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Inflection points and double points



Covariant and contravariant tensors

A point P has coordinates [P]F =
[
x y w

]T
for some frame F in RP2

Let G be the result of transforming F by T

The coordinates [P]G of P in G are T∗ [P]F

F [P]F = G [P]G = F T [P]G ⇒ [P]G = T∗ [P]F

(In RP2 the adjugate T∗ is as good as the inverse)

A line in L has coordinates [L]F =
[
a b c

]
in F

Its coordinates in G are T [L]F

[L]F[P]F = 0 = [L]FT[P]G ⇒ [L]G = [L]FT
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Covariant and contravariant tensors

Lines as row-vectors and points as column vectors are confusing

What we really have is point-like things and line-like things

Line-like things “co”-transform with the coordinate system.

Point-like things “contra”-transform with the coordinate system.

Point-like things are contravariant tensors

Line-like (plane-like) things are covariant tensors
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Einstein’s notation

Coordinates of contravariant tensors use superscripts P =
[
P1 P2 P3

]

Coordinates of covariant tensors use subscripts L =
[
L1 L2 L3

]
The contraction between a covariant and a contravariant 1-tensor is

the scalar product

P · L =
n∑
i=1

PiLi

Whenever there is an expression with the same index name appearing

as a subscript and a subscript, the summation sign is omitted

PiLi = P1L1 + P2L2 + P3L3 = L1P
1 + L2P

2 + L3P
3 = LiP

i

4
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Transformations

A transformation matrix takes a line and returns a line, or takes a point

and returns a point

It has two indices, one covariant and one contravariant.

It is a mixed 2-tensor

M
j
i
Pi = Qj M

j
i
Lj = Ri

The covariant index transforms with T and the contravariant index

transforms with T∗

N`
k = M

j
i
T ik(T

∗)`j
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Conics

Note that in vanilla linear algebra, we only have mixed 2-tensors!

A conic is a purely covariant 2-tensor

QijP
jPi = 0

That’s why conics are weird! Both covariant indices transform with T

Uk` = QijT
i
kT

j
`
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The polar line

The polar line L to of a quadric with regard to a point P

L connects the tangency points R, S of the two tangents to Q through P

If P belongs to the conic, L it is the tangent to Q at P

Its coordinates are simply Lj = QijP
i

Proof

QijR
iRj = 0 and QijS

iSj = 0

(QijP
i)Rj = 0 ⇔ (QijR

j)Pi = 0

(QijP
i)Sj = 0 ⇔ (QijS

j)Pi = 0
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Duality

The equation PiLi = 0 can be interpreted as the set of points P that

belong to a line L, or the set of lines L that go through a point P

The dual conic is the purely contravariant adjugate 2-tensor Q∗

Adjugation flips the types of all indices

(Q∗)ijLiLj = 0

It is the set of lines tangent to the primal conic

QijP
iPj =

(
Qij(Q

∗)ij
)
QijP

iPj

= (Q∗)ijQijP
jQijP

i

= (Q∗)ijLiLj = 0

Can you interpret the point Pj = (Q∗)ijLi?
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Generalized cross product

Is a function crn : (Rn)n−1 → Rn

L = crn(

n−1︷ ︸︸ ︷
P,Q, . . . ,R), with LiP

i = LiQ
i = · · · LiRi = 0

Receives n− 1 contravariant 1-tensors in Rn, returns one covariant

1-tensor in (Rn)
∗ (or vice-versa).

Represents the “plane” that goes through all points, or the point of

intersection of all planes
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Generalized cross product

Trick is to use look at the determinants∣∣∣P P Q · · · R

∣∣∣ = ∣∣∣Q P Q · · · R

∣∣∣ = · · · =
∣∣∣R P Q · · · R

∣∣∣ = 0

In each case, the minors relative to the first column do not depend on

the first column.

In each case, the minors are the same.

Call each one Li.

The expansion shows, as required, that

LiP
i = LiQ

i = · · · LiRi = 0.
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The Levi-Civita symbol (epsilon)

Is the fully alternating tensor
ε...i...i... = 0

επ(1)π(2)...π(n) = σ(π)

Can be used to compactly represent the determinant

det(A) = εi1i2...inA
1i1A2i2 . . .Anin

= σ(π) εi1i2...inA
π(1)i1Aπ(2)i2 . . .Aπ(n)in

=
1

n!
εi1i2...inεj1j2...jnA

i1j1Ai2j2 . . .Ainjn

Can be used to compactly represent the cross product

(cr2(P)
)
j
= Piεij (cr3(P,Q)

)
k
= PiQjεijk (cr4(P,Q,R)

)
`
= PiQjRkεijk`

If you contract with any of the arguments, you get a determinant of a

matrix with repeated column

11
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Epsilon-delta rule

Useful relationship between Levi-Civita epsilon and Kronecker delta

εk1k2...knε
`1`2...`n = det

(
[δ

`j
ki
]ij
)

If any indices repeat on either epsilon, you have zero on the left. On

the right, you have either a repeated column or a repeated row. Either

way, the determinant is also zero.

If no indices repeat on either epsilon, you have the product of the

signs of the permutations on the left. On the right, the matrix is an

identity matrix with rows and columns permuted in the same way. The

determinant is also the product of the signs of the permutations.

12
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Epsilon-delta rule

A couple special cases

εijε
i` = δ`j εijkε

imn = δmj δ
n
k − δnj δ

m
k

Useful to prove the relationship

A× (B× C) = (A · C)B− (A · B)C

Proof

Am(B
jCkεjki)ε

min = AmB
jCk(−εijkε

imn)

= AmB
jCk(δnj δ

m
k − δmj δ

n
k )

= AmB
jCkδnj δ

m
k − AmB

jCkδmj δ
n
k

= (AmC
kδmk )(B

jδnj )− (AmB
jδmj )(C

kδnk )

= (AmC
m)Bn − (AmB

m)Cn

13
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Epsilon-delta rule

A couple special cases

εijε
i` = δ`j εijkε
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Lagrange’s identity

Also from epsilon-delta rule

(A× B) · (C × D) = (A · C)(B · D)− (A · D)(B · C)

= det

([
A

B

] [
C D

])

Proof

AiBjε
jikCmDnεmnk = AiBjC

mDn(εkjiεkmn)

= AiBjC
mDn(δjnδ

i
m − δjmδ

i
n)

= AiBjC
mDnδjnδ

i
m − AiBjC

mDnδjmδ
i
n

= (AmC
m)(BnD

n)− (AnD
n)(BmC

m)

General case is also true! (We will use this shortly)
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Inflection points

Let γ be a rational curve

γ(t) =
[
x(t) y(t)

]T
x(t) =

u(t)

w(t)
y(t) =

v(t)

w(t)

When curvature changes sign, i.e., speed and acceleration are collinear

γ′(t)× γ′′(t) = 0

Same as condition ∣∣∣α(t) α′(t) α′′(t)
∣∣∣ = 0, with

α(t) =
[
u(t) v(t) w(t)

]T
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Quadratics cannot have inflections

Let B2(t) =
[
(1− t)2 2t(1− t) t2

]T

Then, ∣∣∣α(t) α′(t) α′′(t)
∣∣∣ = ∣∣∣[p0 p1 p2

] [
B2(t) B′

2(t) B′′
2 (t)

]∣∣∣

= 4
∣∣∣p0 p1 p2

∣∣∣

So “inflection” only when control points are linearly dependent

The quadratic degenerates to a line, half a line, or a point

Not really an inflection
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Cubics

Let B3(t) =
[
(1− t)3 3(1− t)2t 3(1− t)t2 t3

]T

For cubics, we have∣∣∣α(t) α′(t) α′′(t)
∣∣∣ = ∣∣∣[p0 p1 p2 p3

] [
B3(t) B′

3(t) B′′
3(t)

]∣∣∣
Maybe we should give up because the expression is unwieldy…

Or we use Lagrange’s identity to make it treatable∣∣∣α(t) α′(t) α′′(t)
∣∣∣ = cr4(x0−3, y0−3,w0−3) · cr4

(
B3(t),B

′
3(t),B

′′
3(t)

)
This the inflection polynomial—a cubic!

Inflections happen when t is a root
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In Mathematica…

Show the inflection polynomial

A cubic that reduces to a quadratic in the integral case

Show that inflection points are collinear
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Double-points in Mathematica

Given t1 t2 of double-point, then γ(t1), γ(t2), γ(t3) are collinear for all t3

Falls into the same type of determinant

This time, however, we have that the cr4 of the control points in the

power basis must be collinear with the powers of t1 and t2.

Applying row-reduction, we obtain two symmetric bivariate

polynomials on t1, t2 that must vanish simultaneously

Use resultants to eliminate one of them and solve for the other

Results in the double-point polynomial: a quadratic

Compare the discriminants of the inflection polynomial and the

double-point polynomial and use them to classify the cubics
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