2D Computer Graphics

Diego Nehab
Summer 2019

IMPA

AbSTRACT SEGMENTS

ELIMINATING INTERSECTION COMPUTATIONS

The bounding box for monotonic segments is tight

ELIMINATING INTERSECTION COMPUTATIONS

The bounding box for monotonic segments is tight Outside the bounding box, the problem is solved

ELIMINATING INTERSECTION COMPUTATIONS

The bounding box for monotonic segments is tight Outside the bounding box, the problem is solved Inside bounding box, we used an implicit test

ELIMINATING INTERSECTION COMPUTATIONS

The bounding box for monotonic segments is tight Outside the bounding box, the problem is solved Inside bounding box, we used an implicit test Works for linear segments

ELIMINATING INTERSECTION COMPUTATIONS

The bounding box for monotonic segments is tight
Outside the bounding box, the problem is solved Inside bounding box, we used an implicit test

Works for linear segments
Can we do the same for quadratics and cubics?

THE PROBLEM WITH IMPLICITIZATION

Our segment is local to $t \in[0,1]$, but the implicit is global

THE PROBLEM WITH IMPLICITIZATION

Our segment is local to $t \in[0,1]$, but the implicit is global Must prove the curve does not reenter the bounding box for $t \in R \backslash[0,1]$

THE PROBLEM WITH IMPLICITIZATION

Our segment is local to $t \in[0,1]$, but the implicit is global
Must prove the curve does not reenter the bounding box for $t \in R \backslash[0,1]$
Works for linear

THE PROBLEM WITH IMPLICITIZATION

Our segment is local to $t \in[0,1]$, but the implicit is global
Must prove the curve does not reenter the bounding box for $t \in R \backslash[0,1]$
Works for linear
Fails for quadratics and for cubics

Solving the problem

Can we find a region where the implicit test is enough?

Solving the problem

Can we find a region where the implicit test is enough?
The quadratic case

Solving the problem

Can we find a region where the implicit test is enough?
The quadratic case
The cubic case

References

F. Ganacim, R. S. Lima, L. H. de Figueiredo, and D. Nehab. Massively-parallel vector graphics. ACM Transactions on Graphics (Proceedings of the ACM SIGGRAPH Asia 2014), 36(6):229, 2014.
C. Loop and J. F. Blinn. Resolution independent curve rendering using programmable graphics hardware. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2005), 24(3):1000-1009, 2005.

