2D COMPUTER GRAPHICS

Diego Nehab Summer 2020

IMPA

DIGITAL IMAGES AND ANTI-ALIASING

Let $S = [a, b] \times [c, d] \subset \mathbf{R}^2$ be a spatial domain

Let $S = [a, b] \times [c, d] \subset \mathbf{R}^2$ be a spatial domain

Let $V=R_{>0}\rightarrow R_{\geq 0}$ be the space of spectral exitance distributions

Let $S = [a, b] \times [c, d] \subset \mathbf{R}^2$ be a spatial domain

Let $V = \mathbf{R}_{>0} \rightarrow \mathbf{R}_{\geq 0}$ be the space of spectral exitance distributions An ideal image is a function

 $I:S\to V$

that takes point p to its spectral exitance $M_{e,\lambda}$

Let $S = [a, b] \times [c, d] \subset \mathbb{R}^2$ be a spatial domain

Let $V = \mathbf{R}_{>0} \rightarrow \mathbf{R}_{\geq 0}$ be the space of spectral exitance distributions An ideal image is a function

 $I:S\to V$

that takes point p to its spectral exitance $M_{e,\lambda}$

But computers are finite, so we must discretize

Common to discretize the domain into a uniform grid $D = \{1, \dots, w\} \times \{1, \dots, h\}$

Common to discretize the domain into a uniform grid $D = \{1, \dots, w\} \times \{1, \dots, h\}$

Two popular ways of mapping between $(i,j) \in D$ and $(x,y) \in S$

$$(x,y) = \left(a + \frac{i-1}{w}(b-a), \ c + \frac{j-1}{h}(d-c)\right)$$
(primal)

$$(x,y) = (a + \frac{1-0.5}{W}(b-a), c + \frac{1-0.5}{h}(d-c))$$
 (dual)

Common to discretize the domain into a uniform grid

$$D = \{1, \ldots, w\} \times \{1, \ldots, h\}$$

Two popular ways of mapping between $(i, j) \in D$ and $(x, y) \in S$

$$(x,y) = \left(a + \frac{i-1}{w}(b-a), \ c + \frac{j-1}{h}(d-c)\right)$$
(primal)
$$(x,y) = \left(a + \frac{i-0.5}{w}(b-a), \ c + \frac{j-0.5}{h}(d-c)\right)$$
(dual)

Could use other grids (e.g. hexagonal)

Common to discretize the domain into a uniform grid

$$D = \{1, \ldots, w\} \times \{1, \ldots, h\}$$

Two popular ways of mapping between $(i, j) \in D$ and $(x, y) \in S$

$$(x,y) = \left(a + \frac{i-1}{w}(b-a), \ c + \frac{j-1}{h}(d-c)\right)$$
(primal)
$$(x,y) = \left(a + \frac{i-0.5}{w}(b-a), \ c + \frac{j-0.5}{h}(d-c)\right)$$
(dual)

Could use other grids (e.g. hexagonal)

"Resolution" is an ambiguous term

- In printers and scanners, refers to "dots per inch" (DPI)
- In images and cameras, typically refers to $w \times h$

• Luminous exitance levels 8-bits {0,...,255}, gamma encoded

- Luminous exitance levels 8-bits $\{0, \dots, 255\}$, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (sRGB)

- \cdot Luminous exitance levels 8-bits {0, \dots, 255}, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (*sRGB*)
- Include an alpha channel?

- \cdot Luminous exitance levels 8-bits {0, \dots, 255}, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (*sRGB*)
- Include an alpha channel?
- Use indices into a color palette?

- \cdot Luminous exitance levels 8-bits {0, \dots, 255}, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (sRGB)
- Include an alpha channel?
- Use indices into a color palette?
- Use more than 3 color channels (multispectral images)?

- \cdot Luminous exitance levels 8-bits {0, \dots, 255}, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (sRGB)
- Include an alpha channel?
- Use indices into a color palette?
- Use more than 3 color channels (multispectral images)?
- Represent each channel in 16-bits or even 32-bit floats (HDR)?

- \cdot Luminous exitance levels 8-bits {0, \dots, 255}, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (sRGB)
- Include an alpha channel?
- Use indices into a color palette?
- Use more than 3 color channels (multispectral images)?
- Represent each channel in 16-bits or even 32-bit floats (HDR)?

A pixel is simply the value stored at coordinates (i, j)

- \cdot Luminous exitance levels 8-bits {0, \dots, 255}, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (sRGB)
- Include an alpha channel?
- Use indices into a color palette?
- Use more than 3 color channels (multispectral images)?
- Represent each channel in 16-bits or even 32-bit floats (HDR)?

A pixel is simply the value stored at coordinates (i, j)

It is not a little square [Smith, 1995]

- \cdot Luminous exitance levels 8-bits {0, \dots, 255}, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (sRGB)
- Include an alpha channel?
- Use indices into a color palette?
- Use more than 3 color channels (multispectral images)?
- Represent each channel in 16-bits or even 32-bit floats (HDR)?

A pixel is simply the value stored at coordinates (i, j)

It is not a little square [Smith, 1995]

How to select the values to store?

How do we obtain an image from a vector graphics illustration?

Best according to what? Perceived difference, L₂ metric?

Best according to what? Perceived difference, L₂ metric?

Typical situation is quite complex

Best according to what? Perceived difference, L₂ metric?

Typical situation is quite complex

Perceptual metrics are a work in progress

- s-CIELAB metric [Zhang and Wandell, 1996]
- SSIM [Wang et al., 2004]

Best according to what? Perceived difference, L₂ metric?

Typical situation is quite complex

Perceptual metrics are a work in progress

- s-CIELAB metric [Zhang and Wandell, 1996]
- SSIM [Wang et al., 2004]

Monitors can be very different from one another

- Different subpixel layouts
- Different subpixel spectral properties

DIFFERENT MONITORS

• Functions you can represent

• Functions you can represent

Define a metric

 \cdot A way to compare original function with approximation

• Functions you can represent

Define a metric

 \cdot A way to compare original function with approximation

Discretization becomes an optimization problem

• Functions you can represent

Define a metric

• A way to compare original function with approximation

Discretization becomes an optimization problem

Approximation errors can be coherent in a disturbing way

• Jagged edges (your renderer)

• Functions you can represent

Define a metric

• A way to compare original function with approximation

Discretization becomes an optimization problem

Approximation errors can be coherent in a disturbing way

- Jagged edges (your renderer)
- Weird artefacts

• Functions you can represent

Define a metric

• A way to compare original function with approximation

Discretization becomes an optimization problem

Approximation errors can be coherent in a disturbing way

- Jagged edges (your renderer)
- Weird artefacts
- Show resolution chart, zonal plate, infinite checkerboard

• Functions you can represent

Define a metric

• A way to compare original function with approximation

Discretization becomes an optimization problem

Approximation errors can be coherent in a disturbing way

- Jagged edges (your renderer)
- Weird artefacts
- Show resolution chart, zonal plate, infinite checkerboard
- This is what we call aliasing

• Functions you can represent

Define a metric

• A way to compare original function with approximation

Discretization becomes an optimization problem

Approximation errors can be coherent in a disturbing way

- Jagged edges (your renderer)
- Weird artefacts
- Show resolution chart, zonal plate, infinite checkerboard
- This is what we call aliasing

General case is too difficult to analyse. So we simplify

TRADITIONAL SAMPLING

LINEAR, SHIFT-INVARIANT SYSTEMS

Let $U = \mathbf{R} \rightarrow \mathbf{R}$ and let $f, g \in U$
Let $U = \mathbf{R} \rightarrow \mathbf{R}$ and let $f, g \in U$

 $L: U \rightarrow U$ is linear if

 $L\{\alpha f + g\} = \alpha L\{f\} + L\{g\}$

Let $U = \mathbf{R} \rightarrow \mathbf{R}$ and let $f, g \in U$

 $L: U \rightarrow U$ is linear if

```
L\{\alpha f + g\} = \alpha L\{f\} + L\{g\}
```

 $S_{\alpha}: U \rightarrow U$ is a shift if

 $\mathsf{S}_{\alpha}\{f\}(t) = f(t - \alpha)$

Let $U = \mathbf{R} \rightarrow \mathbf{R}$ and let $f, g \in U$

 $L: U \rightarrow U$ is linear if

 $L\{\alpha f + g\} = \alpha L\{f\} + L\{g\}$

 $S_{\alpha}: U \rightarrow U$ is a shift if

 $S_{\alpha}{f}(t) = f(t - \alpha)$

 $L: U \rightarrow U$ is shift-invariant if

 $L\{S_{\alpha}\{f\}\} = S_{\alpha}\{L\{f\}\}$

Also known as Dirac's delta "function"

THE UNIT IMPULSE

Also known as Dirac's delta "function"

Defined by the sifting property or the sampling property

$$f(t) = \int_{-\infty}^{\infty} f(u) \,\delta(t-u) \,du$$

The unit impulse

Also known as Dirac's delta "function"

Defined by the sifting property or the sampling property $f(t) = \int_{-\infty}^{\infty} f(u) \, \delta(t-u) \, du$

The set of shifted deltas looks like some kind of "basis"

Also known as Dirac's delta "function"

Defined by the sifting property or the sampling property $f(t) = \int_{-\infty}^{\infty} f(u) \, \delta(t-u) \, du$

The set of shifted deltas looks like some kind of "basis"

Each element is perfectly located in space (or time)

Any linear, time-invariant operator L is a convolution $(f * g)(t) = \int_{-\infty}^{\infty} f(u) g(t - u) du$

Any linear, time-invariant operator L is a convolution $(f * g)(t) = \int_{-\infty}^{\infty} f(u) g(t - u) du$

$$L\{f\} = L\{f * \delta\}$$

Any linear, time-invariant operator L is a convolution $(f * g)(t) = \int_{-\infty}^{\infty} f(u) g(t - u) du$

$$L{f} = L{f * \delta}$$

= $L\left\{\int_{-\infty}^{\infty} f(u) \,\delta(\cdot - u) \,du\right\}$

Any linear, time-invariant operator L is a convolution $(f * g)(t) = \int_{-\infty}^{\infty} f(u) g(t - u) du$

1

$$L{f} = L{f * \delta}$$

= $L\left\{\int_{-\infty}^{\infty} f(u) \,\delta(\cdot - u) \,du\right\}$
= $\int_{-\infty}^{\infty} f(u) \,L\{\delta(\cdot - u)\} \,du$

Any linear, time-invariant operator L is a convolution $(f * g)(t) = \int_{-\infty}^{\infty} f(u) g(t - u) du$

$$L\{f\} = L\{f * \delta\}$$

= $L\left\{\int_{-\infty}^{\infty} f(u) \,\delta(\cdot - u) \,du\right\}$
= $\int_{-\infty}^{\infty} f(u) \,L\{\delta(\cdot - u)\} \,du$
= $\int_{-\infty}^{\infty} f(u) \,L\{\delta\}(\cdot - u) \,du$

Any linear, time-invariant operator L is a convolution $(f * g)(t) = \int_{-\infty}^{\infty} f(u) g(t - u) du$

$$L\{f\} = L\{f * \delta\}$$

= $L\left\{\int_{-\infty}^{\infty} f(u) \,\delta(\cdot - u) \,du\right\}$
= $\int_{-\infty}^{\infty} f(u) \,L\{\delta(\cdot - u)\} \,du$
= $\int_{-\infty}^{\infty} f(u) \,L\{\delta\}(\cdot - u) \,du$
= $f * L\{\delta\}$

Linear shift-invariant systems model many physical phenomena

All linear shift-invariant systems can be simultaneously diagonalized

All linear shift-invariant systems can be simultaneously diagonalized

Complex exponentials are the common "basis"

$$f(t) = \int_{-\infty}^{\infty} F(\omega) e^{2\pi i \omega t} \, d\omega$$

All linear shift-invariant systems can be simultaneously diagonalized Complex exponentials are the common "basis"

$$f(t) = \int_{-\infty}^{\infty} F(\omega) e^{2\pi i \omega t} d\omega$$

Each element is perfectly located in frequency

All linear shift-invariant systems can be simultaneously diagonalized Complex exponentials are the common "basis"

$$f(t) = \int_{-\infty}^{\infty} F(\omega) e^{2\pi i \omega t} d\omega$$

Each element is perfectly located in frequency

Fourier transform is just a "change of basis"

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i \omega t} dt$$

All linear shift-invariant systems can be simultaneously diagonalized Complex exponentials are the common "basis"

$$f(t) = \int_{-\infty}^{\infty} F(\omega) e^{2\pi i \omega t} d\omega$$

Each element is perfectly located in frequency

Fourier transform is just a "change of basis"

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i \omega t} dt$$

Works because, in the sense of distributions,

$$\delta(t) = \int_{-\infty}^{\infty} e^{2\pi i \omega t} \, d\omega$$

 $\delta \stackrel{\mathcal{F}}{\longleftrightarrow} 1$

$$\delta \stackrel{\mathcal{F}}{\longleftrightarrow} 1$$

$$\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{t^2}{2\sigma^2}} \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-2\pi^2\sigma^2\omega^2}$$

$$box \stackrel{\mathcal{F}}{\longleftrightarrow} sinc$$

$$III \stackrel{\mathcal{F}}{\longleftrightarrow} III$$

$$f(at) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{a}F(\frac{\omega}{a})$$

$$\delta \stackrel{\mathcal{F}}{\longleftrightarrow} 1$$

$$\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{t^2}{2\sigma^2}} \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-2\pi^2\sigma^2\omega^2}$$

$$box \stackrel{\mathcal{F}}{\longleftrightarrow} sinc$$

$$III \stackrel{\mathcal{F}}{\longleftrightarrow} III$$

$$f(at) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{a}F(\frac{\omega}{a})$$

$$f(t-a) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-2\pi i \omega a}F(\omega)$$

$$\begin{split} \delta & \stackrel{\mathcal{F}}{\longleftrightarrow} 1 \\ \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{t^2}{2\sigma^2}} & \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-2\pi^2\sigma^2\omega^2} \\ & \mathbf{box} & \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{sinc} \\ & \text{III} & \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{III} \\ & f(at) & \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{a} F(\frac{\omega}{a}) \\ & f(t-a) & \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-2\pi i \omega a} F(\omega) \\ & f * g & \stackrel{\mathcal{F}}{\longleftrightarrow} F G \end{split}$$
(convolution theorem)

Let $f_k = f(k), k \in \mathbb{Z}$ be a sampling of f

Let $f_k = f(k), k \in \mathbf{Z}$ be a sampling of f

$$\tilde{F}(\omega) = \sum_{k=-\infty}^{\infty} f_k e^{2\pi i \omega k}$$

Let $f_k = f(k), k \in \mathsf{Z}$ be a sampling of f

$$\tilde{F}(\omega) = \sum_{k=-\infty}^{\infty} f_k e^{2\pi i\omega k}$$
$$= \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{-2\pi i\omega t} \delta(t-k) dt$$

Let $f_k = f(k), k \in \mathsf{Z}$ be a sampling of f

$$\widetilde{F}(\omega) = \sum_{k=-\infty}^{\infty} f_k e^{2\pi i\omega k}$$
$$= \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{-2\pi i\omega t} \delta(t-k) dt$$
$$= \int_{-\infty}^{\infty} e^{-2\pi i\omega t} f(t) \sum_{k=-\infty}^{\infty} \delta(t-k) dt$$

Let $f_k = f(k), k \in \mathsf{Z}$ be a sampling of f

$$\begin{split} \tilde{F}(\omega) &= \sum_{k=-\infty}^{\infty} f_k \, e^{2\pi i \omega k} \\ &= \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) \, e^{-2\pi i \omega t} \, \delta(t-k) \, dt \\ &= \int_{-\infty}^{\infty} e^{-2\pi i \omega t} f(t) \sum_{k=-\infty}^{\infty} \delta(t-k) \, dt \quad = \int_{-\infty}^{\infty} e^{-2\pi i \omega t} \, (f \cdot \mathrm{III})(t) \, dt \end{split}$$

Let $f_k = f(k), k \in \mathsf{Z}$ be a sampling of f

Use f_k in the Fourier series expansion of some periodic function $\tilde{F}(\omega)$

$$\begin{split} \tilde{F}(\omega) &= \sum_{k=-\infty}^{\infty} f_k e^{2\pi i \omega k} \\ &= \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{-2\pi i \omega t} \,\delta(t-k) \,dt \\ &= \int_{-\infty}^{\infty} e^{-2\pi i \omega t} f(t) \sum_{k=-\infty}^{\infty} \delta(t-k) \,dt \quad = \int_{-\infty}^{\infty} e^{-2\pi i \omega t} \,(f \cdot \mathrm{III})(t) \,dt \end{split}$$

So we see that $\tilde{F}(\omega)$ is the Fourier transform of $f \cdot III$.

Let $f_k = f(k), k \in \mathsf{Z}$ be a sampling of f

Use f_k in the Fourier series expansion of some periodic function $\tilde{F}(\omega)$

$$\begin{split} \tilde{F}(\omega) &= \sum_{k=-\infty}^{\infty} f_k e^{2\pi i \omega k} \\ &= \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{-2\pi i \omega t} \,\delta(t-k) \,dt \\ &= \int_{-\infty}^{\infty} e^{-2\pi i \omega t} f(t) \sum_{k=-\infty}^{\infty} \delta(t-k) \,dt \quad = \int_{-\infty}^{\infty} e^{-2\pi i \omega t} \,(f \cdot \mathrm{III})(t) \,dt \end{split}$$

So we see that $\tilde{F}(\omega)$ is the Fourier transform of $f \cdot III$.

This associates the sequence f_k with the function $f \cdot III$.

Shannon-Whittaker-Nyquist-Kotelnikov theorem

Using the convolution theorem, we get $f \cdot \amalg \xleftarrow{\mathcal{F}} F * \amalg$

Using the convolution theorem, we get $f \cdot \amalg \xleftarrow{\mathcal{F}} F \ast \amalg$

Now recall that

 $\text{box} \xleftarrow{\mathcal{F}} \text{sinc}$

Using the convolution theorem, we get $f \cdot \amalg \xleftarrow{\mathcal{F}} F \ast \amalg$

Now recall that

$$\mathsf{box} \xleftarrow{\mathcal{F}} \mathsf{sinc}$$

If F is supported in $\left(-\frac{1}{2}, \frac{1}{2}\right)$, then $(F * \text{III}) \cdot \mathbf{box} = F$
Using the convolution theorem, we get $f \cdot \operatorname{III} \xleftarrow{\mathcal{F}} F * \operatorname{III}$

Now recall that

$$\mathsf{box} \xleftarrow{\mathcal{F}} \mathsf{sinc}$$

If F is supported in $\left(-\frac{1}{2}, \frac{1}{2}\right)$, then $(F * III) \cdot \mathbf{box} = F$

And so,

 $f = (f \cdot III) * sinc$

Using the convolution theorem, we get $f \cdot \amalg \xleftarrow{\mathcal{F}} F \ast \amalg$

Now recall that

$$\mathsf{box} \xleftarrow{\mathcal{F}} \mathsf{sinc}$$

If F is supported in
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$
, then
 $(F * III) \cdot \mathbf{box} = F$

And so,

$$f = (f \cdot III) * \mathsf{sinc}$$

Show theorem graphically

Let T be a sampling period

Let T be a sampling period

The shift-invariant approximation space $V_{\varphi,T}$ is

$$V_{\varphi,T} = \left\{ \tilde{f} : \mathbf{R} \to \mathbf{R} \mid \tilde{f}(t) = \sum_{i=-\infty}^{\infty} c_i \varphi(t-iT), \ c_i \in \mathbf{R}, \ i \in \mathbf{Z} \right\}$$

Let T be a sampling period

The shift-invariant approximation space $V_{\varphi,T}$ is

$$V_{\varphi,T} = \left\{ \tilde{f} : \mathbf{R} \to \mathbf{R} \mid \tilde{f}(t) = \sum_{i=-\infty}^{\infty} c_i \varphi(t-iT), \ c_i \in \mathbf{R}, \ i \in \mathbf{Z} \right\}$$

Reconstruction with φ transforms c_i into \tilde{f}

Let T be a sampling period

The shift-invariant approximation space $V_{\varphi,T}$ is

$$V_{\varphi,T} = \left\{ \tilde{f} : \mathbf{R} \to \mathbf{R} \mid \tilde{f}(t) = \sum_{i=-\infty}^{\infty} c_i \varphi(t-iT), \ c_i \in \mathbf{R}, \ i \in \mathbf{Z} \right\}$$

Reconstruction with φ transforms c_i into \tilde{f}

Typically, c_i are obtained from some f being approximated

Let T be a sampling period

The shift-invariant approximation space $V_{\varphi,T}$ is

$$V_{\varphi,T} = \left\{ \tilde{f} : \mathbf{R} \to \mathbf{R} \mid \tilde{f}(t) = \sum_{i=-\infty}^{\infty} c_i \varphi(t-iT), \ c_i \in \mathbf{R}, \ i \in \mathbf{Z} \right\}$$

Reconstruction with φ transforms c_i into \tilde{f}

Typically, c_i are obtained from some f being approximated

Process uses a prefilter ψ

$$c_i = \int_{-\infty}^{\infty} f(t) \, \psi(t - iT) \, dt$$

Let T be a sampling period

The shift-invariant approximation space $V_{\varphi,T}$ is

$$V_{\varphi,T} = \left\{ \tilde{f} : \mathbf{R} \to \mathbf{R} \mid \tilde{f}(t) = \sum_{i=-\infty}^{\infty} c_i \varphi(t-iT), \ c_i \in \mathbf{R}, \ i \in \mathbf{Z} \right\}$$

Reconstruction with φ transforms c_i into \tilde{f}

Typically, c_i are obtained from some f being approximated

Process uses a prefilter ψ

$$c_i = \int_{-\infty}^{\infty} f(t) \, \psi(t - iT) \, dt$$

Sampling is the special case where $\psi = \delta$

EXAMPLES

Another case study: $\varphi = \operatorname{sinc}, L_2, T = 1$

- $\cdot\,$ Prove that optimal prefilter is sinc
- This is the "ideal sampling"

EXAMPLES

Another case study: $\varphi =$ **sinc**, L_2 , T = 1

- Prove that optimal prefilter is **sinc**
- This is the "ideal sampling"

A simple case study: $\varphi = \mathbf{box}$, L_2 , T = 1

• Prove that optimal prefilter is **box**

EXAMPLES

Another case study: $\varphi =$ **sinc**, L_2 , T = 1

- Prove that optimal prefilter is **sinc**
- This is the "ideal sampling"

A simple case study: $\varphi = \mathbf{box}$, L_2 , T = 1

• Prove that optimal prefilter is **box**

Simple because shifted generating functions are orthogonal

• What happens with the non-orthogonal case?

There are no practical bandlimited functions

- There are no practical bandlimited functions
- Bandlimited approximations are not perceptual close to original

- There are no practical bandlimited functions
- Bandlimited approximations are not perceptual close to original Show ringing

- Big problem: L₂ metric is not perceptual
- There are no practical bandlimited functions
- Bandlimited approximations are not perceptual close to original
- Show ringing
- Common practice is to reconstruct with **hat**, prefilter with **box**

- Big problem: L₂ metric is not perceptual
- There are no practical bandlimited functions
- Bandlimited approximations are not perceptual close to original

Show ringing

Common practice is to reconstruct with **hat**, prefilter with **box**

Common practice is not very good...

- Big problem: L₂ metric is not perceptual
- There are no practical bandlimited functions
- Bandlimited approximations are not perceptual close to original

Show ringing

- Common practice is to reconstruct with **hat**, prefilter with **box**
- Common practice is not very good...

Show comparisons

References

- A. R. Smith. A pixel is not a little square, a pixel is not a little square, a pixel is not a little square! (and a voxel is not a little cube). Technical Report 6, Microsoft Research, 1995.
- Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assessment: From error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612, 2004.
- X. Zhang and B. A. Wandell. A spatial extension to CIELAB for digital color image reproduction. In *Society for Information Display Symposium Technical Digest*, volume 27, pages 731–734, 1996.