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Digital images and anti-aliasing



What is an image?

Let S = [a,b]× [c,d] ⊂ R2 be a spatial domain

Let V = R>0 → R≥0 be the space of spectral exitance distributions

An ideal image is a function
I : S→ V

that takes point p to its spectral exitance Me,λ

But computers are finite, so we must discretize
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Domain discretization

Common to discretize the domain into a uniform grid
D = {1, . . . ,w} × {1, . . . ,h}

Two popular ways of mapping between (i, j) ∈ D and (x, y) ∈ S
(x, y) =

(
a+ i−1

w (b− a), c + j−1
h (d− c)

)
(primal)

(x, y) =
(
a+ i−0.5

w (b− a), c + j−0.5
h (d− c)

)
(dual)

Could use other grids (e.g. hexagonal)

“Resolution” is an ambiguous term
• In printers and scanners, refers to “dots per inch” (DPI)
• In images and cameras, typically refers to w × h
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Codomain discretization

Common to discretize the codomain as into a set C
• Luminous exitance levels 8-bits {0, . . . , 255}, gamma encoded

• R, G, and B in 8-bits each, gamma encoded (sRGB)
• Include an alpha channel?
• Use indices into a color palette?
• Use more than 3 color channels (multispectral images)?
• Represent each channel in 16-bits or even 32-bit floats (HDR)?

A pixel is simply the value stored at coordinates (i, j)

It is not a little square [Smith, 1995]

How to select the values to store?
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Rendering

How do we obtain an image from a vector graphics illustration?

Represent where? Monitor, printer?

Best according to what? Perceived difference, L2 metric?

Typical situation is quite complex

Perceptual metrics are a work in progress
• s-CIELAB metric [Zhang and Wandell, 1996]
• SSIM [Wang et al., 2004]

Monitors can be very different from one another
• Different subpixel layouts
• Different subpixel spectral properties
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Different monitors
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The general case

Define an approximation space
• Functions you can represent

Define a metric
• A way to compare original function with approximation

Discretization becomes an optimization problem

Approximation errors can be coherent in a disturbing way
• Jagged edges (your renderer)
• Weird artefacts
• Show resolution chart, zonal plate, infinite checkerboard
• This is what we call aliasing

General case is too difficult to analyse. So we simplify
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Traditional sampling

mixed
synthesissampling

continuous
analysis

input output

discretization reconstruction
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Linear, shift-invariant systems

Let U = R→ R and let f ,g ∈ U

L : U→ U is linear if
L{αf + g} = αL{f}+ L{g}

Sα : U→ U is a shift if
Sα{f}(t) = f (t − α)

L : U→ U is shift-invariant if
L
{
Sα{f}

}
= Sα

{
L{f}

}

9
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The unit impulse

Also known as Dirac’s delta “function”

Defined by the sifting property or the sampling property

f (t) =
∫ ∞

−∞
f (u) δ(t − u)du

The set of shifted deltas looks like some kind of “basis”

Each element is perfectly located in space (or time)
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Convolution

Any linear, time-invariant operator L is a convolution

(f ∗ g)(t) =
∫ ∞

−∞
f (u)g(t − u)du

Proof
L{f} = L{f ∗ δ}

= L
{∫ ∞

−∞
f (u) δ(· − u)du

}
=

∫ ∞

−∞
f (u) L

{
δ(· − u)

}
du

=

∫ ∞

−∞
f (u) L{δ}(· − u)du

= f ∗ L{δ}
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Examples

Linear shift-invariant systems model many physical phenomena

∗ ∗ ∗

12



Fourier transform

All linear shift-invariant systems can be simultaneously diagonalized

Complex exponentials are the common “basis”

f (t) =
∫ ∞

−∞
F(ω) e2πiωt dω

Each element is perfectly located in frequency

Fourier transform is just a “change of basis”

F(ω) =
∫ ∞

−∞
f (t) e−2πiωt dt

Works because, in the sense of distributions,

δ(t) =
∫ ∞

−∞
e2πiωt dω

13
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Interesting pairs and properties

δ
F←→ 1

1√
2πσ2

e−
t2
2σ2

F←→ e−2π2σ2ω2

box
F←→ sinc

X F←→X

f (at) F←→ 1
aF(

ω
a )

f (t − a) F←→ e−2πiωaF(ω)

f ∗ g F←→ F G (convolution theorem)
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Sampling

Let fk = f (k), k ∈ Z be a sampling of f

Use fk in the Fourier series expansion of some periodic function F̃(ω)

F̃(ω) =
∞∑

k=−∞

fk e2πiωk

=
∞∑

k=−∞

∫ ∞

−∞
f (t) e−2πiωt δ(t − k)dt

=

∫ ∞

−∞
e−2πiωt f (t)

∞∑
k=−∞

δ(t − k)dt =

∫ ∞

−∞
e−2πiωt (f ·X)(t)dt

So we see that F̃(ω) is the Fourier transform of f ·X.
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Shannon-Whittaker-Nyquist-Kotelnikov theorem

Using the convolution theorem, we get
f ·X F←→ F ∗X

Now recall that
box

F←→ sinc

If F is supported in (− 1
2 ,

1
2), then

(F ∗X) · box = F

And so,
f = (f ·X) ∗ sinc

Show theorem graphically
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Shift-invariant approximation spaces

Let ϕ : R→ R be a generating function

Let T be a sampling period

The shift-invariant approximation space Vϕ,T is

Vϕ,T =

f̃ : R→ R
∣∣∣ f̃ (t) = ∞∑

i=−∞

ci ϕ(t − iT), ci ∈ R, i ∈ Z


Reconstruction with ϕ transforms ci into f̃

Typically, ci are obtained from some f being approximated

Process uses a prefilter ψ

ci =
∫ ∞

−∞
f (t)ψ(t − iT)dt

Sampling is the special case where ψ = δ
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Examples

Another case study: ϕ = sinc, L2, T = 1
• Prove that optimal prefilter is sinc
• This is the “ideal sampling”

A simple case study: ϕ = box, L2, T = 1
• Prove that optimal prefilter is box

Simple because shifted generating functions are orthogonal
• What happens with the non-orthogonal case?
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Problems

Big problem: L2 metric is not perceptual

There are no practical bandlimited functions

Bandlimited approximations are not perceptual close to original

Show ringing

Common practice is to reconstruct with hat, prefilter with box

Common practice is not very good…

Show comparisons
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