2D Computer Graphics

Diego Nehab
Summer 2020

IMPA

ANTI-ALIASING AND TEXTURE MAPPING

ANTI-ALIASING

Let f be a function and ψ an anti-aliasing filter

ANTI-ALIASING

Let f be a function and ψ an anti-aliasing filter
Value of pixel p_{i} is given by

$$
p_{i}=(f * \psi)(i)=\int_{-\infty}^{\infty} f(t) \psi(i-t) d t
$$

ANTI-ALIASING

Let f be a function and ψ an anti-aliasing filter
Value of pixel p_{i} is given by

$$
p_{i}=(f * \psi)(i)=\int_{-\infty}^{\infty} f(t) \psi(i-t) d t
$$

How to compute the integral when f is a vector graphics illustration?

ANALYTIC ANTIALIASING

Assume box filter, single layer, solid color, simple polygon

- Clip polygon against the box centered at each pixel
- Compute weighted area using on Green's theorem from Calculus

ANALYTIC ANTIALIASING

Assume box filter, single layer, solid color, simple polygon

- Clip polygon against the box centered at each pixel
- Compute weighted area using on Green's theorem from Calculus

Possible to clip edges, not the shapes

- + general piecewise polynomial filters [Duff, 1989]
- + curved edges [Manson and Schaefer, 2013]

ANALYTIC ANTIALIASING

Assume box filter, single layer, solid color, simple polygon

- Clip polygon against the box centered at each pixel
- Compute weighted area using on Green's theorem from Calculus

Possible to clip edges, not the shapes

- + general piecewise polynomial filters [Duff, 1989]
- + curved edges [Manson and Schaefer, 2013]

What about polygons with self-intersections?

ANALYTIC ANTIALIASING

Assume box filter, single layer, solid color, simple polygon

- Clip polygon against the box centered at each pixel
- Compute weighted area using on Green's theorem from Calculus

Possible to clip edges, not the shapes

- + general piecewise polynomial filters [Duff, 1989]
- + curved edges [Manson and Schaefer, 2013]

What about polygons with self-intersections?
What about spatially varying colors?

ANALYTIC ANTIALIASING

Assume box filter, single layer, solid color, simple polygon

- Clip polygon against the box centered at each pixel
- Compute weighted area using on Green's theorem from Calculus

Possible to clip edges, not the shapes

- + general piecewise polynomial filters [Duff, 1989]
- + curved edges [Manson and Schaefer, 2013]

What about polygons with self-intersections?
What about spatially varying colors?
What about multiple opaque layers?

ANALYTIC ANTIALIASING

Assume box filter, single layer, solid color, simple polygon

- Clip polygon against the box centered at each pixel
- Compute weighted area using on Green's theorem from Calculus

Possible to clip edges, not the shapes

- + general piecewise polynomial filters [Duff, 1989]
- + curved edges [Manson and Schaefer, 2013]

What about polygons with self-intersections?
What about spatially varying colors?
What about multiple opaque layers?
What about transparency?

POPULAR HACK

Assume path P_{i} with constant color $f_{i}, \alpha_{f_{i}}$

POPULAR HACK

Assume path P_{i} with constant color $f_{i}, \alpha_{f_{i}}$
Assume blending over the background $b_{i}, \alpha_{b_{i}}$

POPULAR HACK

Assume path P_{i} with constant color $f_{i}, \alpha_{f_{i}}$
Assume blending over the background $b_{i}, \alpha_{b_{i}}$
Assume anti-aliasing filter ψ with support Ω

POPULAR HACK

Assume path P_{i} with constant color $f_{i}, \alpha_{f_{i}}$
Assume blending over the background $b_{i}, \alpha_{b_{i}}$
Assume anti-aliasing filter ψ with support Ω
Define the coverage o of P_{i} at pixel p

$$
o=\int_{\Omega}\left[u-p \in P_{i}\right] \psi(u) d u
$$

POPULAR HACK

Assume path P_{i} with constant color $f_{i}, \alpha_{f_{i}}$
Assume blending over the background $b_{i}, \alpha_{b_{i}}$
Assume anti-aliasing filter ψ with support Ω
Define the coverage o of P_{i} at pixel p

$$
o=\int_{\Omega}\left[u-p \in P_{i}\right] \psi(u) d u
$$

The new background b_{i+1}, α_{i+1} is

$$
b_{i+1}, \alpha_{i+1}=f_{i},\left(\alpha_{i} \cdot 0\right) \oplus b_{i}, \alpha_{i}
$$

PROBLEMS WITH HACK

Visible seams at perfectly abutting layers, weird halos

This is called the correlated mattes problem

PROBLEMS WITH HACK

Visible seams at perfectly abutting layers, weird halos

This is called the correlated mattes problem
It also either blends in linear, or antialiases in gamma

Notice the change in thickness.

Notice the change in thickness.

PROBLEMS WITH HACK

Visible seams at perfectly abutting layers, weird halos

This is called the correlated mattes problem
It also either blends in linear, or antialiases in gamma

Notice the change in thickness.

Must blend in gamma and antialias in linear [Nehab and Hoppe, 2008]

$$
b_{i+1}, \beta i+1=\gamma\left(\gamma^{-1}\left(f_{i}, \alpha_{i} \oplus b_{i}, \beta_{i}\right) \cdot o+\gamma^{-1}\left(b_{i}, \beta_{i}\right) \cdot(1-0)\right)
$$

PROBABILITY IN 2 SLIDES

A random variable X is a function that maps outcomes to numbers

PROBABILITY IN 2 SLIDES

A random variable X is a function that maps outcomes to numbers
The associated cumulative distribution function F_{X} is such that

$$
F_{X}(a)=P[X \leq a]
$$

PROBABILITY IN 2 SLIDES

A random variable X is a function that maps outcomes to numbers
The associated cumulative distribution function F_{X} is such that

$$
F_{X}(a)=P[X \leq a]
$$

i.e., it measures the probability that the numerical value is at most a.

PROBABILITY IN 2 SLIDES

A random variable X is a function that maps outcomes to numbers
The associated cumulative distribution function F_{X} is such that

$$
F_{X}(a)=P[X \leq a]
$$

i.e., it measures the probability that the numerical value is at most a.

The associated probability density function f_{X} is such that

$$
F_{X}(a)=\int_{-\infty}^{a} f_{X}(t) d t
$$

PROBABILITY IN 2 SLIDES

A random variable X is a function that maps outcomes to numbers
The associated cumulative distribution function F_{X} is such that

$$
F_{X}(a)=P[X \leq a]
$$

i.e., it measures the probability that the numerical value is at most a.

The associated probability density function f_{X} is such that

$$
F_{X}(a)=\int_{-\infty}^{a} f_{X}(t) d t
$$

i.e., its integral is the cumulative distribution function.

PROBABILITY IN 2 SLIDES

A random variable X is a function that maps outcomes to numbers
The associated cumulative distribution function F_{X} is such that

$$
F_{X}(a)=P[X \leq a]
$$

i.e., it measures the probability that the numerical value is at most a.

The associated probability density function f_{X} is such that

$$
F_{X}(a)=\int_{-\infty}^{a} f_{X}(t) d t
$$

i.e., its integral is the cumulative distribution function.

The associated expectation $E[X]$ (or mean μ_{X}) is

$$
\begin{equation*}
E[X]=\int_{-\infty}^{\infty} t f_{X}(t) d t=\mu_{X} \tag{1}
\end{equation*}
$$

PROBABILITY IN 2 SLIDES

A random variable X is a function that maps outcomes to numbers
The associated cumulative distribution function F_{X} is such that

$$
F_{X}(a)=P[X \leq a]
$$

i.e., it measures the probability that the numerical value is at most a.

The associated probability density function f_{X} is such that

$$
F_{X}(a)=\int_{-\infty}^{a} f_{X}(t) d t
$$

i.e., its integral is the cumulative distribution function.

The associated expectation $E[X]$ (or mean μ_{X}) is

$$
\begin{equation*}
E[X]=\int_{-\infty}^{\infty} t f_{X}(t) d t=\mu_{X} \tag{1}
\end{equation*}
$$

i.e., the mean value weighted by the probability density function.

PROBABILITY IN 2 SLIDES

The associated variance $\operatorname{var}(X)=\sigma_{X}^{2}$ is

$$
\operatorname{var}(X)=E\left[\left(X-\mu_{X}\right)^{2}\right]=E\left[X^{2}\right]-E^{2}[X]=\sigma_{X}^{2}
$$

and the standard deviation is σ_{χ}.

PROBABILITY IN 2 SLIDES

The associated variance $\operatorname{var}(X)=\sigma_{X}^{2}$ is

$$
\operatorname{var}(X)=E\left[\left(X-\mu_{X}\right)^{2}\right]=E\left[X^{2}\right]-E^{2}[X]=\sigma_{X}^{2}
$$

and the standard deviation is σ_{x}.
Measure how much the random variable deviates from the mean

PROBABILITY IN 2 SLIDES

The associated variance $\operatorname{var}(X)=\sigma_{X}^{2}$ is

$$
\operatorname{var}(X)=E\left[\left(X-\mu_{X}\right)^{2}\right]=E\left[X^{2}\right]-E^{2}[X]=\sigma_{X}^{2}
$$

and the standard deviation is σ_{x}.
Measure how much the random variable deviates from the mean The sample average is $\bar{X}_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)$

PROBABILITY IN 2 SLIDES

The associated variance $\operatorname{var}(X)=\sigma_{X}^{2}$ is

$$
\operatorname{var}(X)=E\left[\left(X-\mu_{X}\right)^{2}\right]=E\left[X^{2}\right]-E^{2}[X]=\sigma_{X}^{2}
$$

and the standard deviation is σ_{χ}.
Measure how much the random variable deviates from the mean
The sample average is $\bar{X}_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)$
Law of large numbers

$$
\bar{x}_{n} \rightarrow \mu_{X} \quad \text { for } \quad n \rightarrow \infty
$$

PROBABILITY IN 2 SLIDES

The associated variance $\operatorname{var}(X)=\sigma_{X}^{2}$ is

$$
\operatorname{var}(X)=E\left[\left(X-\mu_{X}\right)^{2}\right]=E\left[X^{2}\right]-E^{2}[X]=\sigma_{X}^{2}
$$

and the standard deviation is σ_{χ}.
Measure how much the random variable deviates from the mean
The sample average is $\bar{X}_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)$
Law of large numbers

$$
\bar{x}_{n} \rightarrow \mu_{X} \quad \text { for } \quad n \rightarrow \infty
$$

Variance of sample average

$$
\operatorname{var}\left(\bar{X}_{n}\right)=\operatorname{var}\left(\frac{1}{n} \sum X_{i}\right)=\frac{1}{n^{2}} \sum \operatorname{var}\left(X_{i}\right)=\frac{\sigma_{x}^{2}}{n}
$$

Monte Carlo integration

Start by expressing an integral as the expectation of a random variable Estimate expectation by sample mean

Monte Carlo integration

Start by expressing an integral as the expectation of a random variable Estimate expectation by sample mean

Rely on law of large numbers

Monte Carlo integration

Start by expressing an integral as the expectation of a random variable Estimate expectation by sample mean

Rely on law of large numbers
Let X be such that support of f_{X} is Ω

$$
\int_{\Omega} g(t) d t=\int_{\Omega} \frac{g(t)}{f_{X}(t)} f_{X}(t) d t=E\left[\frac{g(X)}{f_{X}(X)}\right] \approx \frac{1}{n} \sum_{i=1}^{n} \frac{g\left(X_{i}\right)}{f_{X}\left(X_{i}\right)}
$$

Monte Carlo integration

Start by expressing an integral as the expectation of a random variable Estimate expectation by sample mean

Rely on law of large numbers
Let X be such that support of f_{X} is Ω

$$
\int_{\Omega} g(t) d t=\int_{\Omega} \frac{g(t)}{f_{x}(t)} f_{x}(t) d t=E\left[\frac{g(X)}{f_{x}(X)}\right] \approx \frac{1}{n} \sum_{i=1}^{n} \frac{g\left(X_{i}\right)}{f_{x}\left(X_{i}\right)}
$$

This is the basis of supersampling
The solution to our anti-aliasing problems

SUPERSAMPLING

Let $g: R^{2} \rightarrow R G B$ map positions to linear color
Consider an anti-aliasing kernel ψ

SUPERSAMPLING

Let $g: R^{2} \rightarrow R G B$ map positions to linear color
Consider an anti-aliasing kernel ψ
The linear color at pixel p is

$$
c(p)=\int_{\Omega} g(p-q) \psi(q) d q
$$

SUPERSAMPLING

Let $g: R^{2} \rightarrow R G B$ map positions to linear color
Consider an anti-aliasing kernel ψ
The linear color at pixel p is

$$
\begin{aligned}
c(p) & =\int_{\Omega} g(p-q) \psi(q) d q \\
& =E\left[\frac{g(p-X) \psi(X)}{f_{X}(X)}\right]
\end{aligned}
$$

SUPERSAMPLING

Let $g: R^{2} \rightarrow R G B$ map positions to linear color
Consider an anti-aliasing kernel ψ
The linear color at pixel p is

$$
\begin{aligned}
c(p) & =\int_{\Omega} g(p-q) \psi(q) d q \\
& =E\left[\frac{g(p-X) \psi(X)}{f_{X}(X)}\right] \\
& \approx \frac{1}{n} \sum_{i=1}^{n} \frac{g\left(p-X_{i}\right) \psi\left(X_{i}\right)}{f_{X}\left(X_{i}\right)}
\end{aligned}
$$

SUPERSAMPLING

Let $g: R^{2} \rightarrow R G B$ map positions to linear color
Consider an anti-aliasing kernel ψ
The linear color at pixel p is

$$
\begin{aligned}
c(p) & =\int_{\Omega} g(p-q) \psi(q) d q \\
& =E\left[\frac{g(p-X) \psi(X)}{f_{X}(X)}\right] \\
& \approx \frac{1}{n} \sum_{i=1}^{n} \frac{g\left(p-X_{i}\right) \psi\left(X_{i}\right)}{f_{X}\left(X_{i}\right)}
\end{aligned}
$$

When $\psi=\beta^{0}$ is the box, $f_{X}=1$ with support $\Omega=\left[-\frac{1}{2}, \frac{1}{2}\right]^{2}$

$$
c(p) \approx \frac{1}{n} \sum_{i=1}^{n} g\left(p-X_{i}\right)
$$

BIASED ESTIMATOR

Estimator is unbiased if expected value is correct

BIASED ESTIMATOR

Estimator is unbiased if expected value is correct
The Monte Carlo estimator is unbiased in this sense

$$
c(p) \approx \frac{1}{n} \sum_{i=1}^{n} \frac{g\left(p-X_{i}\right) \psi\left(X_{i}\right)}{f_{X}\left(X_{i}\right)}
$$

BIASED ESTIMATOR

Estimator is unbiased if expected value is correct
The Monte Carlo estimator is unbiased in this sense

$$
c(p) \approx \frac{1}{n} \sum_{i=1}^{n} \frac{g\left(p-X_{i}\right) \psi\left(X_{i}\right)}{f_{X}\left(X_{i}\right)}
$$

It often makes sense to use a biased estimator to reduce variance

$$
c(p) \approx \frac{\sum_{i=1}^{n} \frac{g\left(p-X_{i}\right) \psi\left(X_{i}\right)}{f_{X}\left(X_{i}\right)}}{\sum_{i=1}^{n} \frac{\psi\left(X_{i}\right)}{f_{X}\left(X_{i}\right)}}
$$

IMPORTANCE SAMPLING

What happens if we choose $f_{X}(t) \propto g(t)$?

IMPORTANCE SAMPLING

What happens if we choose $f_{X}(t) \propto g(t)$?

$$
\int_{\Omega} g(t) d t=E\left[\frac{g(X)}{f_{X}(X)}\right]
$$

IMPORTANCE SAMPLING

What happens if we choose $f_{X}(t) \propto g(t)$?

$$
\int_{\Omega} g(t) d t=E\left[\frac{g(X)}{f_{X}(X)}\right]=E[\alpha]
$$

IMPORTANCE SAMPLING

What happens if we choose $f_{X}(t) \propto g(t)$?

$$
\int_{\Omega} g(t) d t=E\left[\frac{g(X)}{f_{X}(X)}\right]=E[\alpha]=\frac{g(X)}{f(X)}
$$

IMPORTANCE SAMPLING

What happens if we choose $f_{X}(t) \propto g(t)$?

$$
\int_{\Omega} g(t) d t=E\left[\frac{g(X)}{f_{X}(X)}\right]=E[\alpha]=\frac{g(X)}{f(X)}
$$

We only need one sample!

IMPORTANCE SAMPLING

What happens if we choose $f_{X}(t) \propto g(t)$?

$$
\int_{\Omega} g(t) d t=E\left[\frac{g(X)}{f_{X}(X)}\right]=E[\alpha]=\frac{g(X)}{f(X)}
$$

We only need one sample!
Unfortunately, we need to normalize g to transform it into a PDF

IMPORTANCE SAMPLING

What happens if we choose $f_{X}(t) \propto g(t)$?

$$
\int_{\Omega} g(t) d t=E\left[\frac{g(X)}{f_{X}(X)}\right]=E[\alpha]=\frac{g(X)}{f(X)}
$$

We only need one sample!
Unfortunately, we need to normalize g to transform it into a PDF For that, we need to divide it by its integral

This integral is exactly what we are trying to compute!

IMPORTANCE SAMPLING

What happens if we choose $f_{X}(t) \propto g(t)$?

$$
\int_{\Omega} g(t) d t=E\left[\frac{g(X)}{f_{X}(X)}\right]=E[\alpha]=\frac{g(X)}{f(X)}
$$

We only need one sample!
Unfortunately, we need to normalize g to transform it into a PDF For that, we need to divide it by its integral This integral is exactly what we are trying to compute! However, we can often make f_{X} almost proportional to g

IMPORTANCE SAMPLING

What happens if we choose $f_{X}(t) \propto g(t)$?

$$
\int_{\Omega} g(t) d t=E\left[\frac{g(X)}{f_{X}(X)}\right]=E[\alpha]=\frac{g(X)}{f(X)}
$$

We only need one sample!
Unfortunately, we need to normalize g to transform it into a PDF For that, we need to divide it by its integral

This integral is exactly what we are trying to compute!
However, we can often make f_{X} almost proportional to g
This is importance sampling

BETTER SAMPLE DISTRIBUTIONS

Many different point distributions have $f_{X}=1 / A_{\Omega}$ in Ω

BETTER SAMPLE DISTRIBUTIONS

Many different point distributions have $f_{X}=1 / A_{\Omega}$ in Ω
Uniform, stratified, low-discrepancy (e.g. Poisson disk, Lloyd relaxation)

BETTER SAMPLE DISTRIBUTIONS

Many different point distributions have $f_{X}=1 / A_{\Omega}$ in Ω
Uniform, stratified, low-discrepancy (e.g. Poisson disk, Lloyd relaxation) Variance of \bar{X}_{n} is not the same for all of them!

16 SAMPLES

Regular

16 SAMPLES

Uniform

16 SAMPLES

Stratified

16 SAMPLES

Blue noise

64 SAMPLES

Regular

64 SAMPLES

Uniform

64 SAMPLES

Stratified

64 SAMPLES

Blue noise

Regular

256 SAMPLES

Stratified

Blue noise

1024 SAMPLES

Regular

1024 SAMPLES

Uniform

1024 SAMPLES

Stratified

1024 SAMPLES

Blue noise

BETTER ANTI-ALIASING KERNELS

BETTER ANTI-ALIASING KERNELS

Linear

BETTER ANTI-ALIASING KERNELS

Gaussian

BETTER ANTI-ALIASING KERNELS

BETTER ANTI-ALIASING KERNELS

BETTER ANTI-ALIASING KERNELS

Cardinal B-spline

Generalized sampling

discretization
reconstruction

$$
f_{\psi}=f * \psi^{v} \quad[\cdot] \quad \boldsymbol{c}=\left[f_{\psi}\right] * \boldsymbol{q} \quad \tilde{f}=\boldsymbol{c} * \varphi
$$

> continuous analysis

$\underset{\text { diltering }}{\text { digital }}$

mixed
synthesis

Generalized sampling

discretization
reconstruction

$$
f_{\psi}=f * \psi^{v} \quad[\cdot] \quad \boldsymbol{c}=\left[f_{\psi}\right] * \boldsymbol{q} \quad \tilde{f}=\boldsymbol{c} * \varphi
$$

continuous analysis

digital
filtering

mixed synthesis

Cardinal cubic B-spline

Generalized SAMPLING

discretization
reconstruction

$$
f_{\psi}=f * \psi^{v} \quad[\cdot] \quad \boldsymbol{c}=\left[f_{\psi}\right] * \boldsymbol{q} \quad \tilde{f}=\boldsymbol{c} * \varphi
$$

$$
\begin{aligned}
& \text { continuous } \\
& \text { analysis }
\end{aligned}
$$

sampling
digital filtering

mixed synthesis

Cardinal cubic B-spline
Needs sample sharing for variance reduction and speed

TEXTURING

Assuming good reconstruction and prefilter kernels,

- Upsampling needs only reconstruction
- Downsampling needs only prefiltering

BOX UPSAMPLING

LINEAR UPSAMPLING

CARDINAL CUBIC B-SPLINE UPSAMPLING

TEXTURING

Assuming good reconstruction and prefilter kernels,

- Upsampling needs only reconstruction
- Downsampling needs only prefiltering

TEXTURING

Assuming good reconstruction and prefilter kernels,

- Upsampling needs only reconstruction
- Downsampling needs only prefiltering

Reconstruction is easy, prefiltering is difficult

TEXTURING

Assuming good reconstruction and prefilter kernels,

- Upsampling needs only reconstruction
- Downsampling needs only prefiltering

Reconstruction is easy, prefiltering is difficult
Non-uniform resampling

- Reconstruct when locally upsampling
- Prefilter when locally downsampling

TEXTURING

Assuming good reconstruction and prefilter kernels,

- Upsampling needs only reconstruction
- Downsampling needs only prefiltering

Reconstruction is easy, prefiltering is difficult
Non-uniform resampling

- Reconstruct when locally upsampling
- Prefilter when locally downsampling
- Jacobian of map from screen to texture coordinates decides

TEXTURING

Assuming good reconstruction and prefilter kernels,

- Upsampling needs only reconstruction
- Downsampling needs only prefiltering

Reconstruction is easy, prefiltering is difficult
Non-uniform resampling

- Reconstruct when locally upsampling
- Prefilter when locally downsampling
- Jacobian of map from screen to texture coordinates decides

Approximate solution for isotropic downsampling: Mipmaps

TEXTURING

Assuming good reconstruction and prefilter kernels,

- Upsampling needs only reconstruction
- Downsampling needs only prefiltering

Reconstruction is easy, prefiltering is difficult
Non-uniform resampling

- Reconstruct when locally upsampling
- Prefilter when locally downsampling
- Jacobian of map from screen to texture coordinates decides

Approximate solution for isotropic downsampling: Mipmaps Otherwise, use anisotropic filtering

References

E. C. Anderson. Monte carlo methods and importance sampling. UC Berkeley, 1999. Lecture notes for Stat 578C.
T. Duff. Polygon scan conversion by exact convolution. In Jacques André and Roger D. Hersch, editors, Raster Imaging and Digital Typography, pages 154-168. Cambridge University Press, 1989.
J. Manson and S. Schaefer. Analytic rasterization of curves with polynomial filters. Computer Graphics Forum (Proceedings of Eurographics), 32(2pt4):499-507, 2013.
D. Nehab and H. Hoppe. Random-access rendering of general vector graphics. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2008), 27(5):135, 2008.
D. Nehab and H. Hoppe. A fresh look at generalized sampling. Foundations and Trends in Computer Graphics and Vision, 8(1):1-84, 2014.

