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Geometry and Transformations



Cartesian coordinate system

Points defined by pair of coordinates
• Signed distances to perpendicular directed lines
• Point where lines cross is the origin

Basis of analytic geometry
• Connection between Euclidean geometry and algebra
• Describe shapes with equations
• E.g., lines and circles
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Problems

Distance between line and point?

Find intersection between line and circle?

Find intersection between two circles?

Prove that the medians of a triangle are concurrent?
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Vector Spaces

Set of V of vectors closed by linear combinations

• Define sum of vectors v1, v2 and multiplication by scalars α
v1, v2 ∈ V ⇒ α1v1 + α2v2 ∈ V

• In R2, V is {0}, line through origin, or all of R2

Given origin o, associate vector v = p− o to each point p

Basis B = {v1, v2} for V
• Linear independent set of vectors

B is l.i. ⇔ α1v1 + α2v2 = 0 ⇒ α1 = α2 = 0

• That spans V
v ∈ V ⇔ ∃α1, α2 | v = α1v1 + α2v2
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Linear transformations

Coordinates of a vector in a given basis

[v]B =

[
α1

α2

]
⇔ v = α1v1 + α2v2

Linear transformations preserve linear combinations
T(α1v1 + α2v2) = α1T(v1) + α2T(v2)

Matrix of a linear transformation

[T]B =

[
a11 a12
a21 a22

]

[T(v)]B = [T]B[v]B =

[
a11 a12
a21 a22

][
α1

α2

]
=

[
a11α1 + a21α2
a21α1 + a22α2

]
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Linear transformations

Interesting transformations
• Identity, Rotation, Scale, Reflection, Shearing

• Scale along arbitrary direction
• No translation. Why?

[Klein] A Geometry is the set of properties preserved by a
group of transformations

General linear group
• Composition, inverse
• Preserves collinearity, parallelism, concurrency, tangency, ratios of
distances along lines
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Norm and inner product

Dot product, scalar product, standard inner product
uTv = u · v = 〈u, v〉 = uxvx + uyvy

= ‖u‖‖v‖ cos(∠uov)

Euclydean norm, or vector length

‖u‖ =
√
u2x + u2y =

√
〈u, u〉

Conversely

〈u, v〉 = 1
4
(‖u+ v‖2 − ‖u− v‖2)

Let u and v make angles α and β with the x-axis
cos(β − α) = cos(α) cos(β) + sin(α) sin(β)

= ux/‖u‖vx/‖v‖+ uy/‖u‖vy/‖v‖
= 〈u, v〉/(‖u‖‖v‖)

7



Norm and inner product

Dot product, scalar product, standard inner product
uTv = u · v = 〈u, v〉 = uxvx + uyvy

= ‖u‖‖v‖ cos(∠uov)

Euclydean norm, or vector length

‖u‖ =
√
u2x + u2y =

√
〈u, u〉

Conversely

〈u, v〉 = 1
4
(‖u+ v‖2 − ‖u− v‖2)

Let u and v make angles α and β with the x-axis
cos(β − α) = cos(α) cos(β) + sin(α) sin(β)

= ux/‖u‖vx/‖v‖+ uy/‖u‖vy/‖v‖
= 〈u, v〉/(‖u‖‖v‖)

7



Norm and inner product

Dot product, scalar product, standard inner product
uTv = u · v = 〈u, v〉 = uxvx + uyvy

= ‖u‖‖v‖ cos(∠uov)

Euclydean norm, or vector length

‖u‖ =
√
u2x + u2y =

√
〈u, u〉

Conversely

〈u, v〉 = 1
4
(‖u+ v‖2 − ‖u− v‖2)

Let u and v make angles α and β with the x-axis
cos(β − α) = cos(α) cos(β) + sin(α) sin(β)

= ux/‖u‖vx/‖v‖+ uy/‖u‖vy/‖v‖
= 〈u, v〉/(‖u‖‖v‖)

7



Norm and inner product

Dot product, scalar product, standard inner product
uTv = u · v = 〈u, v〉 = uxvx + uyvy

= ‖u‖‖v‖ cos(∠uov)

Euclydean norm, or vector length

‖u‖ =
√
u2x + u2y =

√
〈u, u〉

Conversely

〈u, v〉 = 1
4
(‖u+ v‖2 − ‖u− v‖2)

Let u and v make angles α and β with the x-axis
cos(β − α) = cos(α) cos(β) + sin(α) sin(β)

= ux/‖u‖vx/‖v‖+ uy/‖u‖vy/‖v‖
= 〈u, v〉/(‖u‖‖v‖)

7



Norm and inner product

Dot product, scalar product, standard inner product
uTv = u · v = 〈u, v〉 = uxvx + uyvy = ‖u‖‖v‖ cos(∠uov)

Euclydean norm, or vector length

‖u‖ =
√
u2x + u2y =

√
〈u, u〉

Conversely

〈u, v〉 = 1
4
(‖u+ v‖2 − ‖u− v‖2)

Let u and v make angles α and β with the x-axis
cos(β − α) = cos(α) cos(β) + sin(α) sin(β)

= ux/‖u‖vx/‖v‖+ uy/‖u‖vy/‖v‖
= 〈u, v〉/(‖u‖‖v‖)

7



Euclidean Geometry

Orthogonal transformations
• Inverse is transpose, or equivalently

• Preserve inner products

Euclidean group
• Rigid transformations (isometries), or
• Orthogonal transformation and translations
• Preserves collinearity, parallelism, angles, concurrency, tangency,
distance between points

How to represent?
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Similarity geometry

Few properties are exclusive to Euclidean geometry

Similarity group
• Rigid transformations and uniform scale (dilation)
• Does not preserve distances
• Maps between any two pairs of points
• Preserves collinearity, parallelism, angles, concurrency, tangency

How to represent?
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Affine spaces

Useful to represent solutions to a linear system

Also useful represent translations

Let V be a vector space with basis B = {v1, v2} and o a point

Affine space is A = o+ V = {p | p− o ∈ V}
• Affine frame C = {v1, v2;o}

p = o+ α1v1 + α2v2
• Affine coordinates

[p]C =

α1α2
1
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Affine spaces

Let V be a vector space with basis B = {v1, v2} and o a point

Barycentric frame D = {a0,a1,a2} = {o,o+ v1,o+ v2}

p = o+ α1v1 + α2v2
= (1− α1 − α2)o+ α1(o+ v1) + α2(o+ v2)
= (1− α1 − α2)a0 + α1a1 + α2a2
= α0a0 + α1a1 + α2a2, with α0 + α1 + α2 = 1.

• Barycentric coordinates [p]D =

α0α1
α2


• Displacement vectors v ∈ V are such that

∑2
i=0 αi = 0

• Points p ∈ A are such that
∑2

i=0 αi = 1 (affine combination)
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Affine transformations

Combination of two arbitrary parallel projections

Preserve affine combinations
α0 + α1 + α2 = 1 ⇒

T(α0a0 + α1a1 + α2a2) = α0T(a0) + α1T(a1) + α2T(a2)

Matrix of an affine transformation in affine frame

[T]C =

a11 a12 t1
a21 a22 t2
0 0 1



[T(p)]C = [T]C[p]C =

a11 a12 t1
a21 a22 t2
0 0 1


α1α2
1

 =

a11α1 + a21α2 + t1
a21α1 + a22α2 + t2

1
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Affine transformations

Interesting transformations
• Translation, rotation, scale

• Centered rotation
• Centered scale
• Scale in arbitrary direction

What about the matrix in barycentric frame D = {a0,a1,a2}
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Affine geometry

What remains of Euclidean geometry when we forget about distance
and angle

Affine group
• Non-singular linear transformation and translation
• Maps between any two sets of three non-collinear points
• Preserves collinearity, parallelism, concurrency, tangency, ratios of
distances along parallel lines

There is only one triangle, ellipse, parabola, and hyperbola

Visualization of the affine plane
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Lines and conics

Line ax + by + c = 0
nTp = 0, with

nT =
[
a b c

]
and p =

xy
1



• How does it change with an affine transformation?

Conic ax2 + 2bxy + cy2 + 2dx + 2ey + f = 0
pTC p = 0, with

C = CT =

a b d
b c e
d e f

 and p =

xy
1


• How does it change with an affine transformation?
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Revisiting problems

Distance between line and point?

Find intersection between line and circle?

Find intersection between two circles?

Prove that the medians of a triangle are concurrent?

16



RP2

Projective points: lines through origin in 3D
• Ideal points

Projective lines: planes through origin in 3D
• Ideal line or line at infinity

Projective plane
• Affine plane augmented with ideal points

Homogeneous coordinates
• Generalization of affine coordinates

ab
c

 , a,b, c not all zero

w xw y
w

 ≡

xy
1

 , w 6= 0

17



RP2

Projective points: lines through origin in 3D
• Ideal points

Projective lines: planes through origin in 3D
• Ideal line or line at infinity

Projective plane
• Affine plane augmented with ideal points

Homogeneous coordinates
• Generalization of affine coordinates

ab
c

 , a,b, c not all zero

w xw y
w

 ≡

xy
1

 , w 6= 0

17



RP2

Projective points: lines through origin in 3D
• Ideal points

Projective lines: planes through origin in 3D
• Ideal line or line at infinity

Projective plane
• Affine plane augmented with ideal points

Homogeneous coordinates
• Generalization of affine coordinates

ab
c

 , a,b, c not all zero

w xw y
w

 ≡

xy
1

 , w 6= 0

17



RP2

Projective points: lines through origin in 3D
• Ideal points

Projective lines: planes through origin in 3D
• Ideal line or line at infinity

Projective plane
• Affine plane augmented with ideal points

Homogeneous coordinates
• Generalization of affine coordinates

ab
c

 , a,b, c not all zero

w xw y
w

 ≡

xy
1

 , w 6= 0

17



Projective transformations

Combination of three arbitrary perspective transformations

Matrix of a projective transformation

[T] =

a11 a12 a13
a21 a22 a23
a31 a32 a33


a11 a12 a13
a21 a22 a23
a31 a32 a33


α1α2
α3

 =

a11α1 + a21α2 + a13α3
a21α1 + a22α2 + a23α3
a31α1 + a32α2 + a33α3


Must be invertible
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Projective geometry

Projective linear group
• Non-singular linear transformations in R3

• Preserves collinearity, tangency, cross-ratios
• Maps between any two sets of 4 points non-collinear 3 by 3

All lines meet, even parallel lines

All quadrilaterals are the same

All conics are the same
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