
2D Computer Graphics

Diego Nehab

Summer 2020

IMPA

1



Anti-aliasing and texture mapping



Anti-aliasing

Let f be a function and ψ an anti-aliasing filter

Value of pixel pi is given by

pi = (f ∗ ψ)(i) =
∫ ∞

−∞
f (t)ψ(i− t)dt

How to compute the integral when f is a vector graphics illustration?

2



Anti-aliasing

Let f be a function and ψ an anti-aliasing filter

Value of pixel pi is given by

pi = (f ∗ ψ)(i) =
∫ ∞

−∞
f (t)ψ(i− t)dt

How to compute the integral when f is a vector graphics illustration?

2



Anti-aliasing

Let f be a function and ψ an anti-aliasing filter

Value of pixel pi is given by

pi = (f ∗ ψ)(i) =
∫ ∞

−∞
f (t)ψ(i− t)dt

How to compute the integral when f is a vector graphics illustration?

2



Analytic antialiasing

Assume box filter, single layer, solid color, simple polygon

• Clip polygon against the box centered at each pixel

• Compute weighted area using on Green’s theorem from Calculus

Possible to clip edges, not the shapes

• + general piecewise polynomial filters [Duff, 1989]

• + curved edges [Manson and Schaefer, 2013]

What about polygons with self-intersections?

What about spatially varying colors?

What about multiple opaque layers?

What about transparency?

3



Analytic antialiasing

Assume box filter, single layer, solid color, simple polygon

• Clip polygon against the box centered at each pixel

• Compute weighted area using on Green’s theorem from Calculus

Possible to clip edges, not the shapes

• + general piecewise polynomial filters [Duff, 1989]

• + curved edges [Manson and Schaefer, 2013]

What about polygons with self-intersections?

What about spatially varying colors?

What about multiple opaque layers?

What about transparency?

3



Analytic antialiasing

Assume box filter, single layer, solid color, simple polygon

• Clip polygon against the box centered at each pixel

• Compute weighted area using on Green’s theorem from Calculus

Possible to clip edges, not the shapes

• + general piecewise polynomial filters [Duff, 1989]

• + curved edges [Manson and Schaefer, 2013]

What about polygons with self-intersections?

What about spatially varying colors?

What about multiple opaque layers?

What about transparency?

3



Analytic antialiasing

Assume box filter, single layer, solid color, simple polygon

• Clip polygon against the box centered at each pixel

• Compute weighted area using on Green’s theorem from Calculus

Possible to clip edges, not the shapes

• + general piecewise polynomial filters [Duff, 1989]

• + curved edges [Manson and Schaefer, 2013]

What about polygons with self-intersections?

What about spatially varying colors?

What about multiple opaque layers?

What about transparency?

3



Analytic antialiasing

Assume box filter, single layer, solid color, simple polygon

• Clip polygon against the box centered at each pixel

• Compute weighted area using on Green’s theorem from Calculus

Possible to clip edges, not the shapes

• + general piecewise polynomial filters [Duff, 1989]

• + curved edges [Manson and Schaefer, 2013]

What about polygons with self-intersections?

What about spatially varying colors?

What about multiple opaque layers?

What about transparency?

3



Analytic antialiasing

Assume box filter, single layer, solid color, simple polygon

• Clip polygon against the box centered at each pixel

• Compute weighted area using on Green’s theorem from Calculus

Possible to clip edges, not the shapes

• + general piecewise polynomial filters [Duff, 1989]

• + curved edges [Manson and Schaefer, 2013]

What about polygons with self-intersections?

What about spatially varying colors?

What about multiple opaque layers?

What about transparency?

3



Popular hack

Assume path Pi with constant color fi, αfi

Assume blending over the background bi, αbi

Assume anti-aliasing filter ψ with support Ω

Define the coverage o of Pi at pixel p

o =

∫
Ω
[u− p ∈ Pi]ψ(u)du

The new background bi+1, αi+1 is

bi+1, αi+1 = fi, (αi · o)⊕ bi, αi

4



Popular hack

Assume path Pi with constant color fi, αfi

Assume blending over the background bi, αbi

Assume anti-aliasing filter ψ with support Ω

Define the coverage o of Pi at pixel p

o =

∫
Ω
[u− p ∈ Pi]ψ(u)du

The new background bi+1, αi+1 is

bi+1, αi+1 = fi, (αi · o)⊕ bi, αi

4



Popular hack

Assume path Pi with constant color fi, αfi

Assume blending over the background bi, αbi

Assume anti-aliasing filter ψ with support Ω

Define the coverage o of Pi at pixel p

o =

∫
Ω
[u− p ∈ Pi]ψ(u)du

The new background bi+1, αi+1 is

bi+1, αi+1 = fi, (αi · o)⊕ bi, αi

4



Popular hack

Assume path Pi with constant color fi, αfi

Assume blending over the background bi, αbi

Assume anti-aliasing filter ψ with support Ω

Define the coverage o of Pi at pixel p

o =

∫
Ω
[u− p ∈ Pi]ψ(u)du

The new background bi+1, αi+1 is

bi+1, αi+1 = fi, (αi · o)⊕ bi, αi

4



Popular hack

Assume path Pi with constant color fi, αfi

Assume blending over the background bi, αbi

Assume anti-aliasing filter ψ with support Ω

Define the coverage o of Pi at pixel p

o =

∫
Ω
[u− p ∈ Pi]ψ(u)du

The new background bi+1, αi+1 is

bi+1, αi+1 = fi, (αi · o)⊕ bi, αi

4



Problems with hack

Visible seams at perfectly abutting layers, weird halos

This is called the correlated mattes problem

It also either blends in linear, or antialiases in gamma

Must blend in gamma and antialias in linear [Nehab and Hoppe, 2008]

bi+1, βi+ 1 = γ
(
γ−1(fi, αi ⊕ bi, βi) · o+ γ−1(bi, βi) · (1− o)

)

5



Problems with hack

Visible seams at perfectly abutting layers, weird halos

This is called the correlated mattes problem

It also either blends in linear, or antialiases in gamma

Must blend in gamma and antialias in linear [Nehab and Hoppe, 2008]

bi+1, βi+ 1 = γ
(
γ−1(fi, αi ⊕ bi, βi) · o+ γ−1(bi, βi) · (1− o)

)

5



Problems with hack

Visible seams at perfectly abutting layers, weird halos

This is called the correlated mattes problem

It also either blends in linear, or antialiases in gamma

Must blend in gamma and antialias in linear [Nehab and Hoppe, 2008]

bi+1, βi+ 1 = γ
(
γ−1(fi, αi ⊕ bi, βi) · o+ γ−1(bi, βi) · (1− o)

)
5



Probability in 2 slides

A random variable X is a function that maps outcomes to numbers

The associated cumulative distribution function FX is such that

FX(a) = P[X ≤ a]

i.e., it measures the probability that the numerical value is at most a.

The associated probability density function fX is such that

FX(a) =

∫ a

−∞
fX(t)dt

i.e., its integral is the cumulative distribution function.

The associated expectation E[X] (or mean µX) is

E[X] =

∫ ∞

−∞
t fX(t)dt = µX (1)

i.e., the mean value weighted by the probability density function.

6



Probability in 2 slides

A random variable X is a function that maps outcomes to numbers

The associated cumulative distribution function FX is such that

FX(a) = P[X ≤ a]

i.e., it measures the probability that the numerical value is at most a.

The associated probability density function fX is such that

FX(a) =

∫ a

−∞
fX(t)dt

i.e., its integral is the cumulative distribution function.

The associated expectation E[X] (or mean µX) is

E[X] =

∫ ∞

−∞
t fX(t)dt = µX (1)

i.e., the mean value weighted by the probability density function.

6



Probability in 2 slides

A random variable X is a function that maps outcomes to numbers

The associated cumulative distribution function FX is such that

FX(a) = P[X ≤ a]

i.e., it measures the probability that the numerical value is at most a.

The associated probability density function fX is such that

FX(a) =

∫ a

−∞
fX(t)dt

i.e., its integral is the cumulative distribution function.

The associated expectation E[X] (or mean µX) is

E[X] =

∫ ∞

−∞
t fX(t)dt = µX (1)

i.e., the mean value weighted by the probability density function.

6



Probability in 2 slides

A random variable X is a function that maps outcomes to numbers

The associated cumulative distribution function FX is such that

FX(a) = P[X ≤ a]

i.e., it measures the probability that the numerical value is at most a.

The associated probability density function fX is such that

FX(a) =

∫ a

−∞
fX(t)dt

i.e., its integral is the cumulative distribution function.

The associated expectation E[X] (or mean µX) is

E[X] =

∫ ∞

−∞
t fX(t)dt = µX (1)

i.e., the mean value weighted by the probability density function.

6



Probability in 2 slides

A random variable X is a function that maps outcomes to numbers

The associated cumulative distribution function FX is such that

FX(a) = P[X ≤ a]

i.e., it measures the probability that the numerical value is at most a.

The associated probability density function fX is such that

FX(a) =

∫ a

−∞
fX(t)dt

i.e., its integral is the cumulative distribution function.

The associated expectation E[X] (or mean µX) is

E[X] =

∫ ∞

−∞
t fX(t)dt = µX (1)

i.e., the mean value weighted by the probability density function.

6



Probability in 2 slides

A random variable X is a function that maps outcomes to numbers

The associated cumulative distribution function FX is such that

FX(a) = P[X ≤ a]

i.e., it measures the probability that the numerical value is at most a.

The associated probability density function fX is such that

FX(a) =

∫ a

−∞
fX(t)dt

i.e., its integral is the cumulative distribution function.

The associated expectation E[X] (or mean µX) is

E[X] =

∫ ∞

−∞
t fX(t)dt = µX (1)

i.e., the mean value weighted by the probability density function.

6



Probability in 2 slides

A random variable X is a function that maps outcomes to numbers

The associated cumulative distribution function FX is such that

FX(a) = P[X ≤ a]

i.e., it measures the probability that the numerical value is at most a.

The associated probability density function fX is such that

FX(a) =

∫ a

−∞
fX(t)dt

i.e., its integral is the cumulative distribution function.

The associated expectation E[X] (or mean µX) is

E[X] =

∫ ∞

−∞
t fX(t)dt = µX (1)

i.e., the mean value weighted by the probability density function.

6



Probability in 2 slides

The associated variance var(X) = σ2X is

var(X) = E[(X − µX)
2] = E[X2]− E2[X] = σ2X

and the standard deviation is σX .

Measure how much the random variable deviates from the mean

The sample average is Xn = 1
n(X1 + X2 + · · ·+ Xn)

Law of large numbers

Xn → µX for n → ∞

Variance of sample average

var(Xn) = var
(
1
n

∑
Xi
)
= 1

n2

∑
var(Xi) =

σ2
X

n

7



Probability in 2 slides

The associated variance var(X) = σ2X is

var(X) = E[(X − µX)
2] = E[X2]− E2[X] = σ2X

and the standard deviation is σX .

Measure how much the random variable deviates from the mean

The sample average is Xn = 1
n(X1 + X2 + · · ·+ Xn)

Law of large numbers

Xn → µX for n → ∞

Variance of sample average

var(Xn) = var
(
1
n

∑
Xi
)
= 1

n2

∑
var(Xi) =

σ2
X

n

7



Probability in 2 slides

The associated variance var(X) = σ2X is

var(X) = E[(X − µX)
2] = E[X2]− E2[X] = σ2X

and the standard deviation is σX .

Measure how much the random variable deviates from the mean

The sample average is Xn = 1
n(X1 + X2 + · · ·+ Xn)

Law of large numbers

Xn → µX for n → ∞

Variance of sample average

var(Xn) = var
(
1
n

∑
Xi
)
= 1

n2

∑
var(Xi) =

σ2
X

n

7



Probability in 2 slides

The associated variance var(X) = σ2X is

var(X) = E[(X − µX)
2] = E[X2]− E2[X] = σ2X

and the standard deviation is σX .

Measure how much the random variable deviates from the mean

The sample average is Xn = 1
n(X1 + X2 + · · ·+ Xn)

Law of large numbers

Xn → µX for n → ∞

Variance of sample average

var(Xn) = var
(
1
n

∑
Xi
)
= 1

n2

∑
var(Xi) =

σ2
X

n

7



Probability in 2 slides

The associated variance var(X) = σ2X is

var(X) = E[(X − µX)
2] = E[X2]− E2[X] = σ2X

and the standard deviation is σX .

Measure how much the random variable deviates from the mean

The sample average is Xn = 1
n(X1 + X2 + · · ·+ Xn)

Law of large numbers

Xn → µX for n → ∞

Variance of sample average

var(Xn) = var
(
1
n

∑
Xi
)
= 1

n2

∑
var(Xi) =

σ2
X

n

7



Monte Carlo integration

Start by expressing an integral as the expectation of a random variable

Estimate expectation by sample mean

Rely on law of large numbers

Let X be such that support of fX is Ω∫
Ω
g(t)dt =

∫
Ω

g(t)

fX(t)
fX(t)dt = E

[
g(X)

fX(X)

]
≈ 1

n

n∑
i=1

g(Xi)

fX(Xi)

This is the basis of supersampling

The solution to our anti-aliasing problems

8



Monte Carlo integration

Start by expressing an integral as the expectation of a random variable

Estimate expectation by sample mean

Rely on law of large numbers

Let X be such that support of fX is Ω∫
Ω
g(t)dt =

∫
Ω

g(t)

fX(t)
fX(t)dt = E

[
g(X)

fX(X)

]
≈ 1

n

n∑
i=1

g(Xi)

fX(Xi)

This is the basis of supersampling

The solution to our anti-aliasing problems

8



Monte Carlo integration

Start by expressing an integral as the expectation of a random variable

Estimate expectation by sample mean

Rely on law of large numbers

Let X be such that support of fX is Ω∫
Ω
g(t)dt =

∫
Ω

g(t)

fX(t)
fX(t)dt = E

[
g(X)

fX(X)

]
≈ 1

n

n∑
i=1

g(Xi)

fX(Xi)

This is the basis of supersampling

The solution to our anti-aliasing problems

8



Monte Carlo integration

Start by expressing an integral as the expectation of a random variable

Estimate expectation by sample mean

Rely on law of large numbers

Let X be such that support of fX is Ω∫
Ω
g(t)dt =

∫
Ω

g(t)

fX(t)
fX(t)dt = E

[
g(X)

fX(X)

]
≈ 1

n

n∑
i=1

g(Xi)

fX(Xi)

This is the basis of supersampling

The solution to our anti-aliasing problems

8



Supersampling

Let g : R2 → RGB map positions to linear color

Consider an anti-aliasing kernel ψ

The linear color at pixel p is

c(p) =

∫
Ω
g(p− q)ψ(q)dq

= E

[
g(p− X)ψ(X)

fX(X)

]
≈ 1

n

n∑
i=1

g(p− Xi)ψ(Xi)

fX(Xi)

When ψ = β0 is the box, fX = 1 with support Ω = [− 1
2 ,

1
2 ]

2

c(p) ≈ 1

n

n∑
i=1

g(p− Xi)

9



Supersampling

Let g : R2 → RGB map positions to linear color

Consider an anti-aliasing kernel ψ

The linear color at pixel p is

c(p) =

∫
Ω
g(p− q)ψ(q)dq

= E

[
g(p− X)ψ(X)

fX(X)

]
≈ 1

n

n∑
i=1

g(p− Xi)ψ(Xi)

fX(Xi)

When ψ = β0 is the box, fX = 1 with support Ω = [− 1
2 ,

1
2 ]

2

c(p) ≈ 1

n

n∑
i=1

g(p− Xi)

9



Supersampling

Let g : R2 → RGB map positions to linear color

Consider an anti-aliasing kernel ψ

The linear color at pixel p is

c(p) =

∫
Ω
g(p− q)ψ(q)dq

= E

[
g(p− X)ψ(X)

fX(X)

]

≈ 1

n

n∑
i=1

g(p− Xi)ψ(Xi)

fX(Xi)

When ψ = β0 is the box, fX = 1 with support Ω = [− 1
2 ,

1
2 ]

2

c(p) ≈ 1

n

n∑
i=1

g(p− Xi)

9



Supersampling

Let g : R2 → RGB map positions to linear color

Consider an anti-aliasing kernel ψ

The linear color at pixel p is

c(p) =

∫
Ω
g(p− q)ψ(q)dq

= E

[
g(p− X)ψ(X)

fX(X)

]
≈ 1

n

n∑
i=1

g(p− Xi)ψ(Xi)

fX(Xi)

When ψ = β0 is the box, fX = 1 with support Ω = [− 1
2 ,

1
2 ]

2

c(p) ≈ 1

n

n∑
i=1

g(p− Xi)

9



Supersampling

Let g : R2 → RGB map positions to linear color

Consider an anti-aliasing kernel ψ

The linear color at pixel p is

c(p) =

∫
Ω
g(p− q)ψ(q)dq

= E

[
g(p− X)ψ(X)

fX(X)

]
≈ 1

n

n∑
i=1

g(p− Xi)ψ(Xi)

fX(Xi)

When ψ = β0 is the box, fX = 1 with support Ω = [− 1
2 ,

1
2 ]

2

c(p) ≈ 1

n

n∑
i=1

g(p− Xi)

9



Biased estimator

Estimator is unbiased if expected value is correct

The Monte Carlo estimator is unbiased in this sense

c(p) ≈ 1

n

n∑
i=1

g(p− Xi)ψ(Xi)

fX(Xi)

It often makes sense to use a biased estimator to reduce variance

c(p) ≈

n∑
i=1

g(p− Xi)ψ(Xi)

fX(Xi)

n∑
i=1

ψ(Xi)

fX(Xi)

10



Biased estimator

Estimator is unbiased if expected value is correct

The Monte Carlo estimator is unbiased in this sense

c(p) ≈ 1

n

n∑
i=1

g(p− Xi)ψ(Xi)

fX(Xi)

It often makes sense to use a biased estimator to reduce variance

c(p) ≈

n∑
i=1

g(p− Xi)ψ(Xi)

fX(Xi)

n∑
i=1

ψ(Xi)

fX(Xi)

10



Biased estimator

Estimator is unbiased if expected value is correct

The Monte Carlo estimator is unbiased in this sense

c(p) ≈ 1

n

n∑
i=1

g(p− Xi)ψ(Xi)

fX(Xi)

It often makes sense to use a biased estimator to reduce variance

c(p) ≈

n∑
i=1

g(p− Xi)ψ(Xi)

fX(Xi)

n∑
i=1

ψ(Xi)

fX(Xi)

10



Importance sampling

What happens if we choose fX(t) ∝ g(t)?

∫
Ω
g(t)dt = E

[
g(X)

fX(X)

]

= E[α] =
g(X)

f (X)

We only need one sample!

Unfortunately, we need to normalize g to transform it into a PDF

For that, we need to divide it by its integral

This integral is exactly what we are trying to compute!

However, we can often make fX almost proportional to g

This is importance sampling

11



Importance sampling

What happens if we choose fX(t) ∝ g(t)?∫
Ω
g(t)dt = E

[
g(X)

fX(X)

]

= E[α] =
g(X)

f (X)

We only need one sample!

Unfortunately, we need to normalize g to transform it into a PDF

For that, we need to divide it by its integral

This integral is exactly what we are trying to compute!

However, we can often make fX almost proportional to g

This is importance sampling

11



Importance sampling

What happens if we choose fX(t) ∝ g(t)?∫
Ω
g(t)dt = E

[
g(X)

fX(X)

]
= E[α]

=
g(X)

f (X)

We only need one sample!

Unfortunately, we need to normalize g to transform it into a PDF

For that, we need to divide it by its integral

This integral is exactly what we are trying to compute!

However, we can often make fX almost proportional to g

This is importance sampling

11



Importance sampling

What happens if we choose fX(t) ∝ g(t)?∫
Ω
g(t)dt = E

[
g(X)

fX(X)

]
= E[α] =

g(X)

f (X)

We only need one sample!

Unfortunately, we need to normalize g to transform it into a PDF

For that, we need to divide it by its integral

This integral is exactly what we are trying to compute!

However, we can often make fX almost proportional to g

This is importance sampling

11



Importance sampling

What happens if we choose fX(t) ∝ g(t)?∫
Ω
g(t)dt = E

[
g(X)

fX(X)

]
= E[α] =

g(X)

f (X)

We only need one sample!

Unfortunately, we need to normalize g to transform it into a PDF

For that, we need to divide it by its integral

This integral is exactly what we are trying to compute!

However, we can often make fX almost proportional to g

This is importance sampling

11



Importance sampling

What happens if we choose fX(t) ∝ g(t)?∫
Ω
g(t)dt = E

[
g(X)

fX(X)

]
= E[α] =

g(X)

f (X)

We only need one sample!

Unfortunately, we need to normalize g to transform it into a PDF

For that, we need to divide it by its integral

This integral is exactly what we are trying to compute!

However, we can often make fX almost proportional to g

This is importance sampling

11



Importance sampling

What happens if we choose fX(t) ∝ g(t)?∫
Ω
g(t)dt = E

[
g(X)

fX(X)

]
= E[α] =

g(X)

f (X)

We only need one sample!

Unfortunately, we need to normalize g to transform it into a PDF

For that, we need to divide it by its integral

This integral is exactly what we are trying to compute!

However, we can often make fX almost proportional to g

This is importance sampling

11



Importance sampling

What happens if we choose fX(t) ∝ g(t)?∫
Ω
g(t)dt = E

[
g(X)

fX(X)

]
= E[α] =

g(X)

f (X)

We only need one sample!

Unfortunately, we need to normalize g to transform it into a PDF

For that, we need to divide it by its integral

This integral is exactly what we are trying to compute!

However, we can often make fX almost proportional to g

This is importance sampling

11



Importance sampling

What happens if we choose fX(t) ∝ g(t)?∫
Ω
g(t)dt = E

[
g(X)

fX(X)

]
= E[α] =

g(X)

f (X)

We only need one sample!

Unfortunately, we need to normalize g to transform it into a PDF

For that, we need to divide it by its integral

This integral is exactly what we are trying to compute!

However, we can often make fX almost proportional to g

This is importance sampling

11



Better sample distributions

Many different point distributions have fX = 1/AΩ in Ω

Uniform, stratified, low-discrepancy (e.g. Poisson disk, Lloyd relaxation)

Variance of Xn is not the same for all of them!

12



Better sample distributions

Many different point distributions have fX = 1/AΩ in Ω

Uniform, stratified, low-discrepancy (e.g. Poisson disk, Lloyd relaxation)

Variance of Xn is not the same for all of them!

12



Better sample distributions

Many different point distributions have fX = 1/AΩ in Ω

Uniform, stratified, low-discrepancy (e.g. Poisson disk, Lloyd relaxation)

Variance of Xn is not the same for all of them!

12



16 samples

Regular

13



16 samples

Uniform

13



16 samples

Stratified

13



16 samples

Blue noise

13



64 samples

Regular

14



64 samples

Uniform

14



64 samples

Stratified

14



64 samples

Blue noise

14



256 samples

Regular

15



256 samples

Uniform

15



256 samples

Stratified

15



256 samples

Blue noise

15



1024 samples

Regular

16



1024 samples

Uniform

16



1024 samples

Stratified

16



1024 samples

Blue noise

16



Better anti-aliasing kernels

Box

-4 -2 2 4
-0.2

0.2

0.4

0.6

0.8

1.

1.2

-4 -2 2 4
-0.2

0.2

0.4

0.6

0.8

1.

1.2

-2 Π -Π 0 Π 2 Π

0.5

1

-2 Π -Π Π 2 Π

-80

-60

-40

-20

20

17



Better anti-aliasing kernels

Linear

-4 -2 2 4
-0.2

0.2

0.4

0.6

0.8

1.

1.2

-4 -2 2 4
-0.2

0.2

0.4

0.6

0.8

1.

1.2

-2 Π -Π 0 Π 2 Π

0.5

1

-2 Π -Π Π 2 Π

-80

-60

-40

-20

20

17



Better anti-aliasing kernels

Gaussian

-4 -2 2 4
-0.2

0.2

0.4

0.6

0.8

1.

1.2

-4 -2 2 4
-0.2

0.2

0.4

0.6

0.8

1.

1.2

-2 Π -Π 0 Π 2 Π

0.5

1

-2 Π -Π Π 2 Π

-80

-60

-40

-20

20

17



Better anti-aliasing kernels

Keys

-4 -2 2 4
-0.2

0.2

0.4

0.6

0.8

1.

1.2

-4 -2 2 4
-0.2

0.2

0.4

0.6

0.8

1.

1.2

-2 Π -Π 0 Π 2 Π

0.5

1

-2 Π -Π Π 2 Π

-80

-60

-40

-20

20

17



Better anti-aliasing kernels

Lanczos

-4 -2 2 4
-0.2

0.2

0.4

0.6

0.8

1.

1.2

-4 -2 2 4
-0.2

0.2

0.4

0.6

0.8

1.

1.2

-2 Π -Π 0 Π 2 Π

0.5

1

-2 Π -Π Π 2 Π

-80

-60

-40

-20

20

17



Better anti-aliasing kernels

Cardinal B-spline

-4 -2 2 4
-0.2

0.2

0.4

0.6

0.8

1.

1.2

-4 -2 2 4
-0.2

0.2

0.4

0.6

0.8

1.

1.2

-2 Π -Π 0 Π 2 Π

0.5

1

-2 Π -Π Π 2 Π

-80

-60

-40

-20

20

17



Generalized sampling

mixed
synthesissampling

continuous
analysis

digital
filtering

input output

discretization reconstruction

Cardinal cubic B-spline

Needs sample sharing for variance reduction and speed

18



Generalized sampling

mixed
synthesissampling

continuous
analysis

digital
filtering

input output

discretization reconstruction

Cardinal cubic B-spline

Needs sample sharing for variance reduction and speed

18



Generalized sampling

mixed
synthesissampling

continuous
analysis

digital
filtering

input output

discretization reconstruction

Cardinal cubic B-spline

Needs sample sharing for variance reduction and speed

18



Texturing

Assuming good reconstruction and prefilter kernels,

• Upsampling needs only reconstruction

• Downsampling needs only prefiltering

19



Box upsampling

20



Linear upsampling

21



Cardinal Cubic B-spline upsampling

22



Texturing

Assuming good reconstruction and prefilter kernels,

• Upsampling needs only reconstruction

• Downsampling needs only prefiltering

Reconstruction is easy, prefiltering is difficult

Non-uniform resampling

• Reconstruct when locally upsampling

• Prefilter when locally downsampling

• Jacobian of map from screen to texture coordinates decides

Approximate solution for isotropic downsampling: Mipmaps

Otherwise, use anisotropic filtering

23



Texturing

Assuming good reconstruction and prefilter kernels,

• Upsampling needs only reconstruction

• Downsampling needs only prefiltering

Reconstruction is easy, prefiltering is difficult

Non-uniform resampling

• Reconstruct when locally upsampling

• Prefilter when locally downsampling

• Jacobian of map from screen to texture coordinates decides

Approximate solution for isotropic downsampling: Mipmaps

Otherwise, use anisotropic filtering

23



Texturing

Assuming good reconstruction and prefilter kernels,

• Upsampling needs only reconstruction

• Downsampling needs only prefiltering

Reconstruction is easy, prefiltering is difficult

Non-uniform resampling

• Reconstruct when locally upsampling

• Prefilter when locally downsampling

• Jacobian of map from screen to texture coordinates decides

Approximate solution for isotropic downsampling: Mipmaps

Otherwise, use anisotropic filtering

23



Texturing

Assuming good reconstruction and prefilter kernels,

• Upsampling needs only reconstruction

• Downsampling needs only prefiltering

Reconstruction is easy, prefiltering is difficult

Non-uniform resampling

• Reconstruct when locally upsampling

• Prefilter when locally downsampling

• Jacobian of map from screen to texture coordinates decides

Approximate solution for isotropic downsampling: Mipmaps

Otherwise, use anisotropic filtering

23



Texturing

Assuming good reconstruction and prefilter kernels,

• Upsampling needs only reconstruction

• Downsampling needs only prefiltering

Reconstruction is easy, prefiltering is difficult

Non-uniform resampling

• Reconstruct when locally upsampling

• Prefilter when locally downsampling

• Jacobian of map from screen to texture coordinates decides

Approximate solution for isotropic downsampling: Mipmaps

Otherwise, use anisotropic filtering

23



Texturing

Assuming good reconstruction and prefilter kernels,

• Upsampling needs only reconstruction

• Downsampling needs only prefiltering

Reconstruction is easy, prefiltering is difficult

Non-uniform resampling

• Reconstruct when locally upsampling

• Prefilter when locally downsampling

• Jacobian of map from screen to texture coordinates decides

Approximate solution for isotropic downsampling: Mipmaps

Otherwise, use anisotropic filtering

23



References

E. C. Anderson. Monte carlo methods and importance sampling. UC

Berkeley, 1999. Lecture notes for Stat 578C.

T. Duff. Polygon scan conversion by exact convolution. In Jacques André

and Roger D. Hersch, editors, Raster Imaging and Digital Typography,

pages 154–168. Cambridge University Press, 1989.

J. Manson and S. Schaefer. Analytic rasterization of curves with

polynomial filters. Computer Graphics Forum (Proceedings of

Eurographics), 32(2pt4):499–507, 2013.

D. Nehab and H. Hoppe. Random-access rendering of general vector

graphics. ACM Transactions on Graphics (Proceedings of ACM

SIGGRAPH 2008), 27(5):135, 2008.

D. Nehab and H. Hoppe. A fresh look at generalized sampling.

Foundations and Trends in Computer Graphics and Vision, 8(1):1–84,

2014.
24


	Anti-aliasing and texture mapping
	References

