2D Computer Graphics

Diego Nehab
Summer 2020

IMPA

DIGITAL IMAGES AND ANTI-ALIASING

WHAT IS AN IMAGE?

Let $S=[a, b] \times[c, d] \subset R^{2}$ be a spatial domain

WHAT IS AN IMAGE?

Let $S=[a, b] \times[c, d] \subset R^{2}$ be a spatial domain
Let $V=R_{>0} \rightarrow R_{\geq 0}$ be the space of spectral exitance distributions

WHAT IS AN IMAGE?

Let $S=[a, b] \times[c, d] \subset \mathrm{R}^{2}$ be a spatial domain
Let $V=R_{>0} \rightarrow R_{\geq 0}$ be the space of spectral exitance distributions
An ideal image is a function

$$
I: S \rightarrow V
$$

that takes point p to its spectral exitance $M_{e, \lambda}$

WHAT IS AN IMAGE?

Let $S=[a, b] \times[c, d] \subset \mathrm{R}^{2}$ be a spatial domain
Let $V=R_{>0} \rightarrow R_{\geq 0}$ be the space of spectral exitance distributions
An ideal image is a function

$$
I: S \rightarrow V
$$

that takes point p to its spectral exitance $M_{e, \lambda}$
But computers are finite, so we must discretize

DOMAIN DISCRETIZATION

Common to discretize the domain into a uniform grid

$$
D=\{1, \ldots, w\} \times\{1, \ldots, h\}
$$

DOMAIN DISCRETIZATION

Common to discretize the domain into a uniform grid

$$
D=\{1, \ldots, w\} \times\{1, \ldots, h\}
$$

Two popular ways of mapping between $(i, j) \in D$ and $(x, y) \in S$

$$
\begin{array}{ll}
(x, y)=\left(a+\frac{i-1}{w}(b-a), c+\frac{j-1}{h}(d-c)\right) & \text { (primal) } \\
(x, y)=\left(a+\frac{i-0.5}{w}(b-a), c+\frac{j-0.5}{h}(d-c)\right) & \text { (dual) }
\end{array}
$$

DOMAIN DISCRETIZATION

Common to discretize the domain into a uniform grid

$$
D=\{1, \ldots, w\} \times\{1, \ldots, h\}
$$

Two popular ways of mapping between $(i, j) \in D$ and $(x, y) \in S$

$$
\begin{array}{ll}
(x, y)=\left(a+\frac{i-1}{w}(b-a), c+\frac{j-1}{h}(d-c)\right) & \text { (primal) } \\
(x, y)=\left(a+\frac{i-0.5}{w}(b-a), c+\frac{j-0.5}{h}(d-c)\right) & \text { (dual) }
\end{array}
$$

Could use other grids (e.g. hexagonal)

DOMAIN DISCRETIZATION

Common to discretize the domain into a uniform grid

$$
D=\{1, \ldots, w\} \times\{1, \ldots, h\}
$$

Two popular ways of mapping between $(i, j) \in D$ and $(x, y) \in S$

$$
\begin{array}{ll}
(x, y)=\left(a+\frac{i-1}{w}(b-a), c+\frac{j-1}{h}(d-c)\right) & \text { (primal) } \\
(x, y)=\left(a+\frac{i-0.5}{w}(b-a), c+\frac{j-0.5}{h}(d-c)\right) & \text { (dual) }
\end{array}
$$

Could use other grids (e.g. hexagonal)
"Resolution" is an ambiguous term

- In printers and scanners, refers to "dots per inch" (DPI)
- In images and cameras, typically refers to $w \times h$

CODOMAIN DISCRETIZATION

Common to discretize the codomain as into a set C

- Luminous exitance levels 8 -bits $\{0, \ldots, 255\}$, gamma encoded

CODOMAIN DISCRETIZATION

Common to discretize the codomain as into a set C

- Luminous exitance levels 8 -bits $\{0, \ldots, 255\}$, gamma encoded
- R, G, and B in 8-bits each, gamma encoded ($s R G B$)

CODOMAIN DISCRETIZATION

Common to discretize the codomain as into a set C

- Luminous exitance levels 8 -bits $\{0, \ldots, 255\}$, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (sRGB)
- Include an alpha channel?

CODOMAIN DISCRETIZATION

Common to discretize the codomain as into a set C

- Luminous exitance levels 8 -bits $\{0, \ldots, 255\}$, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (sRGB)
- Include an alpha channel?
- Use indices into a color palette?

CODOMAIN DISCRETIZATION

Common to discretize the codomain as into a set C

- Luminous exitance levels 8 -bits $\{0, \ldots, 255\}$, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (sRGB)
- Include an alpha channel?
- Use indices into a color palette?
- Use more than 3 color channels (multispectral images)?

CODOMAIN DISCRETIZATION

Common to discretize the codomain as into a set C

- Luminous exitance levels 8 -bits $\{0, \ldots, 255\}$, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (sRGB)
- Include an alpha channel?
- Use indices into a color palette?
- Use more than 3 color channels (multispectral images)?
- Represent each channel in 16-bits or even 32-bit floats (HDR)?

CODOMAIN DISCRETIZATION

Common to discretize the codomain as into a set C

- Luminous exitance levels 8-bits $\{0, \ldots, 255\}$, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (sRGB)
- Include an alpha channel?
- Use indices into a color palette?
- Use more than 3 color channels (multispectral images)?
- Represent each channel in 16-bits or even 32-bit floats (HDR)?

A pixel is simply the value stored at coordinates (i, j)

CODOMAIN DISCRETIZATION

Common to discretize the codomain as into a set C

- Luminous exitance levels 8-bits $\{0, \ldots, 255\}$, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (sRGB)
- Include an alpha channel?
- Use indices into a color palette?
- Use more than 3 color channels (multispectral images)?
- Represent each channel in 16-bits or even 32-bit floats (HDR)?

A pixel is simply the value stored at coordinates (i, j)
It is not a little square [Smith, 1995]

CODOMAIN DISCRETIZATION

Common to discretize the codomain as into a set C

- Luminous exitance levels 8-bits $\{0, \ldots, 255\}$, gamma encoded
- R, G, and B in 8-bits each, gamma encoded (sRGB)
- Include an alpha channel?
- Use indices into a color palette?
- Use more than 3 color channels (multispectral images)?
- Represent each channel in 16-bits or even 32-bit floats (HDR)?

A pixel is simply the value stored at coordinates (i, j)
It is not a little square [Smith, 1995]
How to select the values to store?

Rendering

How do we obtain an image from a vector graphics illustration?

Rendering

How do we obtain an image from a vector graphics illustration?
Represent where? Monitor, printer?

Rendering

How do we obtain an image from a vector graphics illustration?
Represent where? Monitor, printer?
Best according to what? Perceived difference, L_{2} metric?

Rendering

How do we obtain an image from a vector graphics illustration?
Represent where? Monitor, printer?
Best according to what? Perceived difference, L_{2} metric?
Typical situation is quite complex

Rendering

How do we obtain an image from a vector graphics illustration?
Represent where? Monitor, printer?
Best according to what? Perceived difference, L_{2} metric?
Typical situation is quite complex
Perceptual metrics are a work in progress

- s-CIELAB metric [Zhang and Wandell, 1996]
- SSIM [Wang et al., 2004]

Rendering

How do we obtain an image from a vector graphics illustration?
Represent where? Monitor, printer?
Best according to what? Perceived difference, L_{2} metric?
Typical situation is quite complex
Perceptual metrics are a work in progress

- s-CIELAB metric [Zhang and Wandell, 1996]
- SSIM [Wang et al., 2004]

Monitors can be very different from one another

- Different subpixel layouts
- Different subpixel spectral properties

DIFFERENT MONITORS

THE GENERAL CASE

Define an approximation space

- Functions you can represent

THE GENERAL CASE

Define an approximation space

- Functions you can represent

Define a metric

- A way to compare original function with approximation

THE GENERAL CASE

Define an approximation space

- Functions you can represent

Define a metric

- A way to compare original function with approximation

Discretization becomes an optimization problem

THE GENERAL CASE

Define an approximation space

- Functions you can represent

Define a metric

- A way to compare original function with approximation

Discretization becomes an optimization problem
Approximation errors can be coherent in a disturbing way

- Jagged edges (your renderer)

The general case

Define an approximation space

- Functions you can represent

Define a metric

- A way to compare original function with approximation

Discretization becomes an optimization problem
Approximation errors can be coherent in a disturbing way

- Jagged edges (your renderer)
- Weird artefacts

The general case

Define an approximation space

- Functions you can represent

Define a metric

- A way to compare original function with approximation

Discretization becomes an optimization problem
Approximation errors can be coherent in a disturbing way

- Jagged edges (your renderer)
- Weird artefacts
- Show resolution chart, zonal plate, infinite checkerboard

The general case

Define an approximation space

- Functions you can represent

Define a metric

- A way to compare original function with approximation

Discretization becomes an optimization problem
Approximation errors can be coherent in a disturbing way

- Jagged edges (your renderer)
- Weird artefacts
- Show resolution chart, zonal plate, infinite checkerboard
- This is what we call aliasing

The general case

Define an approximation space

- Functions you can represent

Define a metric

- A way to compare original function with approximation

Discretization becomes an optimization problem
Approximation errors can be coherent in a disturbing way

- Jagged edges (your renderer)
- Weird artefacts
- Show resolution chart, zonal plate, infinite checkerboard
- This is what we call aliasing

General case is too difficult to analyse. So we simplify

TRADITIONAL SAMPLING

discretization
reconstruction

LINEAR, SHIFT-INVARIANT SYSTEMS

Let $U=\mathbf{R} \rightarrow \mathbf{R}$ and let $f, g \in U$

LINEAR, SHIFT-INVARIANT SYSTEMS

Let $U=\mathbf{R} \rightarrow \mathbf{R}$ and let $f, g \in U$
$L: U \rightarrow U$ is linear if

$$
L\{\alpha f+g\}=\alpha L\{f\}+L\{g\}
$$

LINEAR, SHIFT-INVARIANT SYSTEMS

Let $U=\mathbf{R} \rightarrow \mathbf{R}$ and let $f, g \in U$
$L: U \rightarrow U$ is linear if

$$
L\{\alpha f+g\}=\alpha L\{f\}+L\{g\}
$$

$S_{\alpha}: U \rightarrow U$ is a shift if

$$
S_{\alpha}\{f\}(t)=f(t-\alpha)
$$

LINEAR, SHIFT-INVARIANT SYSTEMS

Let $U=\mathbf{R} \rightarrow \mathbf{R}$ and let $f, g \in U$
$L: U \rightarrow U$ is linear if

$$
L\{\alpha f+g\}=\alpha L\{f\}+L\{g\}
$$

$S_{\alpha}: U \rightarrow U$ is a shift if

$$
S_{\alpha}\{f\}(t)=f(t-\alpha)
$$

$L: U \rightarrow U$ is shift-invariant if

$$
L\left\{S_{\alpha}\{f\}\right\}=S_{\alpha}\{L\{f\}\}
$$

THE UNIT IMPULSE

Also known as Dirac's delta "function"

THE UNIT IMPULSE

Also known as Dirac's delta "function"
Defined by the sifting property or the sampling property

$$
f(t)=\int_{-\infty}^{\infty} f(u) \delta(t-u) d u
$$

The unit impulse

Also known as Dirac's delta "function"
Defined by the sifting property or the sampling property

$$
f(t)=\int_{-\infty}^{\infty} f(u) \delta(t-u) d u
$$

The set of shifted deltas looks like some kind of "basis"

The unit impulse

Also known as Dirac's delta "function"
Defined by the sifting property or the sampling property

$$
f(t)=\int_{-\infty}^{\infty} f(u) \delta(t-u) d u
$$

The set of shifted deltas looks like some kind of "basis"
Each element is perfectly located in space (or time)

Convolution

Any linear, time-invariant operator L is a convolution

$$
(f * g)(t)=\int_{-\infty}^{\infty} f(u) g(t-u) d u
$$

Convolution

Any linear, time-invariant operator L is a convolution

$$
(f * g)(t)=\int_{-\infty}^{\infty} f(u) g(t-u) d u
$$

Proof

$$
L\{f\}=L\{f * \delta\}
$$

Convolution

Any linear, time-invariant operator L is a convolution

$$
(f * g)(t)=\int_{-\infty}^{\infty} f(u) g(t-u) d u
$$

Proof

$$
\begin{aligned}
L\{f\} & =L\{f * \delta\} \\
& =L\left\{\int_{-\infty}^{\infty} f(u) \delta(\cdot-u) d u\right\}
\end{aligned}
$$

Convolution

Any linear, time-invariant operator L is a convolution

$$
(f * g)(t)=\int_{-\infty}^{\infty} f(u) g(t-u) d u
$$

Proof

$$
\begin{aligned}
L\{f\} & =L\{f * \delta\} \\
& =L\left\{\int_{-\infty}^{\infty} f(u) \delta(\cdot-u) d u\right\} \\
& =\int_{-\infty}^{\infty} f(u) L\{\delta(\cdot-u)\} d u
\end{aligned}
$$

Convolution

Any linear, time-invariant operator L is a convolution

$$
(f * g)(t)=\int_{-\infty}^{\infty} f(u) g(t-u) d u
$$

Proof

$$
\begin{aligned}
L\{f\} & =L\{f * \delta\} \\
& =L\left\{\int_{-\infty}^{\infty} f(u) \delta(\cdot-u) d u\right\} \\
& =\int_{-\infty}^{\infty} f(u) L\{\delta(\cdot-u)\} d u \\
& =\int_{-\infty}^{\infty} f(u) L\{\delta\}(\cdot-u) d u
\end{aligned}
$$

Convolution

Any linear, time-invariant operator L is a convolution

$$
(f * g)(t)=\int_{-\infty}^{\infty} f(u) g(t-u) d u
$$

Proof

$$
\begin{aligned}
L\{f\} & =L\{f * \delta\} \\
& =L\left\{\int_{-\infty}^{\infty} f(u) \delta(\cdot-u) d u\right\} \\
& =\int_{-\infty}^{\infty} f(u) L\{\delta(\cdot-u)\} d u \\
& =\int_{-\infty}^{\infty} f(u) L\{\delta\}(\cdot-u) d u \\
& =f * L\{\delta\}
\end{aligned}
$$

EXAMPLES

Linear shift-invariant systems model many physical phenomena

FOURIER TRANSFORM

All linear shift-invariant systems can be simultaneously diagonalized

FOURIER TRANSFORM

All linear shift-invariant systems can be simultaneously diagonalized Complex exponentials are the common "basis"

$$
f(t)=\int_{-\infty}^{\infty} F(\omega) e^{2 \pi i \omega t} d \omega
$$

FOURIER TRANSFORM

All linear shift-invariant systems can be simultaneously diagonalized Complex exponentials are the common "basis"

$$
f(t)=\int_{-\infty}^{\infty} F(\omega) e^{2 \pi i \omega t} d \omega
$$

Each element is perfectly located in frequency

FOURIER TRANSFORM

All linear shift-invariant systems can be simultaneously diagonalized
Complex exponentials are the common "basis"

$$
f(t)=\int_{-\infty}^{\infty} F(\omega) e^{2 \pi i \omega t} d \omega
$$

Each element is perfectly located in frequency
Fourier transform is just a "change of basis"

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi i \omega t} d t
$$

FOURIER TRANSFORM

All linear shift-invariant systems can be simultaneously diagonalized
Complex exponentials are the common "basis"

$$
f(t)=\int_{-\infty}^{\infty} F(\omega) e^{2 \pi i \omega t} d \omega
$$

Each element is perfectly located in frequency
Fourier transform is just a "change of basis"

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi i \omega t} d t
$$

Works because, in the sense of distributions,

$$
\delta(t)=\int_{-\infty}^{\infty} e^{2 \pi i \omega t} d \omega
$$

INTERESTING PAIRS AND PROPERTIES

$$
\delta \stackrel{\mathcal{F}}{\longleftrightarrow} 1
$$

INTERESTING PAIRS AND PROPERTIES

$$
\begin{gathered}
\delta \stackrel{\mathcal{F}}{\longleftrightarrow} 1 \\
\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{t^{2}}{2 \sigma^{2}}} \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-2 \pi^{2} \sigma^{2} \omega^{2}}
\end{gathered}
$$

INTERESTING PAIRS AND PROPERTIES

$$
\begin{aligned}
& \frac{\delta}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{t^{2}}{2 \sigma^{2}}} \stackrel{\stackrel{\mathcal{F}}{\longleftrightarrow}}{ } \stackrel{\stackrel{\mathcal{F}}{\longleftrightarrow}}{ } e^{-2 \pi^{2} \sigma^{2} \omega^{2}} \\
& \text { box } \stackrel{\mathcal{F}}{\longleftrightarrow} \text { sinc }
\end{aligned}
$$

INTERESTING PAIRS AND PROPERTIES

$$
\begin{aligned}
& \frac{\delta}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{t^{2}}{2 \sigma^{2}}} \stackrel{\stackrel{\mathcal{F}}{\longleftrightarrow}}{\longleftrightarrow} e^{-2 \pi^{2} \sigma^{2} \omega^{2}} \\
& \text { box } \stackrel{\mathcal{F}}{\longleftrightarrow} \text { sinc } \\
& \amalg \stackrel{\mathcal{F}}{\longleftrightarrow} \amalg
\end{aligned}
$$

$$
\begin{aligned}
& \delta \delta \stackrel{\mathcal{F}}{\longleftrightarrow} 1 \\
& \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{t^{2}}{2 \sigma^{2}}} \stackrel{\stackrel{\mathcal{F}}{\longleftrightarrow} e^{-2 \pi^{2} \sigma^{2} \omega^{2}}}{\text { box }} \stackrel{\stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{sinc}}{\text { Ш}} \begin{aligned}
\stackrel{\mathcal{F}}{\longleftrightarrow} & \amalg \\
f(a t) & \stackrel{\mathcal{F}}{\longleftrightarrow} F\left(\frac{1}{a}\right)
\end{aligned}
\end{aligned}
$$

INTERESTING PAIRS AND PROPERTIES

$$
\begin{aligned}
& \delta \stackrel{\mathcal{F}}{\longleftrightarrow} 1 \\
& \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{t^{2}}{2 \sigma^{2}}} \stackrel{\stackrel{\mathcal{F}}{\longleftrightarrow}}{\longleftrightarrow} e^{-2 \pi^{2} \sigma^{2} \omega^{2}} \\
& \text { box } \stackrel{\mathcal{F}}{\longleftrightarrow} \text { sinc } \\
& \amalg \stackrel{\mathcal{F}}{\longleftrightarrow} \text { W } \\
& f(a t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{a} F\left(\frac{\omega}{a}\right) \\
& f(t-a) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-2 \pi i \omega a} F(\omega)
\end{aligned}
$$

INTERESTING PAIRS AND PROPERTIES

$$
\begin{aligned}
& \delta \stackrel{\mathcal{F}}{\longleftrightarrow} 1 \\
& \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{t^{2}}{2 \sigma^{2}}} \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-2 \pi^{2} \sigma^{2} \omega^{2}} \\
& \text { box } \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{sinc} \\
& \amalg \stackrel{\mathcal{F}}{\longleftrightarrow} W \\
& f(a t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{a} F\left(\frac{\omega}{a}\right) \\
& f(t-a) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-2 \pi i \omega a} F(\omega) \\
& f * g \stackrel{\mathcal{F}}{\longleftrightarrow} F G
\end{aligned}
$$

(convolution theorem)

SAMPLING

Let $f_{k}=f(k), k \in \mathbf{Z}$ be a sampling of f

SAMPLING

Let $f_{k}=f(k), k \in Z$ be a sampling of f
Use f_{k} in the Fourier series expansion of some periodic function $\tilde{F}(\omega)$

$$
\tilde{F}(\omega)=\sum_{k=-\infty}^{\infty} f_{k} e^{2 \pi i \omega k}
$$

SAMPLING

Let $f_{k}=f(k), k \in \mathbf{Z}$ be a sampling of f
Use f_{k} in the Fourier series expansion of some periodic function $\tilde{F}(\omega)$

$$
\begin{aligned}
\tilde{F}(\omega) & =\sum_{k=-\infty}^{\infty} f_{k} e^{2 \pi i \omega k} \\
& =\sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{-2 \pi i \omega t} \delta(t-k) d t
\end{aligned}
$$

SAMPLING

Let $f_{k}=f(k), k \in Z$ be a sampling of f
Use f_{k} in the Fourier series expansion of some periodic function $\tilde{F}(\omega)$

$$
\begin{aligned}
\tilde{F}(\omega) & =\sum_{k=-\infty}^{\infty} f_{k} e^{2 \pi i \omega k} \\
& =\sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{-2 \pi i \omega t} \delta(t-k) d t \\
& =\int_{-\infty}^{\infty} e^{-2 \pi i \omega t} f(t) \sum_{k=-\infty}^{\infty} \delta(t-k) d t
\end{aligned}
$$

SAMPLING

Let $f_{k}=f(k), k \in Z$ be a sampling of f
Use f_{k} in the Fourier series expansion of some periodic function $\tilde{F}(\omega)$

$$
\begin{aligned}
\tilde{F}(\omega) & =\sum_{k=-\infty}^{\infty} f_{k} e^{2 \pi i \omega k} \\
& =\sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{-2 \pi i \omega t} \delta(t-k) d t \\
& =\int_{-\infty}^{\infty} e^{-2 \pi i \omega t} f(t) \sum_{k=-\infty}^{\infty} \delta(t-k) d t=\int_{-\infty}^{\infty} e^{-2 \pi i \omega t}(f \cdot \amalg)(t) d t
\end{aligned}
$$

SAMPLING

Let $f_{k}=f(k), k \in Z$ be a sampling of f
Use f_{k} in the Fourier series expansion of some periodic function $\tilde{F}(\omega)$

$$
\begin{aligned}
\tilde{F}(\omega) & =\sum_{k=-\infty}^{\infty} f_{k} e^{2 \pi i \omega k} \\
& =\sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{-2 \pi i \omega t} \delta(t-k) d t \\
& =\int_{-\infty}^{\infty} e^{-2 \pi i \omega t} f(t) \sum_{k=-\infty}^{\infty} \delta(t-k) d t=\int_{-\infty}^{\infty} e^{-2 \pi i \omega t}(f \cdot \amalg)(t) d t
\end{aligned}
$$

So we see that $\tilde{F}(\omega)$ is the Fourier transform of $f \cdot$. .

SAMPLING

Let $f_{k}=f(k), k \in \mathbf{Z}$ be a sampling of f
Use f_{k} in the Fourier series expansion of some periodic function $\tilde{F}(\omega)$

$$
\begin{aligned}
\tilde{F}(\omega) & =\sum_{k=-\infty}^{\infty} f_{k} e^{2 \pi i \omega k} \\
& =\sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{-2 \pi i \omega t} \delta(t-k) d t \\
& =\int_{-\infty}^{\infty} e^{-2 \pi i \omega t} f(t) \sum_{k=-\infty}^{\infty} \delta(t-k) d t=\int_{-\infty}^{\infty} e^{-2 \pi i \omega t}(f \cdot \amalg)(t) d t
\end{aligned}
$$

So we see that $\tilde{F}(\omega)$ is the Fourier transform of $f \cdot$. .
This associates the sequence f_{k} with the function $f \cdot$ Ш.

SHANNON-WHITTAKER-NYQUIST-KOTELNIKOV THEOREM

Using the convolution theorem, we get

$$
f \cdot \amalg \stackrel{\mathcal{F}}{\longleftrightarrow} F * \amalg
$$

SHANNON-WHITTAKER-NYQUIST-KOTELNIKOV THEOREM

Using the convolution theorem, we get

$$
f \cdot \amalg \stackrel{\mathcal{F}}{\longleftrightarrow} F * \amalg
$$

Now recall that

$$
\text { box } \stackrel{\mathcal{F}}{\longleftrightarrow} \text { sinc }
$$

SHANNON-WHITTAKER-NYQUIST-KOTELNIKOV THEOREM

Using the convolution theorem, we get

$$
f \cdot \amalg \stackrel{\mathcal{F}}{\longleftrightarrow} F * \amalg
$$

Now recall that

$$
\text { box } \stackrel{\mathcal{F}}{\longleftrightarrow} \text { sinc }
$$

If F is supported in $\left(-\frac{1}{2}, \frac{1}{2}\right)$, then

$$
(F * \amalg) \cdot b o x=F
$$

SHANNON-WHITTAKER-NYQUIST-KOTELNIKOV THEOREM

Using the convolution theorem, we get

$$
f \cdot \amalg \stackrel{\mathcal{F}}{\longleftrightarrow} F * \amalg
$$

Now recall that

$$
\text { box } \stackrel{\mathcal{F}}{\longleftrightarrow} \text { sinc }
$$

If F is supported in $\left(-\frac{1}{2}, \frac{1}{2}\right)$, then

$$
(F * \amalg) \cdot b o x=F
$$

And so,

$$
f=(f \cdot \amalg) * \operatorname{sinc}
$$

SHANNON-WHITTAKER-NYQUIST-KOTELNIKOV THEOREM

Using the convolution theorem, we get

$$
f \cdot \amalg \stackrel{\mathcal{F}}{\longleftrightarrow} F * \amalg
$$

Now recall that

$$
\text { box } \stackrel{\mathcal{F}}{\longleftrightarrow} \text { sinc }
$$

If F is supported in $\left(-\frac{1}{2}, \frac{1}{2}\right)$, then

$$
(F * \amalg) \cdot b o x=F
$$

And so,

$$
f=(f \cdot \amalg) * \operatorname{sinc}
$$

Show theorem graphically

SHIFT-INVARIANT APPROXIMATION SPACES

Let $\varphi: \mathrm{R} \rightarrow \mathrm{R}$ be a generating function

SHIFT-INVARIANT APPROXIMATION SPACES

Let $\varphi: \mathrm{R} \rightarrow \mathrm{R}$ be a generating function
Let T be a sampling period

SHIFT-INVARIANT APPROXIMATION SPACES

Let $\varphi: \mathrm{R} \rightarrow \mathrm{R}$ be a generating function
Let T be a sampling period
The shift-invariant approximation space $V_{\varphi, T}$ is

$$
V_{\varphi, T}=\left\{\tilde{f}: \mathbf{R} \rightarrow \mathbf{R} \mid \tilde{f}(t)=\sum_{i=-\infty}^{\infty} c_{i} \varphi(t-i T), c_{i} \in \mathrm{R}, i \in \mathrm{Z}\right\}
$$

SHIFT-INVARIANT APPROXIMATION SPACES

Let $\varphi: \mathrm{R} \rightarrow \mathrm{R}$ be a generating function
Let T be a sampling period
The shift-invariant approximation space $V_{\varphi, T}$ is

$$
V_{\varphi, T}=\left\{\tilde{f}: \mathrm{R} \rightarrow \mathrm{R} \mid \tilde{f}(t)=\sum_{i=-\infty}^{\infty} c_{i} \varphi(t-i T), c_{i} \in \mathrm{R}, i \in \mathrm{Z}\right\}
$$

Reconstruction with φ transforms c_{i} into \tilde{f}

SHIFT-INVARIANT APPROXIMATION SPACES

Let $\varphi: \mathrm{R} \rightarrow \mathrm{R}$ be a generating function
Let T be a sampling period
The shift-invariant approximation space $V_{\varphi, T}$ is

$$
V_{\varphi, T}=\left\{\tilde{f}: \mathrm{R} \rightarrow \mathrm{R} \mid \tilde{f}(t)=\sum_{i=-\infty}^{\infty} c_{i} \varphi(t-i T), c_{i} \in \mathrm{R}, i \in \mathrm{Z}\right\}
$$

Reconstruction with φ transforms c_{i} into \tilde{f}
Typically, c_{i} are obtained from some f being approximated

SHIFT-INVARIANT APPROXIMATION SPACES

Let $\varphi: \mathrm{R} \rightarrow \mathrm{R}$ be a generating function
Let T be a sampling period
The shift-invariant approximation space $V_{\varphi, T}$ is

$$
V_{\varphi, T}=\left\{\tilde{f}: \mathrm{R} \rightarrow \mathrm{R} \mid \tilde{f}(t)=\sum_{i=-\infty}^{\infty} c_{i} \varphi(t-i T), c_{i} \in \mathrm{R}, i \in \mathrm{Z}\right\}
$$

Reconstruction with φ transforms c_{i} into \tilde{f}
Typically, c_{i} are obtained from some f being approximated Process uses a prefilter ψ

$$
c_{i}=\int_{-\infty}^{\infty} f(t) \psi(t-i T) d t
$$

SHIFT-INVARIANT APPROXIMATION SPACES

Let $\varphi: \mathrm{R} \rightarrow \mathrm{R}$ be a generating function
Let T be a sampling period
The shift-invariant approximation space $V_{\varphi, T}$ is

$$
v_{\varphi, T}=\left\{\tilde{f}: \mathrm{R} \rightarrow \mathrm{R} \mid \tilde{f}(t)=\sum_{i=-\infty}^{\infty} c_{i} \varphi(t-i T), c_{i} \in \mathrm{R}, i \in \mathrm{Z}\right\}
$$

Reconstruction with φ transforms c_{i} into \tilde{f}
Typically, c_{i} are obtained from some f being approximated Process uses a prefilter ψ

$$
c_{i}=\int_{-\infty}^{\infty} f(t) \psi(t-i T) d t
$$

Sampling is the special case where $\psi=\delta$

EXAMPLES

Another case study: $\varphi=\operatorname{sinc}, L_{2}, T=1$

- Prove that optimal prefilter is sinc
- This is the "ideal sampling"

EXAMPLES

Another case study: $\varphi=\operatorname{sinc}, L_{2}, T=1$

- Prove that optimal prefilter is sinc
- This is the "ideal sampling"

A simple case study: $\varphi=$ box, $L_{2}, T=1$

- Prove that optimal prefilter is box

EXAMPLES

Another case study: $\varphi=\operatorname{sinc}, L_{2}, T=1$

- Prove that optimal prefilter is sinc
- This is the "ideal sampling"

A simple case study: $\varphi=$ box, $L_{2}, T=1$

- Prove that optimal prefilter is box

Simple because shifted generating functions are orthogonal

- What happens with the non-orthogonal case?

Problems

Big problem: L_{2} metric is not perceptual

Problems

Big problem: L_{2} metric is not perceptual
There are no practical bandlimited functions

Problems

Big problem: L_{2} metric is not perceptual
There are no practical bandlimited functions
Bandlimited approximations are not perceptual close to original

Problems

Big problem: L_{2} metric is not perceptual
There are no practical bandlimited functions
Bandlimited approximations are not perceptual close to original
Show ringing

Problems

Big problem: L_{2} metric is not perceptual
There are no practical bandlimited functions
Bandlimited approximations are not perceptual close to original
Show ringing
Common practice is to reconstruct with hat, prefilter with box

Problems

Big problem: L_{2} metric is not perceptual
There are no practical bandlimited functions
Bandlimited approximations are not perceptual close to original
Show ringing
Common practice is to reconstruct with hat, prefilter with box
Common practice is not very good...

Problems

Big problem: L_{2} metric is not perceptual
There are no practical bandlimited functions
Bandlimited approximations are not perceptual close to original
Show ringing
Common practice is to reconstruct with hat, prefilter with box
Common practice is not very good...
Show comparisons

References

A. R. Smith. A pixel is not a little square, a pixel is not a little square, a pixel is not a little square! (and a voxel is not a little cube). Technical Report 6, Microsoft Research, 1995.
Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600-612, 2004.
X. Zhang and B. A. Wandell. A spatial extension to CIELAB for digital color image reproduction. In Society for Information Display Symposium Technical Digest, volume 27, pages 731-734, 1996.

