2D Computer Graphics

Diego Nehab
Summer 2019

IMPA

Geometry and Transformations

CARTESIAN COORDINATE SYSTEM

Points defined by pair of coordinates

- Signed distances to perpendicular directed lines
- Point where lines cross is the origin

CARTESIAN COORDINATE SYSTEM

Points defined by pair of coordinates

- Signed distances to perpendicular directed lines
- Point where lines cross is the origin

Basis of analytic geometry

- Connection between Euclidean geometry and algebra

CARTESIAN COORDINATE SYSTEM

Points defined by pair of coordinates

- Signed distances to perpendicular directed lines
- Point where lines cross is the origin

Basis of analytic geometry

- Connection between Euclidean geometry and algebra
- Describe shapes with equations
- E.g., lines and circles

Problems

Distance between line and point?

Problems

Distance between line and point?
Find intersection between line and circle?

Problems

Distance between line and point?
Find intersection between line and circle?
Find intersection between two circles?

Problems

Distance between line and point?
Find intersection between line and circle?
Find intersection between two circles?
Prove that the medians of a triangle are concurrent?

Vector Spaces

Set of V of vectors closed by linear combinations

Vector Spaces

Set of V of vectors closed by linear combinations

- Define sum of vectors v_{1}, v_{2} and multiplication by scalars α

$$
v_{1}, v_{2} \in V \Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2} \in V
$$

Vector Spaces

Set of V of vectors closed by linear combinations

- Define sum of vectors v_{1}, v_{2} and multiplication by scalars α

$$
v_{1}, v_{2} \in V \Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2} \in V
$$

- In R^{2}, V is $\{0\}$, line through origin, or all of R^{2}

Vector Spaces

Set of V of vectors closed by linear combinations

- Define sum of vectors v_{1}, v_{2} and multiplication by scalars α

$$
v_{1}, v_{2} \in V \Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2} \in V
$$

- In R^{2}, V is $\{0\}$, line through origin, or all of R^{2}

Given origin o, associate vector $v=p-o$ to each point p

Vector Spaces

Set of V of vectors closed by linear combinations

- Define sum of vectors v_{1}, v_{2} and multiplication by scalars α

$$
v_{1}, v_{2} \in V \Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2} \in V
$$

- In R^{2}, V is $\{0\}$, line through origin, or all of R^{2}

Given origin o, associate vector $v=p-o$ to each point p
Basis $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ for V

Vector Spaces

Set of V of vectors closed by linear combinations

- Define sum of vectors v_{1}, v_{2} and multiplication by scalars α

$$
V_{1}, V_{2} \in V \Rightarrow \alpha_{1} V_{1}+\alpha_{2} V_{2} \in V
$$

- In R^{2}, V is $\{0\}$, line through origin, or all of R^{2}

Given origin o, associate vector $v=p-o$ to each point p
Basis $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ for V

- Linear independent set of vectors

$$
\mathcal{B} \text { is l.i. } \Leftrightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2}=0 \Rightarrow \alpha_{1}=\alpha_{2}=0
$$

Vector Spaces

Set of V of vectors closed by linear combinations

- Define sum of vectors v_{1}, v_{2} and multiplication by scalars α

$$
v_{1}, v_{2} \in V \Rightarrow \alpha_{1} V_{1}+\alpha_{2} V_{2} \in V
$$

- In R^{2}, V is $\{0\}$, line through origin, or all of R^{2}

Given origin o, associate vector $v=p-o$ to each point p
Basis $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ for V

- Linear independent set of vectors

$$
\mathcal{B} \text { is l.i. } \Leftrightarrow \alpha_{1} V_{1}+\alpha_{2} V_{2}=0 \Rightarrow \alpha_{1}=\alpha_{2}=0
$$

- That spans V

$$
v \in V \Leftrightarrow \exists \alpha_{1}, \alpha_{2} \mid V=\alpha_{1} V_{1}+\alpha_{2} V_{2}
$$

LINEAR TRANSFORMATIONS

Coordinates of a vector in a given basis

$$
[v]_{\mathcal{B}}=\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right] \Leftrightarrow v=\alpha_{1} v_{1}+\alpha_{2} v_{2}
$$

LINEAR TRANSFORMATIONS

Coordinates of a vector in a given basis

$$
[v]_{\mathcal{B}}=\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right] \Leftrightarrow v=\alpha_{1} v_{1}+\alpha_{2} v_{2}
$$

Linear transformations preserve linear combinations

$$
T\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} T\left(v_{1}\right)+\alpha_{2} T\left(v_{2}\right)
$$

LINEAR TRANSFORMATIONS

Coordinates of a vector in a given basis

$$
[v]_{\mathcal{B}}=\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right] \Leftrightarrow v=\alpha_{1} v_{1}+\alpha_{2} v_{2}
$$

Linear transformations preserve linear combinations

$$
T\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} T\left(v_{1}\right)+\alpha_{2} T\left(v_{2}\right)
$$

Matrix of a linear transformation

$$
[T]_{\mathcal{B}}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

LINEAR TRANSFORMATIONS

Coordinates of a vector in a given basis

$$
[v]_{\mathcal{B}}=\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right] \Leftrightarrow v=\alpha_{1} v_{1}+\alpha_{2} v_{2}
$$

Linear transformations preserve linear combinations

$$
T\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} T\left(v_{1}\right)+\alpha_{2} T\left(v_{2}\right)
$$

Matrix of a linear transformation

$$
\begin{gathered}
{[T]_{\mathcal{B}}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]} \\
{[T(v)]_{\mathcal{B}}=[T]_{\mathcal{B}}[v]_{\mathcal{B}}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{11} \alpha_{1}+a_{21} \alpha_{2} \\
a_{21} \alpha_{1}+a_{22} \alpha_{2}
\end{array}\right]}
\end{gathered}
$$

LINEAR TRANSFORMATIONS

Interesting transformations

- Identity, Rotation, Scale, Reflection, Shearing

LINEAR TRANSFORMATIONS

Interesting transformations

- Identity, Rotation, Scale, Reflection, Shearing
- Scale along arbitrary direction

LINEAR TRANSFORMATIONS

Interesting transformations

- Identity, Rotation, Scale, Reflection, Shearing
- Scale along arbitrary direction
- No translation. Why?

LINEAR TRANSFORMATIONS

Interesting transformations

- Identity, Rotation, Scale, Reflection, Shearing
- Scale along arbitrary direction
- No translation. Why?
[Klein] A Geometry is the set of properties preserved by a group of transformations

LINEAR TRANSFORMATIONS

Interesting transformations

- Identity, Rotation, Scale, Reflection, Shearing
- Scale along arbitrary direction
- No translation. Why?
[Klein] A Geometry is the set of properties preserved by a group of transformations

General linear group

- Composition, inverse

LINEAR TRANSFORMATIONS

Interesting transformations

- Identity, Rotation, Scale, Reflection, Shearing
- Scale along arbitrary direction
- No translation. Why?
[Klein] A Geometry is the set of properties preserved by a group of transformations

General linear group

- Composition, inverse
- Preserves collinearity, parallelism, concurrency, tangency, ratios of distances along lines

NORM AND INNER PRODUCT

Dot product, scalar product, standard inner product

$$
u^{\top} v=u \cdot v=\langle u, v\rangle=u_{x} v_{x}+u_{y} v_{y}
$$

NORM AND INNER PRODUCT

Dot product, scalar product, standard inner product

$$
u^{\top} v=u \cdot v=\langle u, v\rangle=u_{x} v_{x}+u_{y} v_{y}
$$

Euclydean norm, or vector length

$$
\|u\|=\sqrt{u_{x}^{2}+u_{y}^{2}}=\sqrt{\langle u, u\rangle}
$$

NORM AND INNER PRODUCT

Dot product, scalar product, standard inner product

$$
u^{\top} v=u \cdot v=\langle u, v\rangle=u_{x} v_{x}+u_{y} v_{y}
$$

Euclydean norm, or vector length

$$
\|u\|=\sqrt{u_{x}^{2}+u_{y}^{2}}=\sqrt{\langle u, u\rangle}
$$

Conversely

$$
\langle u, v\rangle=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right)
$$

NORM AND INNER PRODUCT

Dot product, scalar product, standard inner product

$$
u^{\top} v=u \cdot v=\langle u, v\rangle=u_{x} v_{x}+u_{y} v_{y}
$$

Euclidean norm, or vector length

$$
\|u\|=\sqrt{u_{x}^{2}+u_{y}^{2}}=\sqrt{\langle u, u\rangle}
$$

Conversely

$$
\langle u, v\rangle=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right)
$$

Let u and v make angles α and β with the x-axis

$$
\begin{aligned}
\cos (\beta-\alpha) & =\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta) \\
& =u_{x} /\|u\| v_{x} /\|v\|+u_{y} /\|u\| v_{y} /\|v\| \\
& =\langle u, v\rangle /(\|u\|\|v\|)
\end{aligned}
$$

NORM AND INNER PRODUCT

Dot product, scalar product, standard inner product

$$
u^{\top} v=u \cdot v=\langle u, v\rangle=u_{x} v_{x}+u_{y} v_{y}=\|u\|\|v\| \cos (\angle u o v)
$$

Euclydean norm, or vector length

$$
\|u\|=\sqrt{u_{x}^{2}+u_{y}^{2}}=\sqrt{\langle u, u\rangle}
$$

Conversely

$$
\langle u, v\rangle=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right)
$$

Let u and v make angles α and β with the x-axis

$$
\begin{aligned}
\cos (\beta-\alpha) & =\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta) \\
& =u_{x} /\|u\| v_{x} /\|v\|+u_{y} /\|u\| v_{y} /\|v\| \\
& =\langle u, v\rangle /(\|u\|\|v\|)
\end{aligned}
$$

Euclidean Geometry

Orthogonal transformations

- Inverse is transpose, or equivalently

Euclidean Geometry

Orthogonal transformations

- Inverse is transpose, or equivalently
- Preserve inner products

Euclidean Geometry

Orthogonal transformations

- Inverse is transpose, or equivalently
- Preserve inner products

Euclidean group

- Rigid transformations (isometries), or
- Orthogonal transformation and translations

Euclidean Geometry

Orthogonal transformations

- Inverse is transpose, or equivalently
- Preserve inner products

Euclidean group

- Rigid transformations (isometries), or
- Orthogonal transformation and translations
- Preserves collinearity, parallelism, angles, concurrency, tangency, distance between points

Euclidean Geometry

Orthogonal transformations

- Inverse is transpose, or equivalently
- Preserve inner products

Euclidean group

- Rigid transformations (isometries), or
- Orthogonal transformation and translations
- Preserves collinearity, parallelism, angles, concurrency, tangency, distance between points

How to represent?

SIMILARITY GEOMETRY

Few properties are exclusive to Euclidean geometry

SIMILARITY GEOMETRY

Few properties are exclusive to Euclidean geometry
Similarity group

- Rigid transformations and uniform scale (dilation)

SIMILARITY GEOMETRY

Few properties are exclusive to Euclidean geometry
Similarity group

- Rigid transformations and uniform scale (dilation)
- Does not preserve distances

SIMILARITY GEOMETRY

Few properties are exclusive to Euclidean geometry
Similarity group

- Rigid transformations and uniform scale (dilation)
- Does not preserve distances
- Maps between any two pairs of points

SIMILARITY GEOMETRY

Few properties are exclusive to Euclidean geometry
Similarity group

- Rigid transformations and uniform scale (dilation)
- Does not preserve distances
- Maps between any two pairs of points
- Preserves collinearity, parallelism, angles, concurrency, tangency

SIMILARITY GEOMETRY

Few properties are exclusive to Euclidean geometry
Similarity group

- Rigid transformations and uniform scale (dilation)
- Does not preserve distances
- Maps between any two pairs of points
- Preserves collinearity, parallelism, angles, concurrency, tangency

How to represent?

Affine spaces

Useful to represent solutions to a linear system

Affine spaces

Useful to represent solutions to a linear system
Also useful represent translations

Affine spaces

Useful to represent solutions to a linear system
Also useful represent translations
Let V be a vector space with basis $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ and o a point
Affine space is $A=0+V=\{p \mid p-0 \in V\}$

Affine spaces

Useful to represent solutions to a linear system
Also useful represent translations
Let V be a vector space with basis $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ and o a point
Affine space is $A=0+V=\{p \mid p-0 \in V\}$

- Affine frame $\mathcal{C}=\left\{\mathrm{v}_{1}, \mathrm{~V}_{2} ; \mathrm{o}\right\}$

$$
p=0+\alpha_{1} V_{1}+\alpha_{2} V_{2}
$$

Affine spaces

Useful to represent solutions to a linear system
Also useful represent translations
Let V be a vector space with basis $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ and o a point
Affine space is $A=0+V=\{p \mid p-0 \in V\}$

- Affine frame $\mathcal{C}=\left\{\mathrm{v}_{1}, \mathrm{~V}_{2} ; \mathrm{o}\right\}$

$$
p=o+\alpha_{1} v_{1}+\alpha_{2} v_{2}
$$

- Affine coordinates

$$
[p]_{\mathcal{C}}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
1
\end{array}\right]
$$

Affine spaces

Let V be a vector space with basis $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ and o a point Barycentric frame $\mathcal{D}=\left\{a_{0}, a_{1}, a_{2}\right\}=\left\{0,0+v_{1}, o+v_{2}\right\}$

Affine spaces

Let V be a vector space with basis $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ and o a point Barycentric frame $\mathcal{D}=\left\{a_{0}, a_{1}, a_{2}\right\}=\left\{0, o+v_{1}, o+v_{2}\right\}$

$$
\begin{aligned}
p & =0+\alpha_{1} v_{1}+\alpha_{2} v_{2} \\
& =\left(1-\alpha_{1}-\alpha_{2}\right) 0+\alpha_{1}\left(0+v_{1}\right)+\alpha_{2}\left(0+v_{2}\right) \\
& =\left(1-\alpha_{1}-\alpha_{2}\right) a_{0}+\alpha_{1} a_{1}+\alpha_{2} a_{2} \\
& =\alpha_{0} a_{0}+\alpha_{1} a_{1}+\alpha_{2} a_{2}, \quad \text { with } \quad \alpha_{0}+\alpha_{1}+\alpha_{2}=1 .
\end{aligned}
$$

Affine spaces

Let V be a vector space with basis $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ and o a point Barycentric frame $\mathcal{D}=\left\{a_{0}, a_{1}, a_{2}\right\}=\left\{0, o+v_{1}, o+v_{2}\right\}$

$$
\begin{aligned}
& p=0+\alpha_{1} v_{1}+\alpha_{2} v_{2} \\
&=\left(1-\alpha_{1}-\alpha_{2}\right) 0+\alpha_{1}\left(0+v_{1}\right)+\alpha_{2}\left(0+v_{2}\right) \\
&=\left(1-\alpha_{1}-\alpha_{2}\right) a_{0}+\alpha_{1} a_{1}+\alpha_{2} a_{2} \\
&=\alpha_{0} a_{0}+\alpha_{1} a_{1}+\alpha_{2} a_{2}, \quad \text { with } \quad \alpha_{0}+\alpha_{1}+\alpha_{2}=1 . \\
& \text { - Barycentric coordinates }[p]_{\mathcal{D}}=\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right]
\end{aligned}
$$

Affine spaces

Let V be a vector space with basis $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ and o a point Barycentric frame $\mathcal{D}=\left\{a_{0}, a_{1}, a_{2}\right\}=\left\{0, o+v_{1}, o+v_{2}\right\}$

$$
\begin{aligned}
& p=0+\alpha_{1} v_{1}+\alpha_{2} v_{2} \\
&=\left(1-\alpha_{1}-\alpha_{2}\right) 0+\alpha_{1}\left(0+v_{1}\right)+\alpha_{2}\left(0+v_{2}\right) \\
&=\left(1-\alpha_{1}-\alpha_{2}\right) a_{0}+\alpha_{1} a_{1}+\alpha_{2} a_{2} \\
&=\alpha_{0} a_{0}+\alpha_{1} a_{1}+\alpha_{2} a_{2}, \quad \text { with } \quad \alpha_{0}+\alpha_{1}+\alpha_{2}=1 . \\
& \text { - Barycentric coordinates }[p]_{\mathcal{D}}=\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right]
\end{aligned}
$$

- Displacement vectors $v \in V$ are such that $\sum_{i=0}^{2} \alpha_{i}=0$

Affine spaces

Let V be a vector space with basis $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ and o a point Barycentric frame $\mathcal{D}=\left\{a_{0}, a_{1}, a_{2}\right\}=\left\{0, o+v_{1}, o+v_{2}\right\}$

$$
\begin{aligned}
& p=0+\alpha_{1} v_{1}+\alpha_{2} v_{2} \\
&=\left(1-\alpha_{1}-\alpha_{2}\right) 0+\alpha_{1}\left(0+v_{1}\right)+\alpha_{2}\left(0+v_{2}\right) \\
&=\left(1-\alpha_{1}-\alpha_{2}\right) a_{0}+\alpha_{1} a_{1}+\alpha_{2} a_{2} \\
&=\alpha_{0} a_{0}+\alpha_{1} a_{1}+\alpha_{2} a_{2}, \quad \text { with } \quad \alpha_{0}+\alpha_{1}+\alpha_{2}=1 . \\
& \text { - Barycentric coordinates }[p]_{\mathcal{D}}=\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right]
\end{aligned}
$$

- Displacement vectors $v \in V$ are such that $\sum_{i=0}^{2} \alpha_{i}=0$
- Points $p \in A$ are such that $\sum_{i=0}^{2} \alpha_{i}=1$ (affine combination)

AFFINE TRANSFORMATIONS

Combination of two arbitrary parallel projections

AFFINE TRANSFORMATIONS

Combination of two arbitrary parallel projections
Preserve affine combinations

$$
\begin{aligned}
\alpha_{0}+\alpha_{1}+\alpha_{2} & =1 \Rightarrow \\
T\left(\alpha_{0} a_{0}+\alpha_{1} a_{1}+\alpha_{2} a_{2}\right) & =\alpha_{0} T\left(a_{0}\right)+\alpha_{1} T\left(a_{1}\right)+\alpha_{2} T\left(a_{2}\right)
\end{aligned}
$$

AFFINE TRANSFORMATIONS

Combination of two arbitrary parallel projections
Preserve affine combinations

$$
\begin{aligned}
\alpha_{0}+\alpha_{1}+\alpha_{2} & =1 \Rightarrow \\
T\left(\alpha_{0} a_{0}+\alpha_{1} a_{1}+\alpha_{2} a_{2}\right) & =\alpha_{0} T\left(a_{0}\right)+\alpha_{1} T\left(a_{1}\right)+\alpha_{2} T\left(a_{2}\right)
\end{aligned}
$$

Matrix of an affine transformation in affine frame

$$
[T]_{\mathcal{C}}=\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{1} \\
a_{21} & a_{22} & t_{2} \\
0 & 0 & 1
\end{array}\right]
$$

AFFINE TRANSFORMATIONS

Combination of two arbitrary parallel projections
Preserve affine combinations

$$
\begin{aligned}
\alpha_{0}+\alpha_{1}+\alpha_{2} & =1 \Rightarrow \\
T\left(\alpha_{0} a_{0}+\alpha_{1} a_{1}+\alpha_{2} a_{2}\right) & =\alpha_{0} T\left(a_{0}\right)+\alpha_{1} T\left(a_{1}\right)+\alpha_{2} T\left(a_{2}\right)
\end{aligned}
$$

Matrix of an affine transformation in affine frame

$$
\begin{gathered}
{[T]_{\mathcal{C}}=\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{1} \\
a_{21} & 2_{22} & t_{2} \\
0 & 0 & 1
\end{array}\right]} \\
{[T(p)]_{\mathcal{C}}=[T]_{\mathcal{C}}[p]_{\mathcal{C}}=\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{1} \\
a_{21} & a_{22} & t_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
1
\end{array}\right]=\left[\begin{array}{c}
a_{11} \alpha_{1}+a_{21} \alpha_{2}+t_{1} \\
a_{21} \alpha_{1}+a_{22} \alpha_{2}+t_{2} \\
1
\end{array}\right]}
\end{gathered}
$$

AFFINE TRANSFORMATIONS

Interesting transformations

- Translation, rotation, scale

AFFINE TRANSFORMATIONS

Interesting transformations

- Translation, rotation, scale
- Centered rotation

AFFINE TRANSFORMATIONS

Interesting transformations

- Translation, rotation, scale
- Centered rotation
- Centered scale

AFFINE TRANSFORMATIONS

Interesting transformations

- Translation, rotation, scale
- Centered rotation
- Centered scale
- Scale in arbitrary direction

AFFINE TRANSFORMATIONS

Interesting transformations

- Translation, rotation, scale
- Centered rotation
- Centered scale
- Scale in arbitrary direction

What about the matrix in barycentric frame $\mathcal{D}=\left\{a_{0}, a_{1}, a_{2}\right\}$

AFFine geometry

What remains of Euclidean geometry when we forget about distance and angle

AfFine geometry

What remains of Euclidean geometry when we forget about distance and angle

Affine group

- Non-singular linear transformation and translation

AFFine geometry

What remains of Euclidean geometry when we forget about distance and angle

Affine group

- Non-singular linear transformation and translation
- Maps between any two sets of three non-collinear points

AFFINE GEOMETRY

What remains of Euclidean geometry when we forget about distance and angle

Affine group

- Non-singular linear transformation and translation
- Maps between any two sets of three non-collinear points
- Preserves collinearity, parallelism, concurrency, tangency, ratios of distances along parallel lines

AFFINE GEOMETRY

What remains of Euclidean geometry when we forget about distance and angle

Affine group

- Non-singular linear transformation and translation
- Maps between any two sets of three non-collinear points
- Preserves collinearity, parallelism, concurrency, tangency, ratios of distances along parallel lines

There is only one triangle, ellipse, parabola, and hyperbola

AFFINE GEOMETRY

What remains of Euclidean geometry when we forget about distance and angle

Affine group

- Non-singular linear transformation and translation
- Maps between any two sets of three non-collinear points
- Preserves collinearity, parallelism, concurrency, tangency, ratios of distances along parallel lines

There is only one triangle, ellipse, parabola, and hyperbola
Visualization of the affine plane

LINES AND CONICS

Line $a x+b y+c=0$

$$
\begin{gathered}
n^{\top} p=0, \quad \text { with } \\
n^{\top}=\left[\begin{array}{lll}
a & b & c
\end{array}\right] \quad \text { and } \quad p=\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
\end{gathered}
$$

LINES AND CONICS

Line $a x+b y+c=0$

$$
\begin{gathered}
n^{\top} p=0, \text { with } \\
n^{\top}=\left[\begin{array}{lll}
a & b & c
\end{array}\right] \quad \text { and } p=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{gathered}
$$

- How does it change with an affine transformation?

LINES AND CONICS

Line $a x+b y+c=0$

$$
\begin{gathered}
n^{\top} p=0, \text { with } \\
n^{\top}=\left[\begin{array}{lll}
a & b & c
\end{array}\right] \quad \text { and } p=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{gathered}
$$

- How does it change with an affine transformation?

Conic $a x^{2}+2 b x y+c y^{2}+2 d x+2 e y+f=0$

$$
\begin{gathered}
p^{\top} C p=0, \text { with } \\
C=C^{\top}=\left[\begin{array}{lll}
a & b & d \\
b & c & e \\
d & e & f
\end{array}\right] \text { and } p=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{gathered}
$$

LINES AND CONICS

Line $a x+b y+c=0$

$$
\begin{gathered}
n^{\top} p=0, \text { with } \\
n^{\top}=\left[\begin{array}{lll}
a & b & c
\end{array}\right] \quad \text { and } \quad p=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{gathered}
$$

- How does it change with an affine transformation?

Conic $a x^{2}+2 b x y+c y^{2}+2 d x+2 e y+f=0$

$$
\begin{gathered}
p^{\top} C p=0, \text { with } \\
C=C^{\top}=\left[\begin{array}{lll}
a & b & d \\
b & c & e \\
d & e & f
\end{array}\right] \quad \text { and } p=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{gathered}
$$

- How does it change with an affine transformation?

REVISITING PROBLEMS

Distance between line and point?
Find intersection between line and circle?
Find intersection between two circles?
Prove that the medians of a triangle are concurrent?

Projective points: lines through origin in 3D

- Ideal points

Projective points: lines through origin in 3D

- Ideal points

Projective lines: planes through origin in 3D

- Ideal line or line at infinity

Projective points: lines through origin in 3D

- Ideal points

Projective lines: planes through origin in 3D

- Ideal line or line at infinity

Projective plane

- Affine plane augmented with ideal points

Projective points: lines through origin in 3D

- Ideal points

Projective lines: planes through origin in 3D

- Ideal line or line at infinity

Projective plane

- Affine plane augmented with ideal points

Homogeneous coordinates

- Generalization of affine coordinates

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], \quad a, b, c \text { not all zero } \quad\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right] \equiv\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right], \quad w \neq 0
$$

PROJECTIVE TRANSFORMATIONS

Combination of three arbitrary perspective transformations

PROJECTIVE TRANSFORMATIONS

Combination of three arbitrary perspective transformations
Matrix of a projective transformation

$$
[T]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{11} \alpha_{1}+a_{21} \alpha_{2}+a_{13} \alpha_{3} \\
a_{21} \alpha_{1}+a_{22} \alpha_{2}+a_{23} \alpha_{3} \\
a_{31} \alpha_{1}+a_{32} \alpha_{2}+a_{33} \alpha_{3}
\end{array}\right]
$$

PROJECTIVE TRANSFORMATIONS

Combination of three arbitrary perspective transformations
Matrix of a projective transformation

$$
\begin{gathered}
{[T]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]} \\
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{11} \alpha_{1}+a_{21} \alpha_{2}+a_{13} \alpha_{3} \\
a_{21} \alpha_{1}+a_{22} \alpha_{2}+a_{23} \alpha_{3} \\
a_{31} \alpha_{1}+a_{32} \alpha_{2}+a_{33} \alpha_{3}
\end{array}\right]}
\end{gathered}
$$

Must be invertible

PROJECTIVE GEOMETRY

Projective linear group

- Non-singular linear transformations in R^{3}

Projective geometry

Projective linear group

- Non-singular linear transformations in R^{3}
- Preserves collinearity, tangency, cross-ratios

PROJECTIVE GEOMETRY

Projective linear group

- Non-singular linear transformations in R^{3}
- Preserves collinearity, tangency, cross-ratios
- Maps between any two sets of 4 points non-collinear 3 by 3

PROJECTIVE GEOMETRY

Projective linear group

- Non-singular linear transformations in R^{3}
- Preserves collinearity, tangency, cross-ratios
- Maps between any two sets of 4 points non-collinear 3 by 3

All lines meet, even parallel lines

PROJECTIVE GEOMETRY

Projective linear group

- Non-singular linear transformations in R^{3}
- Preserves collinearity, tangency, cross-ratios
- Maps between any two sets of 4 points non-collinear 3 by 3

All lines meet, even parallel lines
All quadrilaterals are the same

PROJECTIVE GEOMETRY

Projective linear group

- Non-singular linear transformations in R^{3}
- Preserves collinearity, tangency, cross-ratios
- Maps between any two sets of 4 points non-collinear 3 by 3

All lines meet, even parallel lines
All quadrilaterals are the same
All conics are the same

References

D. A. Brannan, M. F. Esplen, and J. J. Gray. Geometry. Cambridge University Press, 2011.

