2D Computer Graphics

Diego Nehab
Summer 2020

IMPA

BÉZIER CURVES

CuRVE MODELING BY SPLINES

CURVE MODELING BY SPLINES

Thin strip of wood used in building construction

CURVE MODELING BY SPLINES

Thin strip of wood used in building construction Anchored in place by lead weights called ducks

CURVE MODELING BY SPLINES

Thin strip of wood used in building construction Anchored in place by lead weights called ducks Physical process

CURVE MODELING BY SPLINES

Thin strip of wood used in building construction
Anchored in place by lead weights called ducks
Physical process
Interpolating, smooth, energy minimizing \checkmark

CURVE MODELING BY SPLINES

Thin strip of wood used in building construction
Anchored in place by lead weights called ducks
Physical process
Interpolating, smooth, energy minimizing \checkmark
No local control \boldsymbol{x}

BURMESTER CURVE

LAGRANGIAN INTERPOLATION

Computational process

$k+1$ vertices $\left\{p_{0}, \ldots, p_{k}\right\}$ define a curve

$$
\gamma(t)=\sum_{i=0}^{k} p_{i} \frac{\prod_{j \neq i}(t-j)}{\prod_{j \neq i}(i-j)}, \quad t \in[0, k]
$$

Similar issues

B-SPLINES

Define a family of generating functions β^{n} recursively

$$
\begin{aligned}
\beta^{0}(t) & = \begin{cases}1, & -\frac{1}{2} \leq t<\frac{1}{2} \\
0, & \text { otherwise }\end{cases} \\
\beta^{n} & =\beta^{n-1} * \beta^{0}, \quad n \in \mathrm{~N}
\end{aligned}
$$

Notation for convolution

$$
h=f * g \Leftrightarrow h(t)=\int_{-\infty}^{\infty} f(u) g(u-t) d t
$$

B-SPLINES

Define a family of generating functions β^{n} recursively

$$
\begin{aligned}
\beta^{0}(t) & = \begin{cases}1, & -\frac{1}{2} \leq t<\frac{1}{2} \\
0, & \text { otherwise }\end{cases} \\
\beta^{n} & =\beta^{n-1} * \beta^{0}, \quad n \in \mathrm{~N}
\end{aligned}
$$

Notation for convolution

$$
h=f * g \Leftrightarrow h(t)=\int_{-\infty}^{\infty} f(u) g(u-t) d t
$$

B-SPLINES

Define a family of generating functions β^{n} recursively

$$
\begin{aligned}
\beta^{0}(t) & = \begin{cases}1, & -\frac{1}{2} \leq t<\frac{1}{2} \\
0, & \text { otherwise }\end{cases} \\
\beta^{n} & =\beta^{n-1} * \beta^{0}, \quad n \in \mathrm{~N}
\end{aligned}
$$

Notation for convolution

$$
h=f * g \Leftrightarrow h(t)=\int_{-\infty}^{\infty} f(u) g(u-t) d t
$$

B-SPLINES

Define a family of generating functions β^{n} recursively

$$
\begin{aligned}
\beta^{0}(t) & = \begin{cases}1, & -\frac{1}{2} \leq t<\frac{1}{2} \\
0, & \text { otherwise }\end{cases} \\
\beta^{n} & =\beta^{n-1} * \beta^{0}, \quad n \in \mathbf{N}
\end{aligned}
$$

Notation for convolution

$$
h=f * g \Leftrightarrow h(t)=\int_{-\infty}^{\infty} f(u) g(u-t) d t
$$

B-SPLINES

Define a family of generating functions β^{n} recursively

$$
\begin{aligned}
\beta^{0}(t) & = \begin{cases}1, & -\frac{1}{2} \leq t<\frac{1}{2} \\
0, & \text { otherwise }\end{cases} \\
\beta^{n} & =\beta^{n-1} * \beta^{0}, \quad n \in N
\end{aligned}
$$

Notation for convolution

$$
h=f * g \Leftrightarrow h(t)=\int_{-\infty}^{\infty} f(u) g(u-t) d t
$$

B-SPLINES

Examples

$$
\beta^{0}(t)=\left\{\begin{array}{lc}
1, & -\frac{1}{2} \leq t<\frac{1}{2} \\
0, & \text { otherwise }
\end{array}\right.
$$

B-SPLINES

Examples

$$
\begin{aligned}
& \beta^{0}(t)=\left\{\begin{array}{lc}
1, & -\frac{1}{2} \leq t<\frac{1}{2} \\
0, & \text { otherwise }
\end{array}\right. \\
& \beta^{1}(t)=\left\{\begin{array}{lr}
1+t, & -1 \leq t<0 \\
1-t, & 0 \leq t<1 \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

B-SPLINES

Examples

$$
\begin{aligned}
& \beta^{0}(t)=\left\{\begin{array}{lc}
1, & -\frac{1}{2} \leq t<\frac{1}{2} \\
0, & \text { otherwise }
\end{array}\right. \\
& \beta^{1}(t)= \begin{cases}1+t, & -1 \leq t<0 \\
1-t, & 0 \leq t<1 \\
0, & \text { otherwise }\end{cases} \\
& \beta^{2}(t)= \begin{cases}\frac{1}{8}(3+2 t)^{2}, & -\frac{3}{2} \leq t<-\frac{1}{2} \\
\frac{1}{4}\left(3-4 t^{2}\right), & -\frac{1}{2} \leq t<\frac{1}{2} \\
\frac{1}{8}\left(9-12 t+4 t^{2}\right), & \frac{1}{2} \leq t<\frac{2}{2} \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

B-SPLINES

$k+1$ vertices $\left\{p_{0}, \ldots, p_{k}\right\}$ and generating function β^{n} define a curve

$$
\gamma(t)=\sum_{i=0}^{k} \beta^{n}(t-i) p_{i}, \quad t \in[0, k]
$$

B-SPLINES

$k+1$ vertices $\left\{p_{0}, \ldots, p_{k}\right\}$ and generating function β^{n} define a curve

$$
\gamma(t)=\sum_{i=0}^{k} \beta^{n}(t-i) p_{i}, \quad t \in[0, k]
$$

Local control \checkmark

B-SPLINES

$k+1$ vertices $\left\{p_{0}, \ldots, p_{k}\right\}$ and generating function β^{n} define a curve

$$
\gamma(t)=\sum_{i=0}^{k} \beta^{n}(t-i) p_{i}, \quad t \in[0, k]
$$

Local control $\boldsymbol{\checkmark}$
Differentiable n times everywhere \checkmark

B-SPLINES

$k+1$ vertices $\left\{p_{0}, \ldots, p_{k}\right\}$ and generating function β^{n} define a curve

$$
\gamma(t)=\sum_{i=0}^{k} \beta^{n}(t-i) p_{i}, \quad t \in[0, k]
$$

Local control $\boldsymbol{\checkmark}$
Differentiable n times everywhere \checkmark
Non-interpolating \boldsymbol{x}

- Interpolation requires solving a banded linear system \checkmark

B-SPLINES

$k+1$ vertices $\left\{p_{0}, \ldots, p_{k}\right\}$ and generating function β^{n} define a curve

$$
\gamma(t)=\sum_{i=0}^{k} \beta^{n}(t-i) p_{i}, \quad t \in[0, k]
$$

Local control $\sqrt{ }$
Differentiable n times everywhere \checkmark
Non-interpolating \boldsymbol{x}

- Interpolation requires solving a banded linear system \checkmark

Many, many interesting properties

PolyLines

$k+1$ vertices $\left\{p_{0}, \ldots, p_{k}\right\}$ define k segments

$$
\left\{\gamma_{0}(t), \ldots, \gamma_{k-1}(t)\right\}, \quad t \in[0,1]
$$

PolyLines

$k+1$ vertices $\left\{p_{0}, \ldots, p_{k}\right\}$ define k segments

$$
\left\{\gamma_{0}(t), \ldots, \gamma_{k-1}(t)\right\}, \quad t \in[0,1]
$$

Each segment defined by linear interpolation

$$
\gamma_{i}(t)=(1-t) p_{i}+t p_{i+1}, \quad i \in\{0, \ldots, k-1\}
$$

PolyLines

$k+1$ vertices $\left\{p_{0}, \ldots, p_{k}\right\}$ define k segments

$$
\left\{\gamma_{0}(t), \ldots, \gamma_{k-1}(t)\right\}, \quad t \in[0,1]
$$

Each segment defined by linear interpolation

$$
\gamma_{i}(t)=(1-t) p_{i}+t p_{i+1}, \quad i \in\{0, \ldots, k-1\}
$$

Local control $\boldsymbol{\checkmark}$

PolyLines

$k+1$ vertices $\left\{p_{0}, \ldots, p_{k}\right\}$ define k segments

$$
\left\{\gamma_{0}(t), \ldots, \gamma_{k-1}(t)\right\}, \quad t \in[0,1]
$$

Each segment defined by linear interpolation

$$
\gamma_{i}(t)=(1-t) p_{i}+t p_{i+1}, \quad i \in\{0, \ldots, k-1\}
$$

Local control $\boldsymbol{\checkmark}$
Interpolates all control points \checkmark

PolyLines

$k+1$ vertices $\left\{p_{0}, \ldots, p_{k}\right\}$ define k segments

$$
\left\{\gamma_{0}(t), \ldots, \gamma_{k-1}(t)\right\}, \quad t \in[0,1]
$$

Each segment defined by linear interpolation

$$
\gamma_{i}(t)=(1-t) p_{i}+t p_{i+1}, \quad i \in\{0, \ldots, k-1\}
$$

Local control $\boldsymbol{\checkmark}$
Interpolates all control points \checkmark
Not differentiable at interpolated points \boldsymbol{x}

PolyLines

$k+1$ vertices $\left\{p_{0}, \ldots, p_{k}\right\}$ define k segments

$$
\left\{\gamma_{0}(t), \ldots, \gamma_{k-1}(t)\right\}, \quad t \in[0,1]
$$

Each segment defined by linear interpolation

$$
\gamma_{i}(t)=(1-t) p_{i}+t p_{i+1}, \quad i \in\{0, \ldots, k-1\}
$$

Local control $\boldsymbol{\checkmark}$
Interpolates all control points \checkmark
Not differentiable at interpolated points \boldsymbol{x}

BÉzier curves

Generalization of linear interpolation

BÉzIER CURVES

Generalization of linear interpolation
$k n+1$ vertices $\left\{p_{0}, \ldots, p_{k n}\right\}$ define k segments of degree n

$$
\left\{\gamma_{0}^{n}(t), \gamma_{n}^{n}(t), \ldots, \gamma_{(k-1) n}^{n}(t)\right\}, \quad t \in[0,1]
$$

BÉzier curves

Generalization of linear interpolation

$k n+1$ vertices $\left\{p_{0}, \ldots, p_{k n}\right\}$ define k segments of degree n

$$
\left\{\gamma_{0}^{n}(t), \gamma_{n}^{n}(t), \ldots, \gamma_{(k-1) n}^{n}(t)\right\}, \quad t \in[0,1]
$$

Defined recursively, for $j \in\{0, \ldots, k-1\}$

$$
\begin{aligned}
\gamma_{i}^{0}(t) & =p_{i}, & & i \in\{n j, \ldots, n(j+1)\}, \\
\gamma_{i}^{m}(t) & =(1-t) \gamma_{i}^{m-1}(t)+t \gamma_{i+1}^{m-1}(t), & & i \in\{n j, \ldots, n(j+1)-m\}
\end{aligned}
$$

BÉzier curves

Generalization of linear interpolation

$k n+1$ vertices $\left\{p_{0}, \ldots, p_{k n}\right\}$ define k segments of degree n

$$
\left\{\gamma_{0}^{n}(t), \gamma_{n}^{n}(t), \ldots, \gamma_{(k-1) n}^{n}(t)\right\}, \quad t \in[0,1]
$$

Defined recursively, for $j \in\{0, \ldots, k-1\}$

$$
\begin{aligned}
\gamma_{i}^{0}(t) & =p_{i}, & & i \in\{n j, \ldots, n(j+1)\}, \\
\gamma_{i}^{m}(t) & =(1-t) \gamma_{i}^{m-1}(t)+t \gamma_{i+1}^{m-1}(t), & & i \in\{n j, \ldots, n(j+1)-m\}
\end{aligned}
$$

De Casteljau algorithm

BÉzier curves

Generalization of linear interpolation
$k n+1$ vertices $\left\{p_{0}, \ldots, p_{k n}\right\}$ define k segments of degree n

$$
\left\{\gamma_{0}^{n}(t), \gamma_{n}^{n}(t), \ldots, \gamma_{(k-1) n}^{n}(t)\right\}, \quad t \in[0,1]
$$

Defined recursively, for $j \in\{0, \ldots, k-1\}$

$$
\begin{aligned}
\gamma_{i}^{0}(t) & =p_{i}, & & i \in\{n j, \ldots, n(j+1)\}, \\
\gamma_{i}^{m}(t) & =(1-t) \gamma_{i}^{m-1}(t)+t \gamma_{i+1}^{m-1}(t), & & i \in\{n j, \ldots, n(j+1)-m\}
\end{aligned}
$$

De Casteljau algorithm
Geometric interpretation

BERNSTEIN POLYNOMIALS

Algebraic interpretation

BERNSTEIN POLYNOMIALS

Algebraic interpretation
Expanding and collecting the p_{i} terms,

$$
\gamma_{i}^{n}(t)=\sum_{j=0}^{n}\binom{n}{j}(1-t)^{n-j} t^{j} p_{i+j}
$$

BERNSTEIN POLYNOMIALS

Algebraic interpretation
Expanding and collecting the p_{i} terms,

$$
\gamma_{i}^{n}(t)=\sum_{j=0}^{n}\binom{n}{j}(1-t)^{n-j} t^{j} p_{i+j}
$$

Using Bernstein polynomials

$$
\gamma_{i}^{n}(t)=\sum_{j=0}^{n} b_{j, n}(t) p_{i+j} \quad \text { with } \quad b_{j, n}(t)=\binom{n}{j}(1-t)^{n-j} t^{j}
$$

BERNSTEIN POLYNOMIALS

Algebraic interpretation
Expanding and collecting the p_{i} terms,

$$
\gamma_{i}^{n}(t)=\sum_{j=0}^{n}\binom{n}{j}(1-t)^{n-j} t^{j} p_{i+j}
$$

Using Bernstein polynomials

$$
\gamma_{i}^{n}(t)=\sum_{j=0}^{n} b_{j, n}(t) p_{i+j} \quad \text { with } \quad b_{j, n}(t)=\binom{n}{j}(1-t)^{n-j} t^{j}
$$

Basis for the space of polynomials P_{n} with degree n or less (Why?)

CONTROL POINTS AND BLENDING WEIGHTS

In matrix form

$$
\gamma_{i}^{n}(t)=\left[\begin{array}{llll}
p_{n i} & p_{n i+1} & \cdots & p_{n i+n}
\end{array}\right]\left[\begin{array}{c}
b_{0, n}(t) \\
b_{1, n}(t) \\
\vdots \\
b_{n, n}(t)
\end{array}\right]
$$

CONTROL POINTS AND BLENDING WEIGHTS

In matrix form

$$
\gamma_{i}^{n}(t)=\underbrace{\left[\begin{array}{llll}
p_{n i} & p_{n i+1} & \cdots & p_{n i+n}
\end{array}\right]}_{\text {Bézier control points } \mathrm{c}_{\mathrm{i}}^{B}}\left[\begin{array}{c}
b_{0, n}(t) \\
b_{1, n}(t) \\
\vdots \\
b_{n, n}(t)
\end{array}\right]\} \text { blending weights } B_{n}(t)
$$

CONTROL POINTS AND BLENDING WEIGHTS

In matrix form

$$
\left.\begin{array}{rl}
\gamma_{i}^{n}(t) & =\underbrace{\left[\begin{array}{llll}
p_{n i} & p_{n i+1} & \cdots & p_{n i+n}
\end{array}\right]}_{\text {Bézier control points } \mathrm{C}_{\mathrm{i}}^{\mathrm{B}}}\left[\begin{array}{c}
b_{0, n}(t) \\
b_{1, n}(t) \\
\vdots \\
b_{n, n}(t)
\end{array}\right] \\
& =\mathrm{C}_{\mathrm{i}}^{\mathrm{B}} B_{n}(t)
\end{array}\right\} \text { blending weights } B_{n}(t)
$$

CONTROL POINTS AND BLENDING WEIGHTS

In matrix form

$$
\begin{aligned}
\gamma_{i}^{n}(t) & =\underbrace{\left[\begin{array}{llll}
p_{n i} & p_{n i+1} & \cdots & p_{n i+n}
\end{array}\right]}_{\text {Bézier control points } C_{i}^{B}}\left[\begin{array}{c}
b_{0, n}(t) \\
b_{1, n}(t) \\
\vdots \\
b_{n, n}(t)
\end{array}\right] \\
& =C_{i}^{B} B_{n}(t)
\end{aligned}
$$

Linear invariance is quite obvious in this form

Change of basis

Can be converted back and forth to power basis

$$
P_{n}(t)=\left[\begin{array}{llll}
1 & t & \cdots & t^{n}
\end{array}\right]^{T} \quad B_{n}(t)=B_{n} P_{n}(t)
$$

Change of basis

Can be converted back and forth to power basis

$$
P_{n}(t)=\left[\begin{array}{llll}
1 & t & \cdots & t^{n}
\end{array}\right]^{T} \quad B_{n}(t)=B_{n} P_{n}(t)
$$

Examples

$$
B_{1}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \quad B_{2}=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 2 & -2 \\
0 & 0 & 1
\end{array}\right] \quad B_{3}=\left[\begin{array}{cccc}
1 & -3 & 3 & -1 \\
0 & 3 & -6 & 3 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Change of basis

Can be converted back and forth to power basis

$$
P_{n}(t)=\left[\begin{array}{llll}
1 & t & \cdots & t^{n}
\end{array}\right]^{T} \quad B_{n}(t)=B_{n} P_{n}(t)
$$

Examples

$$
B_{1}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \quad B_{2}=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 2 & -2 \\
0 & 0 & 1
\end{array}\right] \quad B_{3}=\left[\begin{array}{cccc}
1 & -3 & 3 & -1 \\
0 & 3 & -6 & 3 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Change of basis

$$
\gamma_{i}^{n}(t)=C_{i}^{B} B_{n}(t)=\underbrace{C_{i}^{B} \overbrace{B_{n}}}_{\text {Power basis control points } C_{i}^{P}} P_{n}(t)=C_{i}^{P} P_{n}(t)
$$

BÉzier curves

Local control $\sqrt{ }$

BÉzier curves

Local control \checkmark
Interpolates every nth point $\boldsymbol{\checkmark}$

BÉzIER CURVES

Local control $\sqrt{ }$
Interpolates every nth point $\boldsymbol{\checkmark}$
Differentiable except (perhaps) at interpolation points \checkmark

BÉzIER CURVES

Local control $\sqrt{ }$
Interpolates every nth point $\boldsymbol{\checkmark}$
Differentiable except (perhaps) at interpolation points \checkmark
PostScript, SVG (Inkscape), RVG

BÉzIER CURVES

Local control $\sqrt{ }$
Interpolates every nth point $\boldsymbol{\checkmark}$
Differentiable except (perhaps) at interpolation points \checkmark
PostScript, SVG (Inkscape), RVG
Mathematica

Affine invariance of Bézier segments

Let T be an affine transformation and let

$$
\gamma^{n}(t)=\sum_{j=0}^{n} b_{j, n}(t) p_{j}
$$

be a Bézier curve segment.

Affine invariance of Bézier segments

Let T be an affine transformation and let

$$
\gamma^{n}(t)=\sum_{j=0}^{n} b_{j, n}(t) p_{j}
$$

be a Bézier curve segment.
We want to show that

$$
T\left(\sum_{j=0}^{n} b_{j, n}(t) p_{j}\right)=\sum_{j=0}^{n} b_{j, n}(t) T\left(p_{j}\right)
$$

Affine invariance of Bézier segments

Let T be an affine transformation and let

$$
\gamma^{n}(t)=\sum_{j=0}^{n} b_{j, n}(t) p_{j}
$$

be a Bézier curve segment.
We want to show that

$$
T\left(\sum_{j=0}^{n} b_{j, n}(t) p_{j}\right)=\sum_{j=0}^{n} b_{j, n}(t) T\left(p_{j}\right)
$$

This will be true if and only if all points in the Bézier curve are affine combinations of the control points.

AfFine invariance of Bézier segments

Indeed,

$$
\sum_{j=0}^{n} b_{j, n}(t)=\sum_{j=0}^{n}\binom{n}{j}(1-t)^{n-j} t^{j}
$$

AfFine invariance of Bézier segments

Indeed,

$$
\sum_{j=0}^{n} b_{j, n}(t)=\sum_{j=0}^{n}\binom{n}{j}(1-t)^{n-j} t^{j}=((1-t)+t)^{n}
$$

Affine invariance of Bézier segments

Indeed,

$$
\sum_{j=0}^{n} b_{j, n}(t)=\sum_{j=0}^{n}\binom{n}{j}(1-t)^{n-j} t^{j}=((1-t)+t)^{n}=1^{n}=1
$$

Affine invariance of Bézier segments

Indeed,

$$
\sum_{j=0}^{n} b_{j, n}(t)=\sum_{j=0}^{n}\binom{n}{j}(1-t)^{n-j} t^{j}=((1-t)+t)^{n}=1^{n}=1 .
$$

The Bernstein polynomials therefore form a partition of unity

AfFine invariance of Bézier segments

Indeed,

$$
\sum_{j=0}^{n} b_{j, n}(t)=\sum_{j=0}^{n}\binom{n}{j}(1-t)^{n-j} t^{j}=((1-t)+t)^{n}=1^{n}=1 .
$$

The Bernstein polynomials therefore form a partition of unity
To apply an affine transformation to a Bézier curve, simply transform the control points

CONVEX HULL PROPERTY FOR BÉZIER SEGMENTS

$p=\sum_{i} \alpha_{i} p_{i}$ is a convex combination of $\left\{p_{i}\right\}$ if $\sum_{i} \alpha_{i}=1$ and $\alpha_{i} \geq 0$.

CONVEX HULL PROPERTY FOR BÉZIER SEGMENTS

$p=\sum_{i} \alpha_{i} p_{i}$ is a convex combination of $\left\{p_{i}\right\}$ if $\sum_{i} \alpha_{i}=1$ and $\alpha_{i} \geq 0$. A set of points C is convex if every convex combination of points in C also belongs to C

Convex hull property for Bézier segments

$p=\sum_{i} \alpha_{i} p_{i}$ is a convex combination of $\left\{p_{i}\right\}$ if $\sum_{i} \alpha_{i}=1$ and $\alpha_{i} \geq 0$.
A set of points C is convex if every convex combination of points in C also belongs to C

The convex hull of a set points S is the smallest convex set that contains S

Convex hull property for Bézier segments

$p=\sum_{i} \alpha_{i} p_{i}$ is a convex combination of $\left\{p_{i}\right\}$ if $\sum_{i} \alpha_{i}=1$ and $\alpha_{i} \geq 0$.
A set of points C is convex if every convex combination of points in C also belongs to C

The convex hull of a set points S is the smallest convex set that contains S

If γ is a Bézier curve, then $\{\gamma(t) \mid t \in[0,1]\}$ is contained in the convex hull of its control points

Convex hull property for Bézier segments

$p=\sum_{i} \alpha_{i} p_{i}$ is a convex combination of $\left\{p_{i}\right\}$ if $\sum_{i} \alpha_{i}=1$ and $\alpha_{i} \geq 0$.
A set of points C is convex if every convex combination of points in C also belongs to C

The convex hull of a set points S is the smallest convex set that contains S

If γ is a Bézier curve, then $\{\gamma(t) \mid t \in[0,1]\}$ is contained in the convex hull of its control points

- From partition of unity and positivity in $[0,1]$
- Useful for curve intersection, quick bounding box, etc

Derivative of Bézier segment

Since derivative operator is linear and $\gamma^{n}(t)=\sum_{j=0}^{n} b_{j, n}(t) p_{j}$, all we have to do is differentiate the Bernstein polynomials

$$
\left(b_{j, n}(t)\right)^{\prime}=\left(\binom{n}{j}(1-t)^{n-j} t^{j}\right)^{\prime}
$$

Derivative of Bézier segment

Since derivative operator is linear and $\gamma^{n}(t)=\sum_{j=0}^{n} b_{j, n}(t) p_{j}$, all we have to do is differentiate the Bernstein polynomials

$$
\begin{aligned}
\left(b_{j, n}(t)\right)^{\prime} & =\left(\binom{n}{j}(1-t)^{n-j} t^{j}\right)^{\prime} \\
& =j\binom{n}{j}(1-t)^{n-j} t^{j-1}-(n-j)\binom{n}{j}(1-t)^{n-1-j} t^{j}
\end{aligned}
$$

Derivative of Bézier segment

Since derivative operator is linear and $\gamma^{n}(t)=\sum_{j=0}^{n} b_{j, n}(t) p_{j}$, all we have to do is differentiate the Bernstein polynomials

$$
\begin{aligned}
\left(b_{j, n}(t)\right)^{\prime} & =\left(\binom{n}{j}(1-t)^{n-j} t^{j}\right)^{\prime} \\
& =j\binom{n}{j}(1-t)^{n-j} t^{j-1}-(n-j)\binom{n}{j}(1-t)^{n-1-j} t^{j} \\
& =n\binom{n-1}{j-1}(1-t)^{(n-1)-(j-1)} t^{j-1}-n\binom{n-1}{j}(1-t)^{n-1-j} t^{j}
\end{aligned}
$$

Derivative of Bézier segment

Since derivative operator is linear and $\gamma^{n}(t)=\sum_{j=0}^{n} b_{j, n}(t) p_{j}$, all we have to do is differentiate the Bernstein polynomials

$$
\begin{aligned}
\left(b_{j, n}(t)\right)^{\prime} & =\left(\binom{n}{j}(1-t)^{n-j} t^{j}\right)^{\prime} \\
& =j\binom{n}{j}(1-t)^{n-j} t^{j-1}-(n-j)\binom{n}{j}(1-t)^{n-1-j} t^{j} \\
& =n\binom{n-1}{j-1}(1-t)^{(n-1)-(j-1)} t^{j-1}-n\binom{n-1}{j}(1-t)^{n-1-j} t^{j} \\
& =n\left(b_{j-1, n-1}(t)-b_{j, n-1}(t)\right)
\end{aligned}
$$

Derivative of Bézier segment

Since derivative operator is linear and $\gamma^{n}(t)=\sum_{j=0}^{n} b_{j, n}(t) p_{j}$, all we have to do is differentiate the Bernstein polynomials

$$
\begin{aligned}
\left(b_{j, n}(t)\right)^{\prime} & =\left(\binom{n}{j}(1-t)^{n-j} t^{j}\right)^{\prime} \\
& =j\binom{n}{j}(1-t)^{n-j} t^{j-1}-(n-j)\binom{n}{j}(1-t)^{n-1-j} t^{j} \\
& =n\binom{n-1}{j-1}(1-t)^{(n-1)-(j-1)} t^{j-1}-n\binom{n-1}{j}(1-t)^{n-1-j} t^{j} \\
& =n\left(b_{j-1, n-1}(t)-b_{j, n-1}(t)\right)
\end{aligned}
$$

Therefore,

$$
\left(\gamma^{n}\right)^{\prime}(t)=\sum_{j=0}^{n-1} b_{j, n-1}(t) q_{j} \quad \text { with } \quad q_{j}=n\left(p_{j+1}-p_{j}\right) .
$$

Derivative of Bézier segment

What is the derivative at the endpoints?

Derivative of Bézier segment

What is the derivative at the endpoints?
How do we connect segments so that they are C^{1} continuous?

Derivative of Bézier segment

What is the derivative at the endpoints?
How do we connect segments so that they are C^{1} continuous?
What about G^{1} continuity?

Derivative of BÉzier segment

What is the derivative at the endpoints?
How do we connect segments so that they are C^{1} continuous?
What about G^{1} continuity?
Show in Inkscape

Degree elevation of Bézier segment

Express a segment $\gamma^{n}(t)$ as $\gamma^{n+1}(t)$? (write $b_{j, n}(t)$ in terms of $b_{k, n+1}(t)$?)

Degree elevation of Bézier segment

Express a segment $\gamma^{n}(t)$ as $\gamma^{n+1}(t)$? (write $b_{j, n}(t)$ in terms of $b_{k, n+1}(t)$?)
Easy to express both $b_{j, n+1}(t)$ and $b_{j+1, n+1}(t)$ in terms of $b_{j, n}(t)$

$$
b_{j, n+1}(t)=\binom{n+1}{j}(1-t)^{n+1-j} t^{j}
$$

Degree elevation of Bézier segment

Express a segment $\gamma^{n}(t)$ as $\gamma^{n+1}(t)$? (write $b_{j, n}(t)$ in terms of $b_{k, n+1}(t)$?)
Easy to express both $b_{j, n+1}(t)$ and $b_{j+1, n+1}(t)$ in terms of $b_{j, n}(t)$

$$
b_{j, n+1}(t)=\binom{n+1}{j}(1-t)^{n+1-j} t^{j}=\frac{n+1}{n+1-j}(1-t) b_{j, n}(t)
$$

Degree elevation of Bézier segment

Express a segment $\gamma^{n}(t)$ as $\gamma^{n+1}(t)$? (write $b_{j, n}(t)$ in terms of $b_{k, n+1}(t)$?)
Easy to express both $b_{j, n+1}(t)$ and $b_{j+1, n+1}(t)$ in terms of $b_{j, n}(t)$

$$
\begin{aligned}
b_{j, n+1}(t) & =\binom{n+1}{j}(1-t)^{n+1-j} t^{j}=\frac{n+1}{n+1-j}(1-t) b_{j, n}(t) \\
b_{j+1, n+1}(t) & =\binom{n+1}{j+1}(1-t)^{n-j} t^{j}
\end{aligned}
$$

Degree elevation of Bézier segment

Express a segment $\gamma^{n}(t)$ as $\gamma^{n+1}(t)$? (write $b_{j, n}(t)$ in terms of $b_{k, n+1}(t)$?)
Easy to express both $b_{j, n+1}(t)$ and $b_{j+1, n+1}(t)$ in terms of $b_{j, n}(t)$

$$
\begin{aligned}
b_{j, n+1}(t) & =\binom{n+1}{j}(1-t)^{n+1-j} t^{j}=\frac{n+1}{n+1-j}(1-t) b_{j, n}(t) \\
b_{j+1, n+1}(t) & =\binom{n+1}{j+1}(1-t)^{n-j} t^{j}=\frac{n+1}{j+1} t b_{j, n}(t)
\end{aligned}
$$

Degree elevation of Bézier segment

Express a segment $\gamma^{n}(t)$ as $\gamma^{n+1}(t)$? (write $b_{j, n}(t)$ in terms of $b_{k, n+1}(t)$?)
Easy to express both $b_{j, n+1}(t)$ and $b_{j+1, n+1}(t)$ in terms of $b_{j, n}(t)$

$$
\begin{aligned}
b_{j, n+1}(t) & =\binom{n+1}{j}(1-t)^{n+1-j} t^{j}=\frac{n+1}{n+1-j}(1-t) b_{j, n}(t) \\
b_{j+1, n+1}(t) & =\binom{n+1}{j+1}(1-t)^{n-j} t^{j}=\frac{n+1}{j+1} t b_{j, n}(t)
\end{aligned}
$$

From these,

$$
b_{j, n}(t)=\frac{n+1-j}{n+1} b_{j, n+1}(t)+\frac{j+1}{n+1} b_{j+1, n+1}(t)
$$

Degree elevation of Bézier segment

Express a segment $\gamma^{n}(t)$ as $\gamma^{n+1}(t)$? (write $b_{j, n}(t)$ in terms of $b_{k, n+1}(t)$?)
Easy to express both $b_{j, n+1}(t)$ and $b_{j+1, n+1}(t)$ in terms of $b_{j, n}(t)$

$$
\begin{aligned}
b_{j, n+1}(t) & =\binom{n+1}{j}(1-t)^{n+1-j} t^{j}=\frac{n+1}{n+1-j}(1-t) b_{j, n}(t) \\
b_{j+1, n+1}(t) & =\binom{n+1}{j+1}(1-t)^{n-j} t^{j}=\frac{n+1}{j+1} t b_{j, n}(t)
\end{aligned}
$$

From these,

$$
b_{j, n}(t)=\frac{n+1-j}{n+1} b_{j, n+1}(t)+\frac{j+1}{n+1} b_{j+1, n+1}(t)
$$

Expanding and collecting terms,

$$
\gamma^{n}(t)=\sum_{i=0}^{n} b_{i, n}(t) p_{i}=\sum_{j=0}^{n+1} b_{j, n+1}(t) q_{j}=\gamma^{n+1}(t)
$$

with $q_{0}=p_{0}, q_{n+1}=p_{n}$, and

$$
q_{i}=\frac{j}{n+1} p_{i-1}+\left(1-\frac{j}{n+1}\right) p_{i}
$$

Degree elevation of Bézier segment

Examples

$$
\begin{aligned}
{\left[\begin{array}{ll}
p_{0} & p_{1}
\end{array}\right] } & \Leftrightarrow\left[\begin{array}{lll}
p_{0} & \frac{1}{2}\left(p_{0}+p_{1}\right) & p_{1}
\end{array}\right] \\
{\left[\begin{array}{lll}
p_{0} & p_{1} & p_{2}
\end{array}\right] } & \Leftrightarrow\left[\begin{array}{llll}
p_{0} & \frac{1}{3}\left(p_{0}+2 p_{1}\right) & \frac{1}{3}\left(2 p_{1}+p_{2}\right) & p_{2}
\end{array}\right]
\end{aligned}
$$

References

G. Farin. Curves and Surfaces for CAGD, A Practical Guide, 5th edition. Morgan Kaufmann, 2002.

