, 1]

}
is contained in the convex

hull of its control points

• From partition of unity and positivity in [0, 1]

• Useful for curve intersection, quick bounding box, etc

17
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Derivative of Bézier segment

Since derivative operator is linear and γn(t) =
∑n

j=0 bj,n(t)pj, all we

have to do is differentiate the Bernstein polynomials(
bj,n(t)

)′
=
((

n
j

)
(1− t)n−j tj

)′

= j
(
n
j

)
(1− t)n−j tj−1 − (n− j)

(
n
j

)
(1− t)n−1−j tj

= n
(
n−1
j−1

)
(1− t)(n−1)−(j−1) tj−1 − n

(
n−1
j

)
(1− t)n−1−j tj

= n
(
bj−1,n−1(t)− bj,n−1(t)

)
Therefore,

(γn)′(t) =
n−1∑
j=0

bj,n−1(t)qj with qj = n(pj+1 − pj).
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Derivative of Bézier segment

What is the derivative at the endpoints?

How do we connect segments so that they are C1 continuous?

What about G1 continuity?

Show in Inkscape
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Degree elevation of Bézier segment

Express a segment γn(t) as γn+1(t)? (write bj,n(t) in terms of bk,n+1(t)?)

Easy to express both bj,n+1(t) and bj+1,n+1(t) in terms of bj,n(t)

bj,n+1(t)

=
(
n+1
j

)
(1− t)n+1−j tj = n+1

n+1−j
(1− t)bj,n(t)

bj+1,n+1(t) =
(
n+1
j+1

)
(1− t)n−j tj = n+1

j+1
t bj,n(t)

From these,

bj,n(t) =
n+1−j
n+1 bj,n+1(t) +

j+1
n+1 bj+1,n+1(t)

Expanding and collecting terms,

γn(t) =
n∑

i=0

bi,n(t)pi =
n+1∑
j=0

bj,n+1(t)qj = γn+1(t)

with q0 = p0, qn+1 = pn, and

qi =
j

n+1 pi−1 + (1− j
n+1)pi

20
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Degree elevation of Bézier segment

Examples [
p0 p1

]
⇔

[
p0

1
2(p0 + p1) p1

]
[
p0 p1 p2

]
⇔

[
p0

1
3(p0 + 2p1)

1
3(2p1 + p2) p2

]
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