2D COMPUTER GRAPHICS

Diego Nehab

Summer 2020

IMPA

BÉZIER CURVES

CURVE MODELING BY SPLINES

Thin strip of wood used in building construction

Thin strip of wood used in building construction Anchored in place by lead weights called *ducks* Thin strip of wood used in building construction Anchored in place by lead weights called *ducks* Physical process Thin strip of wood used in building construction Anchored in place by lead weights called *ducks* Physical process

Interpolating, smooth, energy minimizing \checkmark

Thin strip of wood used in building construction Anchored in place by lead weights called *ducks* Physical process

Interpolating, smooth, energy minimizing \checkmark

No local control 🗡

BURMESTER CURVE

Computational process

k + 1 vertices $\{p_0, \ldots, p_k\}$ define a curve

$$\gamma(t) = \sum_{i=0}^{k} p_i \frac{\prod_{j \neq i} (t-j)}{\prod_{j \neq i} (i-j)}, \quad t \in [0,k]$$

Similar issues

Define a family of generating functions β^n recursively

$$\beta^{0}(t) = \begin{cases} 1, & -\frac{1}{2} \le t < \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$
$$\beta^{n} = \beta^{n-1} * \beta^{0}, \quad n \in \mathbb{N}$$

Notation for convolution

$$h = f * g \Leftrightarrow h(t) = \int_{-\infty}^{\infty} f(u) g(u - t) dt$$

Define a family of generating functions β^n recursively

$$\beta^{0}(t) = \begin{cases} 1, & -\frac{1}{2} \le t < \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$
$$\beta^{n} = \beta^{n-1} * \beta^{0}, \quad n \in \mathbb{N}$$

Notation for convolution

$$h = f * g \Leftrightarrow h(t) = \int_{-\infty}^{\infty} f(u) g(u - t) dt$$

Define a family of generating functions β^n recursively

$$\beta^{0}(t) = \begin{cases} 1, & -\frac{1}{2} \le t < \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$
$$\beta^{n} = \beta^{n-1} * \beta^{0}, \quad n \in \mathbb{N}$$

Notation for convolution

$$h = f * g \Leftrightarrow h(t) = \int_{-\infty}^{\infty} f(u) g(u - t) dt$$

Define a family of generating functions β^n recursively

$$\beta^{0}(t) = \begin{cases} 1, & -\frac{1}{2} \le t < \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$
$$\beta^{n} = \beta^{n-1} * \beta^{0}, \quad n \in \mathbb{N}$$

Notation for convolution

$$h = f * g \Leftrightarrow h(t) = \int_{-\infty}^{\infty} f(u) g(u - t) dt$$

6

Define a family of generating functions β^n recursively

$$\beta^{0}(t) = \begin{cases} 1, & -\frac{1}{2} \le t < \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$
$$\beta^{n} = \beta^{n-1} * \beta^{0}, \quad n \in \mathbb{N}$$

Notation for convolution

$$h = f * g \Leftrightarrow h(t) = \int_{-\infty}^{\infty} f(u) g(u - t) dt$$

6

Examples

$$\beta^{0}(t) = \begin{cases} 1, & -\frac{1}{2} \le t < \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$

Examples

$$\beta^{0}(t) = \begin{cases} 1, & -\frac{1}{2} \le t < \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$
$$\beta^{1}(t) = \begin{cases} 1+t, & -1 \le t < 0 \\ 1-t, & 0 \le t < 1 \\ 0, & \text{otherwise} \end{cases}$$

Examples

$$\beta^{0}(t) = \begin{cases} 1, & -\frac{1}{2} \le t < \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$
$$\beta^{1}(t) = \begin{cases} 1+t, & -1 \le t < 0 \\ 1-t, & 0 \le t < 1 \\ 0, & \text{otherwise} \end{cases}$$
$$\beta^{2}(t) = \begin{cases} \frac{1}{8}(3+2t)^{2}, & -\frac{3}{2} \le t < -\frac{1}{2} \\ \frac{1}{4}(3-4t^{2}), & -\frac{1}{2} \le t < \frac{1}{2} \\ \frac{1}{8}(9-12t+4t^{2}), & \frac{1}{2} \le t < \frac{2}{2} \\ 0, & \text{otherwise} \end{cases}$$

k + 1 vertices $\{p_0, \ldots, p_k\}$ and generating function β^n define a curve

$$\gamma(t) = \sum_{i=0}^{k} \beta^{n}(t-i) p_{i}, \quad t \in [0,k]$$

k + 1 vertices $\{p_0, \ldots, p_k\}$ and generating function β^n define a curve

$$\gamma(t) = \sum_{i=0}^{k} \beta^{n}(t-i) p_{i}, \quad t \in [0,k]$$

Local control 🗸

k + 1 vertices $\{p_0, \ldots, p_k\}$ and generating function β^n define a curve

$$\gamma(t) = \sum_{i=0}^{k} \beta^{n}(t-i) p_{i}, \quad t \in [0,k]$$

Local control 🗸

Differentiable n times everywhere \checkmark

k + 1 vertices $\{p_0, \ldots, p_k\}$ and generating function β^n define a curve

$$\gamma(t) = \sum_{i=0}^{k} \beta^{n}(t-i) p_{i}, \quad t \in [0,k]$$

Local control 🗸

Differentiable n times everywhere \checkmark

Non-interpolating **X**

 \cdot Interpolation requires solving a banded linear system \checkmark

k + 1 vertices $\{p_0, \ldots, p_k\}$ and generating function β^n define a curve

$$\gamma(t) = \sum_{i=0}^{k} \beta^{n}(t-i) p_{i}, \quad t \in [0,k]$$

Local control 🗸

Differentiable n times everywhere \checkmark

Non-interpolating **X**

 \cdot Interpolation requires solving a banded linear system \checkmark

Many, many interesting properties

k + 1 vertices $\{p_0, \dots, p_k\}$ define k segments $\{\gamma_0(t), \dots, \gamma_{k-1}(t)\}, t \in [0, 1]$

k+1 vertices $\{p_0, \dots, p_k\}$ define k segments $\{\gamma_0(t), \dots, \gamma_{k-1}(t)\}, t \in [0, 1]$

Each segment defined by linear interpolation

$$\gamma_i(t) = (1-t)p_i + tp_{i+1}, \quad i \in \{0, \dots, k-1\}$$

k+1 vertices $\{p_0, \dots, p_k\}$ define k segments $\{\gamma_0(t), \dots, \gamma_{k-1}(t)\}, t \in [0, 1]$

Each segment defined by linear interpolation

$$\gamma_i(t) = (1-t)p_i + tp_{i+1}, \quad i \in \{0, \dots, k-1\}$$

Local control \checkmark

k+1 vertices $\{p_0, \dots, p_k\}$ define k segments $\{\gamma_0(t), \dots, \gamma_{k-1}(t)\}, t \in [0, 1]$

Each segment defined by linear interpolation

$$\gamma_i(t) = (1-t)p_i + tp_{i+1}, \quad i \in \{0, \dots, k-1\}$$

Local control \checkmark

Interpolates all control points \checkmark

k + 1 vertices $\{p_0, \dots, p_k\}$ define k segments $\{\gamma_0(t), \dots, \gamma_{k-1}(t)\}, t \in [0, 1]$

Each segment defined by linear interpolation

$$\gamma_i(t) = (1-t) p_i + t p_{i+1}, \quad i \in \{0, \dots, k-1\}$$

Local control \checkmark

Interpolates all control points 🗸

Not differentiable at interpolated points \pmb{X}

k + 1 vertices $\{p_0, \dots, p_k\}$ define k segments $\{\gamma_0(t), \dots, \gamma_{k-1}(t)\}, t \in [0, 1]$

Each segment defined by linear interpolation

$$\gamma_i(t) = (1-t) p_i + t p_{i+1}, \quad i \in \{0, \dots, k-1\}$$

Local control \checkmark

Interpolates all control points 🗸

Not differentiable at interpolated points \pmb{X}

kn + 1 vertices $\{p_0, \dots, p_{kn}\}$ define k segments of degree n $\{\gamma_0^n(t), \gamma_n^n(t), \dots, \gamma_{(k-1)n}^n(t)\}, t \in [0, 1]$

kn + 1 vertices $\{p_0, \dots, p_{kn}\}$ define k segments of degree n $\{\gamma_0^n(t), \gamma_n^n(t), \dots, \gamma_{(k-1)n}^n(t)\}, t \in [0, 1]$

Defined recursively, for $j \in \{0, \ldots, k-1\}$

$$\begin{aligned} \gamma_i^0(t) &= p_i, & i \in \{nj, \dots, n(j+1)\}, \\ \gamma_i^m(t) &= (1-t) \, \gamma_i^{m-1}(t) + t \, \gamma_{i+1}^{m-1}(t), & i \in \{nj, \dots, n(j+1) - m\} \end{aligned}$$

kn + 1 vertices $\{p_0, \dots, p_{kn}\}$ define k segments of degree n $\{\gamma_0^n(t), \gamma_n^n(t), \dots, \gamma_{(k-1)n}^n(t)\}, t \in [0, 1]$

Defined recursively, for $j \in \{0, \ldots, k-1\}$

$$\begin{aligned} \gamma_i^0(t) &= p_i, & i \in \{nj, \dots, n(j+1)\}, \\ \gamma_i^m(t) &= (1-t) \, \gamma_i^{m-1}(t) + t \, \gamma_{i+1}^{m-1}(t), & i \in \{nj, \dots, n(j+1) - m\} \end{aligned}$$

De Casteljau algorithm

kn + 1 vertices $\{p_0, \dots, p_{kn}\}$ define k segments of degree n $\{\gamma_0^n(t), \gamma_n^n(t), \dots, \gamma_{(k-1)n}^n(t)\}, t \in [0, 1]$

Defined recursively, for $j \in \{0, \ldots, k-1\}$

$$\begin{aligned} \gamma_i^0(t) &= p_i, & i \in \{nj, \dots, n(j+1)\}, \\ \gamma_i^m(t) &= (1-t) \, \gamma_i^{m-1}(t) + t \, \gamma_{i+1}^{m-1}(t), & i \in \{nj, \dots, n(j+1) - m\} \end{aligned}$$

De Casteljau algorithm

Geometric interpretation

Algebraic interpretation

Algebraic interpretation

Expanding and collecting the p_i terms,

$$\gamma_i^n(t) = \sum_{j=0}^n {n \choose j} (1-t)^{n-j} t^j p_{i+j}$$
Algebraic interpretation

Expanding and collecting the p_i terms,

$$\gamma_i^n(t) = \sum_{j=0}^n {n \choose j} (1-t)^{n-j} t^j p_{i+j}$$

Using Bernstein polynomials

$$\gamma_i^n(t) = \sum_{j=0}^n b_{j,n}(t) p_{i+j}$$
 with $b_{j,n}(t) = \binom{n}{j} (1-t)^{n-j} t^j$

Algebraic interpretation

Expanding and collecting the p_i terms,

$$\gamma_i^n(t) = \sum_{j=0}^n {n \choose j} (1-t)^{n-j} t^j p_{i+j}$$

Using Bernstein polynomials

$$\gamma_i^n(t) = \sum_{j=0}^n b_{j,n}(t) p_{i+j}$$
 with $b_{j,n}(t) = \binom{n}{j} (1-t)^{n-j} t^j$

Basis for the space of polynomials P_n with degree *n* or less (Why?)

In matrix form

$$\gamma_i^n(t) = \begin{bmatrix} p_{ni} & p_{ni+1} & \cdots & p_{ni+n} \end{bmatrix} \begin{bmatrix} b_{0,n}(t) \\ b_{1,n}(t) \\ \vdots \\ b_{n,n}(t) \end{bmatrix}$$

In matrix form $\gamma_{i}^{n}(t) = \underbrace{\begin{bmatrix} p_{ni} & p_{ni+1} & \cdots & p_{ni+n} \end{bmatrix}}_{\text{Bézier control points } C_{i}^{B}} \begin{bmatrix} b_{0,n}(t) \\ b_{1,n}(t) \\ \vdots \\ b_{n,n}(t) \end{bmatrix} }_{\text{blending weights } B_{n}(t)}$

In matrix form $\gamma_{i}^{n}(t) = \underbrace{\begin{bmatrix} p_{ni} & p_{ni+1} & \cdots & p_{ni+n} \end{bmatrix}}_{\text{Bézier control points } C_{i}^{B}} \begin{bmatrix} b_{0,n}(t) \\ b_{1,n}(t) \\ \vdots \\ b_{n,n}(t) \end{bmatrix} \text{ blending weights } B_{n}(t)$ $= C_{i}^{B} B_{n}(t)$

In matrix form $\gamma_{i}^{n}(t) = \underbrace{\begin{bmatrix} p_{ni} & p_{ni+1} & \cdots & p_{ni+n} \end{bmatrix}}_{\text{Bézier control points } C_{i}^{B}} \begin{bmatrix} b_{0,n}(t) \\ b_{1,n}(t) \\ \vdots \\ b_{n,n}(t) \end{bmatrix} \text{ blending weights } B_{n}(t)$ $= C_{i}^{B} B_{n}(t)$

Linear invariance is quite obvious in this form

Can be converted back and forth to power basis $P_n(t) = \begin{bmatrix} 1 & t & \cdots & t^n \end{bmatrix}^T \qquad B_n(t) = \mathbf{B_n} P_n(t)$ Can be converted back and forth to power basis $P_n(t) = \begin{bmatrix} 1 & t & \cdots & t^n \end{bmatrix}^T \qquad B_n(t) = \mathbf{B_n} P_n(t)$

Examples

$$\mathbf{B}_{1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \quad \mathbf{B}_{2} = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{B}_{3} = \begin{bmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Can be converted back and forth to power basis $P_n(t) = \begin{bmatrix} 1 & t & \cdots & t^n \end{bmatrix}^T \qquad B_n(t) = \mathbf{B_n} P_n(t)$

Examples

$$\mathbf{B}_{1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \quad \mathbf{B}_{2} = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{B}_{3} = \begin{bmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Change of basis $\gamma_i^n(t) = C_i^B B_n(t) = \underbrace{C_i^B B_n}_{\text{Power basis control points } C_i^P P_n(t) = C_i^P P_n(t)$

BÉZIER CURVES

Local control \checkmark

BÉZIER CURVES

Local control \checkmark

Interpolates every *n*th point \checkmark

Local control \checkmark

- Interpolates every nth point \checkmark
- Differentiable except (perhaps) at interpolation points 🗸

Local control 🗸

- Interpolates every nth point \checkmark
- Differentiable except (perhaps) at interpolation points 🗸
- PostScript, SVG (Inkscape), RVG

- Local control 🗸
- Interpolates every nth point \checkmark
- Differentiable except (perhaps) at interpolation points 🗸
- PostScript, SVG (Inkscape), RVG
- Mathematica

Let T be an affine transformation and let

$$\gamma^n(t) = \sum_{j=0}^n b_{j,n}(t) p_j$$

be a Bézier curve segment.

Let T be an affine transformation and let

$$\gamma^n(t) = \sum_{j=0}^n b_{j,n}(t) p_j$$

be a Bézier curve segment.

We want to show that

$$T\left(\sum_{j=0}^{n} b_{j,n}(t) p_{j}\right) = \sum_{j=0}^{n} b_{j,n}(t) T(p_{j}).$$

Let T be an affine transformation and let

$$\gamma^n(t) = \sum_{j=0}^n b_{j,n}(t) p_j$$

be a Bézier curve segment.

We want to show that

$$T\left(\sum_{j=0}^{n} b_{j,n}(t) p_{j}\right) = \sum_{j=0}^{n} b_{j,n}(t) T(p_{j}).$$

This will be true if and only if all points in the Bézier curve are affine combinations of the control points.

Indeed,

$$\sum_{j=0}^{n} b_{j,n}(t) = \sum_{j=0}^{n} {n \choose j} (1-t)^{n-j} t^{j}$$

Indeed,

$$\sum_{j=0}^{n} b_{j,n}(t) = \sum_{j=0}^{n} {n \choose j} (1-t)^{n-j} t^{j} = ((1-t)+t)^{n}$$

Indeed,

$$\sum_{j=0}^{n} b_{j,n}(t) = \sum_{j=0}^{n} {n \choose j} (1-t)^{n-j} t^{j} = ((1-t)+t)^{n} = 1^{n} = 1.$$

Indeed,

$$\sum_{j=0}^{n} b_{j,n}(t) = \sum_{j=0}^{n} {n \choose j} (1-t)^{n-j} t^{j} = ((1-t)+t)^{n} = 1^{n} = 1.$$

The Bernstein polynomials therefore form a partition of unity

Indeed,

$$\sum_{j=0}^{n} b_{j,n}(t) = \sum_{j=0}^{n} {n \choose j} (1-t)^{n-j} t^{j} = ((1-t)+t)^{n} = 1^{n} = 1.$$

The Bernstein polynomials therefore form a partition of unity

To apply an affine transformation to a Bézier curve, simply transform the control points $p = \sum_{i} \alpha_{i} p_{i}$ is a convex combination of $\{p_{i}\}$ if $\sum_{i} \alpha_{i} = 1$ and $\alpha_{i} \ge 0$.

The convex hull of a set points *S* is the smallest convex set that contains *S*

The convex hull of a set points *S* is the smallest convex set that contains *S*

If γ is a Bézier curve, then $\{\gamma(t) \mid t \in [0, 1]\}$ is contained in the convex hull of its control points

The convex hull of a set points *S* is the smallest convex set that contains *S*

If γ is a Bézier curve, then $\{\gamma(t) \mid t \in [0, 1]\}$ is contained in the convex hull of its control points

- From partition of unity and positivity in [0, 1]
- $\cdot\,$ Useful for curve intersection, quick bounding box, etc

$$(b_{j,n}(t))' = (\binom{n}{j}(1-t)^{n-j}t^j)'$$

$$(b_{j,n}(t))' = \left(\binom{n}{j} (1-t)^{n-j} t^j \right)'$$

= $j\binom{n}{j} (1-t)^{n-j} t^{j-1} - (n-j)\binom{n}{j} (1-t)^{n-1-j} t^j$

$$(b_{j,n}(t))' = (\binom{n}{j}(1-t)^{n-j}t^j)' = j\binom{n}{j}(1-t)^{n-j}t^{j-1} - (n-j)\binom{n}{j}(1-t)^{n-1-j}t^j = n\binom{n-1}{j-1}(1-t)^{(n-1)-(j-1)}t^{j-1} - n\binom{n-1}{j}(1-t)^{n-1-j}t^j$$

$$(b_{j,n}(t))' = (\binom{n}{j}(1-t)^{n-j}t^j)' = j\binom{n}{j}(1-t)^{n-j}t^{j-1} - (n-j)\binom{n}{j}(1-t)^{n-1-j}t^j = n\binom{n-1}{j-1}(1-t)^{(n-1)-(j-1)}t^{j-1} - n\binom{n-1}{j}(1-t)^{n-1-j}t^j = n(b_{j-1,n-1}(t) - b_{j,n-1}(t))$$

$$(b_{j,n}(t))' = (\binom{n}{j}(1-t)^{n-j}t^j)' = j\binom{n}{j}(1-t)^{n-j}t^{j-1} - (n-j)\binom{n}{j}(1-t)^{n-1-j}t^j = n\binom{n-1}{j-1}(1-t)^{(n-1)-(j-1)}t^{j-1} - n\binom{n-1}{j}(1-t)^{n-1-j}t^j = n(b_{j-1,n-1}(t) - b_{j,n-1}(t))$$

Therefore,

$$(\gamma^n)'(t) = \sum_{j=0}^{n-1} b_{j,n-1}(t) q_j$$
 with $q_j = n(p_{j+1} - p_j).$

How do we connect segments so that they are C^1 continuous?

How do we connect segments so that they are *C*¹ continuous?

What about *G*¹ continuity?

How do we connect segments so that they are C^1 continuous?

What about *G*¹ continuity?

Show in Inkscape
Express a segment $\gamma^{n}(t)$ as $\gamma^{n+1}(t)$? (write $b_{j,n}(t)$ in terms of $b_{k,n+1}(t)$?)

Express a segment $\gamma^n(t)$ as $\gamma^{n+1}(t)$? (write $b_{j,n}(t)$ in terms of $b_{k,n+1}(t)$?) Easy to express both $b_{j,n+1}(t)$ and $b_{j+1,n+1}(t)$ in terms of $b_{j,n}(t)$ $b_{j,n+1}(t) = \binom{n+1}{i} (1-t)^{n+1-j} t^j$ Express a segment $\gamma^n(t)$ as $\gamma^{n+1}(t)$? (write $b_{j,n}(t)$ in terms of $b_{k,n+1}(t)$?) Easy to express both $b_{j,n+1}(t)$ and $b_{j+1,n+1}(t)$ in terms of $b_{j,n}(t)$ $b_{j,n+1}(t) = {n+1 \choose j} (1-t)^{n+1-j} t^j = \frac{n+1}{n+1-j} (1-t) b_{j,n}(t)$ Express a segment $\gamma^n(t)$ as $\gamma^{n+1}(t)$? (write $b_{j,n}(t)$ in terms of $b_{k,n+1}(t)$?) Easy to express both $b_{j,n+1}(t)$ and $b_{j+1,n+1}(t)$ in terms of $b_{j,n}(t)$

$$b_{j,n+1}(t) = \binom{n+1}{j} (1-t)^{n+1-j} t^j = \frac{n+1}{n+1-j} (1-t) b_{j,n}(t)$$

$$b_{j+1,n+1}(t) = \binom{n+1}{j+1} (1-t)^{n-j} t^j$$

Express a segment $\gamma^n(t)$ as $\gamma^{n+1}(t)$? (write $b_{j,n}(t)$ in terms of $b_{k,n+1}(t)$?) Easy to express both $b_{j,n+1}(t)$ and $b_{j+1,n+1}(t)$ in terms of $b_{j,n}(t)$

$$b_{j,n+1}(t) = \binom{n+1}{j} (1-t)^{n+1-j} t^j = \frac{n+1}{n+1-j} (1-t) b_{j,n}(t)$$

$$b_{j+1,n+1}(t) = \binom{n+1}{j+1} (1-t)^{n-j} t^j = \frac{n+1}{j+1} t b_{j,n}(t)$$

Express a segment $\gamma^{n}(t)$ as $\gamma^{n+1}(t)$? (write $b_{j,n}(t)$ in terms of $b_{k,n+1}(t)$?) Easy to express both $b_{j,n+1}(t)$ and $b_{j+1,n+1}(t)$ in terms of $b_{j,n}(t)$ $b_{j,n+1}(t) = \binom{n+1}{j} (1-t)^{n+1-j} t^{j} = \frac{n+1}{n+1-j} (1-t) b_{j,n}(t)$ $b_{j+1,n+1}(t) = \binom{n+1}{j+1} (1-t)^{n-j} t^{j} = \frac{n+1}{j+1} t b_{j,n}(t)$

From these,

$$b_{j,n}(t) = \frac{n+1-j}{n+1} b_{j,n+1}(t) + \frac{j+1}{n+1} b_{j+1,n+1}(t)$$

Express a segment $\gamma^{n}(t)$ as $\gamma^{n+1}(t)$? (write $b_{j,n}(t)$ in terms of $b_{k,n+1}(t)$?) Easy to express both $b_{j,n+1}(t)$ and $b_{j+1,n+1}(t)$ in terms of $b_{j,n}(t)$ $b_{j,n+1}(t) = \binom{n+1}{2} (1-t)^{n+1-j} t^{j} = \frac{n+1}{n+1-j} (1-t) b_{j,n}(t)$

$$b_{j+1,n+1}(t) = \binom{n+1}{j+1} (1-t)^{n-j} t^j = \frac{n+1}{j+1} t b_{j,n}(t)$$

From these,

$$b_{j,n}(t) = \frac{n+1-j}{n+1} b_{j,n+1}(t) + \frac{j+1}{n+1} b_{j+1,n+1}(t)$$

Expanding and collecting terms,

$$\gamma^{n}(t) = \sum_{i=0}^{n} b_{i,n}(t) p_{i} = \sum_{j=0}^{n+1} b_{j,n+1}(t) q_{j} = \gamma^{n+1}(t)$$

with $q_0 = p_0$, $q_{n+1} = p_n$, and

$$q_i = \frac{J}{n+1} p_{i-1} + (1 - \frac{J}{n+1}) p_i$$

Examples

$$\begin{bmatrix} p_0 & p_1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} p_0 & \frac{1}{2}(p_0 + p_1) & p_1 \end{bmatrix}$$
$$\begin{bmatrix} p_0 & p_1 & p_2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} p_0 & \frac{1}{3}(p_0 + 2p_1) & \frac{1}{3}(2p_1 + p_2) & p_2 \end{bmatrix}$$

References

G. Farin. *Curves and Surfaces for CAGD, A Practical Guide, 5th edition.* Morgan Kaufmann, 2002.