2D Computer Graphics

Diego Nehab
Summer 2020

IMPA

INFLECTION POINTS AND DOUBLE POINTS

COVARIANT AND CONTRAVARIANT TENSORS

A point P has coordinates $[P]_{F}=\left[\begin{array}{lll}x & y & w\end{array}\right]^{T}$ for some frame F in R^{2} Let G be the result of transforming F by T

COVARIANT AND CONTRAVARIANT TENSORS

A point P has coordinates $[P]_{F}=\left[\begin{array}{lll}x & y & w\end{array}\right]^{T}$ for some frame F in R^{2}
Let G be the result of transforming F by T
The coordinates $[P]_{G}$ of P in G are $T^{*}[P]_{F}$

$$
F[P]_{F}=G[P]_{G}=F T[P]_{G} \Rightarrow[P]_{G}=T^{*}[P]_{F}
$$

COVARIANT AND CONTRAVARIANT TENSORS

A point P has coordinates $[P]_{F}=\left[\begin{array}{lll}x & y & w\end{array}\right]^{T}$ for some frame F in RP^{2}
Let G be the result of transforming F by T
The coordinates $[P]_{G}$ of P in G are $T^{*}[P]_{F}$

$$
F[P]_{F}=G[P]_{G}=F T[P]_{G} \Rightarrow[P]_{G}=T^{*}[P]_{F}
$$

(In RP^{2} the adjugate T^{*} is as good as the inverse)

COVARIANT AND CONTRAVARIANT TENSORS

A point P has coordinates $[P]_{F}=\left[\begin{array}{lll}x & y & w\end{array}\right]^{T}$ for some frame F in RP^{2}
Let G be the result of transforming F by T
The coordinates $[P]_{G}$ of P in G are $T^{*}[P]_{F}$

$$
F[P]_{F}=G[P]_{G}=F T[P]_{G} \Rightarrow[P]_{G}=T^{*}[P]_{F}
$$

(In RP^{2} the adjugate T^{*} is as good as the inverse)
A line in L has coordinates $[L]_{F}=\left[\begin{array}{lll}a & b & c\end{array}\right]$ in F

COVARIANT AND CONTRAVARIANT TENSORS

A point P has coordinates $[P]_{F}=\left[\begin{array}{lll}x & y & w\end{array}\right]^{T}$ for some frame F in RP^{2} Let G be the result of transforming F by T

The coordinates $[P]_{G}$ of P in G are $T^{*}[P]_{F}$

$$
F[P]_{F}=G[P]_{G}=F T[P]_{G} \Rightarrow[P]_{G}=T^{*}[P]_{F}
$$

(In RP^{2} the adjugate T^{*} is as good as the inverse)
A line in L has coordinates $[L]_{F}=\left[\begin{array}{lll}a & b & c\end{array}\right]$ in F
Its coordinates in G are $T[L]_{F}$

$$
[L]_{F}[P]_{F}=0=[L]_{F} T[P]_{G} \Rightarrow[L]_{G}=[L]_{F} T
$$

Covariant and contravariant tensors

Lines as row-vectors and points as column vectors are confusing

COVARIANT AND CONTRAVARIANT TENSORS

Lines as row-vectors and points as column vectors are confusing What we really have is point-like things and line-like things

COVARIANT AND CONTRAVARIANT TENSORS

Lines as row-vectors and points as column vectors are confusing What we really have is point-like things and line-like things Line-like things "co"-transform with the coordinate system.

COVARIANT AND CONTRAVARIANT TENSORS

Lines as row-vectors and points as column vectors are confusing What we really have is point-like things and line-like things

Line-like things "co"-transform with the coordinate system.
Point-like things "contra"-transform with the coordinate system.

COVARIANT AND CONTRAVARIANT TENSORS

Lines as row-vectors and points as column vectors are confusing What we really have is point-like things and line-like things

Line-like things "co"-transform with the coordinate system.
Point-like things "contra"-transform with the coordinate system.
Point-like things are contravariant tensors

COVARIANT AND CONTRAVARIANT TENSORS

Lines as row-vectors and points as column vectors are confusing What we really have is point-like things and line-like things

Line-like things "co"-transform with the coordinate system.
Point-like things "contra"-transform with the coordinate system.
Point-like things are contravariant tensors
Line-like (plane-like) things are covariant tensors

Einstein's notation

Coordinates of contravariant tensors use superscripts $P=\left[\begin{array}{lll}P^{1} & P^{2} & P^{3}\end{array}\right]$

Einstein's notation

Coordinates of contravariant tensors use superscripts $P=\left[\begin{array}{lll}P^{1} & P^{2} & P^{3}\end{array}\right]$
Coordinates of covariant tensors use subscripts $L=\left[\begin{array}{lll}L_{1} & L_{2} & L_{3}\end{array}\right]$

Einstein's notation

Coordinates of contravariant tensors use superscripts $P=\left[\begin{array}{lll}P^{1} & P^{2} & P^{3}\end{array}\right]$
Coordinates of covariant tensors use subscripts $L=\left[\begin{array}{lll}L_{1} & L_{2} & L_{3}\end{array}\right]$
The contraction between a covariant and a contravariant 1-tensor is the scalar product

$$
P \cdot L=\sum_{i=1}^{n} P^{i} L_{i}
$$

EInstein's notation

Coordinates of contravariant tensors use superscripts $P=\left[\begin{array}{lll}P^{1} & P^{2} & P^{3}\end{array}\right]$ Coordinates of covariant tensors use subscripts $L=\left[\begin{array}{lll}L_{1} & L_{2} & L_{3}\end{array}\right]$
The contraction between a covariant and a contravariant 1-tensor is the scalar product

$$
P \cdot L=\sum_{i=1}^{n} P^{i} L_{i}
$$

Whenever there is an expression with the same index name appearing as a subscript and a subscript, the summation sign is omitted

$$
P^{i} L_{i}=P^{1} L_{1}+P^{2} L_{2}+P^{3} L_{3}=L_{1} P^{1}+L_{2} P^{2}+L_{3} P^{3}=L_{i} P^{i}
$$

TRANSFORMATIONS

A transformation matrix takes a line and returns a line, or takes a point and returns a point

TRANSFORMATIONS

A transformation matrix takes a line and returns a line, or takes a point and returns a point

It has two indices, one covariant and one contravariant.

TRANSFORMATIONS

A transformation matrix takes a line and returns a line, or takes a point and returns a point

It has two indices, one covariant and one contravariant.
It is a mixed 2-tensor

$$
M_{i}^{j} P^{i}=Q^{j} \quad M_{i}^{j} L_{j}=R_{i}
$$

TRANSFORMATIONS

A transformation matrix takes a line and returns a line, or takes a point and returns a point

It has two indices, one covariant and one contravariant.
It is a mixed 2-tensor

$$
M_{i}^{j} P^{i}=Q^{j} \quad M_{i}^{j} L_{j}=R_{i}
$$

The covariant index transforms with T and the contravariant index transforms with T^{*}

$$
N_{k}^{\ell}=M_{i}^{j} T_{k}^{i}\left(T^{*}\right)_{j}^{\ell}
$$

CONICS

Note that in vanilla linear algebra, we only have mixed 2-tensors!

CONICS

Note that in vanilla linear algebra, we only have mixed 2-tensors! A conic is a purely covariant 2-tensor

$$
Q_{i j} P^{j} P^{i}=0
$$

CONICS

Note that in vanilla linear algebra, we only have mixed 2-tensors!
A conic is a purely covariant 2-tensor

$$
Q_{i j} P^{j} P^{i}=0
$$

That's why conics are weird! Both covariant indices transform with T

$$
U_{k \ell}=Q_{i j} T_{k}^{i} T_{\ell}^{j}
$$

The polar line

The polar line L to of a quadric with regard to a point P

The polar line

The polar line L to of a quadric with regard to a point P
L connects the tangency points R, S of the two tangents to Q through P

The polar line

The polar line L to of a quadric with regard to a point P
L connects the tangency points R, S of the two tangents to Q through P If P belongs to the conic, L it is the tangent to Q at P

THE POLAR LINE

The polar line L to of a quadric with regard to a point P
L connects the tangency points R, S of the two tangents to Q through P If P belongs to the conic, L it is the tangent to Q at P

Its coordinates are simply $L_{j}=Q_{i j} P^{i}$

THE POLAR LINE

The polar line L to of a quadric with regard to a point P
L connects the tangency points R, S of the two tangents to Q through P If P belongs to the conic, L it is the tangent to Q at P

Its coordinates are simply $L_{j}=Q_{i j} P^{i}$
Proof

$$
\begin{gathered}
Q_{i j} R^{i} R^{j}=0 \quad \text { and } Q_{i j} S^{i} S^{j}=0 \\
\left(Q_{i j} P^{i}\right) R^{j}=0 \Leftrightarrow\left(Q_{i j} R^{j}\right) P^{i}=0 \\
\left(Q_{i j} P^{i}\right) S^{j}=0 \Leftrightarrow\left(Q_{i j} S^{j}\right) P^{i}=0
\end{gathered}
$$

DUALITY

The equation $P^{i} L_{i}=0$ can be interpreted as the set of points P that belong to a line L, or the set of lines L that go through a point P

DUALITY

The equation $P^{i} L_{i}=0$ can be interpreted as the set of points P that belong to a line L, or the set of lines L that go through a point P

The dual conic is the purely contravariant adjugate 2-tensor Q^{*}

DUALITY

The equation $P^{i} L_{i}=0$ can be interpreted as the set of points P that belong to a line L, or the set of lines L that go through a point P

The dual conic is the purely contravariant adjugate 2-tensor Q^{*}
Adjugation flips the types of all indices

$$
\left(Q^{*}\right)^{i j} L_{i} L_{j}=0
$$

DUALITY

The equation $P^{i} L_{i}=0$ can be interpreted as the set of points P that belong to a line L, or the set of lines L that go through a point P

The dual conic is the purely contravariant adjugate 2-tensor Q^{*}
Adjugation flips the types of all indices

$$
\left(Q^{*}\right)^{i j} L_{i} L_{j}=0
$$

It is the set of lines tangent to the primal conic

$$
\begin{aligned}
Q_{i j} P^{i} P^{j} & =\left(Q_{i j}\left(Q^{*}\right)^{i j}\right) Q_{i j} P^{i} P^{j} \\
& =\left(Q^{*}\right)^{i j} Q_{i j} P^{j} Q_{i j} P^{i} \\
& =\left(Q^{*}\right)^{i j} L_{i} L_{j}=0
\end{aligned}
$$

DUALITY

The equation $P^{i} L_{i}=0$ can be interpreted as the set of points P that belong to a line L, or the set of lines L that go through a point P

The dual conic is the purely contravariant adjugate 2-tensor Q^{*}
Adjugation flips the types of all indices

$$
\left(Q^{*}\right)^{i j} L_{i} L_{j}=0
$$

It is the set of lines tangent to the primal conic

$$
\begin{aligned}
Q_{i j} P^{i} P^{j} & =\left(Q_{i j}\left(Q^{*}\right)^{i j}\right) Q_{i j} P^{i} P^{j} \\
& =\left(Q^{*}\right)^{i j} Q_{i j} P^{j} Q_{i j} P^{i} \\
& =\left(Q^{*}\right)^{i j} L_{i} L_{j}=0
\end{aligned}
$$

Can you interpret the point $P^{j}=\left(Q^{*}\right)^{i j} L_{i}$?

Generalized cross product

Is a function $\mathrm{cr}_{n}:\left(R^{n}\right)^{n-1} \rightarrow R_{n}$

$$
L=\operatorname{cr}_{n}(\overbrace{P, Q, \ldots, R}^{n-1}), \quad \text { with } \quad L_{i} P^{i}=L_{i} Q^{i}=\cdots L_{i} R^{i}=0
$$

Generalized cross product

Is a function $\mathrm{cr}_{n}:\left(R^{n}\right)^{n-1} \rightarrow R_{n}$

$$
L=\operatorname{cr}_{n}(\overbrace{P, Q, \ldots, R}^{n-1}), \text { with } L_{i} P^{i}=L_{i} Q^{i}=\cdots L_{i} R^{i}=0
$$

Receives $n-1$ contravariant 1-tensors in R^{n}, returns one covariant 1 -tensor in $\left(R_{n}\right)^{*}$ (or vice-versa).

Generalized cross product

Is a function $\mathrm{cr}_{n}:\left(R^{n}\right)^{n-1} \rightarrow R_{n}$

$$
L=\mathrm{cr}_{n}(\overbrace{P, Q, \ldots, R}^{n-1}), \quad \text { with } \quad L_{i} P^{i}=L_{i} Q^{i}=\cdots L_{i} R^{i}=0
$$

Receives $n-1$ contravariant 1-tensors in R^{n}, returns one covariant 1-tensor in $\left(R_{n}\right)^{*}$ (or vice-versa).

Represents the "plane" that goes through all points, or the point of intersection of all planes

Generalized cross product

Trick is to use look at the determinants

$$
|P P Q \cdots R|=|Q P Q \cdots R|=\cdots=|R P Q \cdots R|=0
$$

Generalized cross product

Trick is to use look at the determinants

$$
|P P Q \cdots R|=|Q P Q \cdots R|=\cdots=|R P Q \cdots R|=0
$$

In each case, the minors relative to the first column do not depend on the first column.

Generalized cross product

Trick is to use look at the determinants

$$
|P P Q \cdots R|=|Q P Q \cdots R|=\cdots=|R P Q \cdots R|=0
$$

In each case, the minors relative to the first column do not depend on the first column.

In each case, the minors are the same.

Generalized cross product

Trick is to use look at the determinants

$$
|P P Q \cdots R|=|Q P Q \cdots R|=\cdots=|R P Q \cdots R|=0
$$

In each case, the minors relative to the first column do not depend on the first column.

In each case, the minors are the same.
Call each one L_{i}.

Generalized cross product

Trick is to use look at the determinants

$$
|P P Q \cdots R|=|Q P Q \cdots R|=\cdots=|R P Q \cdots R|=0
$$

In each case, the minors relative to the first column do not depend on the first column.

In each case, the minors are the same.
Call each one L_{i}.
The expansion shows, as required, that

$$
L_{i} P^{i}=L_{i} Q^{i}=\cdots L_{i} R^{i}=0 .
$$

The Levi-Civita symbol (epsilon)

Is the fully alternating tensor

$$
\begin{aligned}
\varepsilon_{\ldots i \ldots i \ldots} & =0 \\
\varepsilon_{\pi(1) \pi(2) \ldots \pi(n)} & =\sigma(\pi)
\end{aligned}
$$

The LeVI-CIVITA SYMBOL (EPSILON)

Is the fully alternating tensor

$$
\begin{aligned}
\varepsilon_{\ldots i \ldots i \ldots} & =0 \\
\varepsilon_{\pi(1) \pi(2) \ldots \pi(n)} & =\sigma(\pi)
\end{aligned}
$$

Can be used to compactly represent the determinant

$$
\begin{aligned}
\operatorname{det}(A) & =\varepsilon_{i_{1} i_{2} \ldots i_{n}} A^{i_{1}} A^{2 i_{2}} \ldots A^{n i_{n}} \\
& =\sigma(\pi) \varepsilon_{i_{1} i_{2} \ldots i_{n}} A^{\pi(1) i_{1}} A^{\pi(2) i_{2}} \ldots A^{\pi(n) i_{n}} \\
& =\frac{1}{n!} \varepsilon_{i_{1} i_{2} \ldots i_{n}} \varepsilon_{j_{1} j_{2} \ldots j_{n}} A^{i_{1} j_{1}} A^{i_{2} j_{2}} \ldots A^{i_{n} j_{n}}
\end{aligned}
$$

The Levi-Civita symbol (epsilon)

Is the fully alternating tensor

$$
\begin{aligned}
\varepsilon_{\ldots i \ldots i \ldots} & =0 \\
\varepsilon_{\pi(1) \pi(2) \ldots \pi(n)} & =\sigma(\pi)
\end{aligned}
$$

Can be used to compactly represent the determinant

$$
\begin{aligned}
\operatorname{det}(A) & =\varepsilon_{i i_{2} i_{2} \ldots i_{n}} A^{i_{1} 1} A^{2 i_{2}} \ldots A^{n i_{n}} \\
& =\sigma(\pi) \varepsilon_{i i_{2} \ldots . . i_{n}} A^{\pi(1) i_{i}} A^{\pi(2) i_{2}} \ldots A^{\pi(n) i_{n}} \\
& =\frac{1}{n!} \varepsilon_{i i_{1}, \ldots i_{n}} \varepsilon_{j j_{1} \ldots . . . j_{n}} i^{i j_{1}} A^{i i_{2} i_{2}} \ldots A^{i_{n} j_{n}}
\end{aligned}
$$

Can be used to compactly represent the cross product

$$
\left(\operatorname{cr}_{2}(P)\right)_{j}=P^{i} \varepsilon_{i j} \quad\left(\operatorname{cr}_{3}(P, Q)\right)_{k}=P^{i} Q^{j} \varepsilon_{i j k} \quad\left(\operatorname{cr}_{4}(P, Q, R)\right)_{\ell}=P^{i} Q^{i} R^{k} \varepsilon_{i j k \ell}
$$

The Levi-Civita symbol (epsilon)

Is the fully alternating tensor

$$
\begin{aligned}
\varepsilon_{\ldots i \ldots i \ldots} & =0 \\
\varepsilon_{\pi(1) \pi(2) \ldots \pi(n)} & =\sigma(\pi)
\end{aligned}
$$

Can be used to compactly represent the determinant

$$
\begin{aligned}
\operatorname{det}(A) & =\varepsilon_{i_{1} i_{2} \ldots i_{n}} A^{i_{1}} A^{2 i_{2}} \ldots A^{n i_{n}} \\
& =\sigma(\pi) \varepsilon_{i_{1} i_{2} \ldots i_{n}} A^{\pi(1) i_{1}} A^{\pi(2) i_{2}} \ldots A^{\pi(n) i_{n}} \\
& =\frac{1}{n!} \varepsilon_{i_{1} i_{2} \ldots i_{n}} \varepsilon_{j_{1} j_{2} \ldots j_{n}} A^{i_{1} j_{1}} A^{i_{2} j_{2}} \ldots A^{i_{n} j_{n}}
\end{aligned}
$$

Can be used to compactly represent the cross product

$$
\left(\mathrm{cr}_{2}(P)\right)_{j}=P^{i} \varepsilon_{i j} \quad\left(\operatorname{cr}_{3}(P, Q)\right)_{k}=P^{i} Q^{j} \varepsilon_{i j k} \quad\left(\operatorname{cr}_{4}(P, Q, R)\right)_{\ell}=P^{i} Q^{j} R^{k} \varepsilon_{i j k \ell}
$$

If you contract with any of the arguments, you get a determinant of a matrix with repeated column

EpSILON-DELTA RULE

Useful relationship between Levi-Civita epsilon and Kronecker delta

$$
\varepsilon_{k_{1} k_{2} \ldots k_{n}} \varepsilon^{\ell_{1} \ell_{2} \ldots \ell_{n}}=\operatorname{det}\left(\left[\delta_{k_{i}}^{\ell_{j}}\right]_{i j}\right)
$$

EpSILON-DELTA RULE

Useful relationship between Levi-Civita epsilon and Kronecker delta

$$
\varepsilon_{k_{1} k_{2} \ldots k_{n}} \varepsilon^{\ell_{1} \ell_{2} \ldots \ell_{n}}=\operatorname{det}\left(\left[\delta_{k_{i}}^{\ell_{j}}\right]_{i j}\right)
$$

If any indices repeat on either epsilon, you have zero on the left. On the right, you have either a repeated column or a repeated row. Either way, the determinant is also zero.

EpSILON-DELTA RULE

Useful relationship between Levi-Civita epsilon and Kronecker delta

$$
\varepsilon_{k_{1} k_{2} \ldots k_{n}} \varepsilon^{\ell_{1} \ell_{2} \ldots \ell_{n}}=\operatorname{det}\left(\left[\delta_{k_{i}}^{\ell_{j}}\right]_{i j}\right)
$$

If any indices repeat on either epsilon, you have zero on the left. On the right, you have either a repeated column or a repeated row. Either way, the determinant is also zero.

If no indices repeat on either epsilon, you have the product of the signs of the permutations on the left. On the right, the matrix is an identity matrix with rows and columns permuted in the same way. The determinant is also the product of the signs of the permutations.

EPSILON-DELTA RULE

A couple special cases

$$
\varepsilon_{i j} \varepsilon^{i \ell}=\delta_{j}^{\ell} \quad \varepsilon_{i j k} \varepsilon^{i m n}=\delta_{j}^{m} \delta_{k}^{n}-\delta_{j}^{n} \delta_{k}^{m}
$$

EPSILON-DELTA RULE

A couple special cases

$$
\varepsilon_{i j} \varepsilon^{i \ell}=\delta_{j}^{\ell} \quad \varepsilon_{i j k} \varepsilon^{i m n}=\delta_{j}^{m} \delta_{k}^{n}-\delta_{j}^{n} \delta_{k}^{m}
$$

Useful to prove the relationship

$$
A \times(B \times C)=(A \cdot C) B-(A \cdot B) C
$$

EPSILON-DELTA RULE

A couple special cases

$$
\varepsilon_{i j} \varepsilon^{i \ell}=\delta_{j}^{\ell} \quad \varepsilon_{i j k} \varepsilon^{i m n}=\delta_{j}^{m} \delta_{k}^{n}-\delta_{j}^{n} \delta_{k}^{m}
$$

Useful to prove the relationship

$$
A \times(B \times C)=(A \cdot C) B-(A \cdot B) C
$$

Proof

$$
\begin{aligned}
A_{m}\left(B^{j} C^{k} \varepsilon_{j k i}\right) \varepsilon^{m i n} & =A_{m} B^{j} C^{k}\left(-\varepsilon_{i j j} \varepsilon^{i m n}\right) \\
& =A_{m} B^{j} C^{k}\left(\delta_{j}^{n} \delta_{k}^{m}-\delta_{j}^{m} \delta_{k}^{n}\right) \\
& =A_{m} B^{j} C^{k} \delta_{j}^{n} \delta_{k}^{m}-A_{m} B^{j} C^{k} \delta_{j}^{m} \delta_{k}^{n} \\
& =\left(A_{m} C^{k} \delta_{k}^{m}\right)\left(B^{j} \delta_{j}^{n}\right)-\left(A_{m} B^{j} \delta_{j}^{m}\right)\left(C^{k} \delta_{k}^{n}\right) \\
& =\left(A_{m} C^{m}\right) B^{n}-\left(A_{m} B^{m}\right) C^{n}
\end{aligned}
$$

LAGRANGE'S IDENTITY

Also from epsilon-delta rule

$$
\begin{aligned}
(A \times B) \cdot(C \times D) & =(A \cdot C)(B \cdot D)-(A \cdot D)(B \cdot C) \\
& =\operatorname{det}\left(\left[\begin{array}{l}
A \\
B
\end{array}\right]\left[\begin{array}{ll}
C & D
\end{array}\right]\right)
\end{aligned}
$$

LAGRANGE'S IDENTITY

Also from epsilon-delta rule

$$
\begin{aligned}
(A \times B) \cdot(C \times D) & =(A \cdot C)(B \cdot D)-(A \cdot D)(B \cdot C) \\
& =\operatorname{det}\left(\left[\begin{array}{l}
A \\
B
\end{array}\right]\left[\begin{array}{ll}
C & D
\end{array}\right]\right)
\end{aligned}
$$

Proof

$$
\begin{aligned}
A_{i} B_{j} \varepsilon^{j i k} C^{m} D^{n} \varepsilon_{m n k} & =A_{i} B_{j} C^{m} D^{n}\left(\varepsilon^{k j i} \varepsilon_{k m n}\right) \\
& =A_{i} B_{j} C^{m} D^{n}\left(\delta_{n}^{j} \delta_{m}^{i}-\delta_{m}^{j} \delta_{n}^{i}\right) \\
& =A_{i} B_{j} C^{m} D^{n} \delta_{n}^{j} \delta_{m}^{i}-A_{i} B_{j} C^{m} D^{n} \delta_{m}^{j} \delta_{n}^{i} \\
& =\left(A_{m} C^{m}\right)\left(B_{n} D^{n}\right)-\left(A_{n} D^{n}\right)\left(B_{m} C^{m}\right)
\end{aligned}
$$

LAGRANGE'S IDENTITY

Also from epsilon-delta rule

$$
\begin{aligned}
(A \times B) \cdot(C \times D) & =(A \cdot C)(B \cdot D)-(A \cdot D)(B \cdot C) \\
& =\operatorname{det}\left(\left[\begin{array}{l}
A \\
B
\end{array}\right]\left[\begin{array}{ll}
C & D
\end{array}\right]\right)
\end{aligned}
$$

Proof

$$
\begin{aligned}
A_{i} B_{j} \varepsilon^{j i k} C^{m} D^{n} \varepsilon_{m n k} & =A_{i} B_{j} C^{m} D^{n}\left(\varepsilon^{k j i} \varepsilon_{k m n}\right) \\
& =A_{i} B_{j} C^{m} D^{n}\left(\delta_{n}^{j} \delta_{m}^{i}-\delta_{m}^{j} \delta_{n}^{i}\right) \\
& =A_{i} B_{j} C^{m} D^{n} \delta_{n}^{j} \delta_{m}^{i}-A_{i} B_{j} C^{m} D^{n} \delta_{m}^{j} \delta_{n}^{i} \\
& =\left(A_{m} C^{m}\right)\left(B_{n} D^{n}\right)-\left(A_{n} D^{n}\right)\left(B_{m} C^{m}\right)
\end{aligned}
$$

General case is also true! (We will use this shortly)

INFLECTION POINTS

Let γ be a rational curve

$$
\begin{gathered}
\gamma(t)=\left[\begin{array}{ll}
x(t) & y(t)
\end{array}\right]^{\top} \\
x(t)=\frac{u(t)}{w(t)} \quad y(t)=\frac{v(t)}{w(t)}
\end{gathered}
$$

INFLECTION POINTS

Let γ be a rational curve

$$
\begin{gathered}
\gamma(t)=\left[\begin{array}{ll}
x(t) & y(t)
\end{array}\right]^{\top} \\
x(t)=\frac{u(t)}{w(t)} \quad y(t)=\frac{v(t)}{w(t)}
\end{gathered}
$$

When curvature changes sign, i.e., speed and acceleration are collinear

$$
\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)=0
$$

INFLECTION POINTS

Let γ be a rational curve

$$
\begin{gathered}
\gamma(t)=\left[\begin{array}{ll}
x(t) & y(t)
\end{array}\right]^{\top} \\
x(t)=\frac{u(t)}{w(t)} \quad y(t)=\frac{v(t)}{w(t)}
\end{gathered}
$$

When curvature changes sign, i.e., speed and acceleration are collinear

$$
\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)=0
$$

Same as condition

$$
\begin{gathered}
\left|\alpha(t) \quad \alpha^{\prime}(t) \quad \alpha^{\prime \prime}(t)\right|=0, \quad \text { with } \\
\alpha(t)=\left[\begin{array}{lll}
u(t) & v(t) & w(t)
\end{array}\right]^{\top}
\end{gathered}
$$

QUADRATICS CANNOT HAVE INFLECTIONS

$$
\text { Let } B_{2}(t)=\left[\begin{array}{lll}
(1-t)^{2} & 2 t(1-t) & t^{2}
\end{array}\right]^{T}
$$

QUADRATICS CANNOT HAVE INFLECTIONS

$$
\text { Let } B_{2}(t)=\left[\begin{array}{lll}
(1-t)^{2} & 2 t(1-t) & t^{2}
\end{array}\right]^{T}
$$

Then,

$$
\left|\alpha(t) \quad \alpha^{\prime}(t) \quad \alpha^{\prime \prime}(t)\right|=\left|\left[\begin{array}{lll}
p_{0} & p_{1} & p_{2}
\end{array}\right]\left[\begin{array}{lll}
B_{2}(t) & B_{2}^{\prime}(t) & B_{2}^{\prime \prime}(t)
\end{array}\right]\right|
$$

QUADRATICS CANNOT HAVE INFLECTIONS

$$
\text { Let } B_{2}(t)=\left[\begin{array}{lll}
(1-t)^{2} & 2 t(1-t) & t^{2}
\end{array}\right]^{T}
$$

Then,

$$
\begin{aligned}
\left|\alpha(t) \quad \alpha^{\prime}(t) \quad \alpha^{\prime \prime}(t)\right| & =\left|\left[\begin{array}{lll}
p_{0} & p_{1} & p_{2}
\end{array}\right]\left[\begin{array}{lll}
B_{2}(t) & B_{2}^{\prime}(t) & B_{2}^{\prime \prime}(t)
\end{array}\right]\right| \\
& =4\left|\begin{array}{lll}
p_{0} & p_{1} & p_{2}
\end{array}\right|
\end{aligned}
$$

QUADRATICS CANNOT HAVE INFLECTIONS

$$
\text { Let } B_{2}(t)=\left[\begin{array}{lll}
(1-t)^{2} & 2 t(1-t) & t^{2}
\end{array}\right]^{T}
$$

Then,

$$
\begin{aligned}
\left|\alpha(t) \quad \alpha^{\prime}(t) \quad \alpha^{\prime \prime}(t)\right| & =\left|\left[\begin{array}{lll}
p_{0} & p_{1} & p_{2}
\end{array}\right]\left[\begin{array}{lll}
B_{2}(t) & B_{2}^{\prime}(t) & B_{2}^{\prime \prime}(t)
\end{array}\right]\right| \\
& =4\left|\begin{array}{lll}
p_{0} & p_{1} & p_{2}
\end{array}\right|
\end{aligned}
$$

So "inflection" only when control points are linearly dependent

QUADRATICS CANNOT HAVE INFLECTIONS

$$
\text { Let } B_{2}(t)=\left[\begin{array}{lll}
(1-t)^{2} & 2 t(1-t) & t^{2}
\end{array}\right]^{T}
$$

Then,

$$
\begin{aligned}
\left|\alpha(t) \quad \alpha^{\prime}(t) \quad \alpha^{\prime \prime}(t)\right| & =\left|\left[\begin{array}{lll}
p_{0} & p_{1} & p_{2}
\end{array}\right]\left[\begin{array}{lll}
B_{2}(t) & B_{2}^{\prime}(t) & B_{2}^{\prime \prime}(t)
\end{array}\right]\right| \\
& =4\left|\begin{array}{lll}
p_{0} & p_{1} & p_{2}
\end{array}\right|
\end{aligned}
$$

So "inflection" only when control points are linearly dependent
The quadratic degenerates to a line, half a line, or a point Not really an inflection

Cubics

$$
\text { Let } B_{3}(t)=\left[\begin{array}{llll}
(1-t)^{3} & 3(1-t)^{2} t & 3(1-t) t^{2} & t^{3}
\end{array}\right]^{\top}
$$

CUBICS

Let $B_{3}(t)=\left[\begin{array}{llll}(1-t)^{3} & 3(1-t)^{2} t & 3(1-t) t^{2} & t^{3}\end{array}\right]^{\top}$
For cubics, we have

$$
\left|\alpha(t) \quad \alpha^{\prime}(t) \quad \alpha^{\prime \prime}(t)\right|=\left|\left[\begin{array}{llll}
p_{0} & p_{1} & p_{2} & p_{3}
\end{array}\right]\left[\begin{array}{lll}
B_{3}(t) & B_{3}^{\prime}(t) & B_{3}^{\prime \prime}(t)
\end{array}\right]\right|
$$

CUBICS

Let $B_{3}(t)=\left[\begin{array}{lll}(1-t)^{3} & 3(1-t)^{2} t & 3(1-t) t^{2} \\ t^{3}\end{array}\right]^{\top}$
For cubics, we have

$$
\left|\alpha(t) \quad \alpha^{\prime}(t) \quad \alpha^{\prime \prime}(t)\right|=\left|\left[\begin{array}{lll}
p_{0} & p_{1} & p_{2}
\end{array} p_{3}\right]\left[\begin{array}{lll}
B_{3}(t) & B_{3}^{\prime}(t) & B_{3}^{\prime \prime}(t)
\end{array}\right]\right|
$$

Maybe we should give up because the expression is unwieldy...

CUBICS

Let $B_{3}(t)=\left[\begin{array}{llll}(1-t)^{3} & 3(1-t)^{2} t & 3(1-t) t^{2} & t^{3}\end{array}\right]^{\top}$
For cubics, we have

$$
\left|\alpha(t) \quad \alpha^{\prime}(t) \quad \alpha^{\prime \prime}(t)\right|=\left|\left[\begin{array}{llll}
p_{0} & p_{1} & p_{2} & p_{3}
\end{array}\right]\left[\begin{array}{lll}
B_{3}(t) & B_{3}^{\prime}(t) & B_{3}^{\prime \prime}(t)
\end{array}\right]\right|
$$

Maybe we should give up because the expression is unwieldy...
Or we use Lagrange's identity to make it treatable

$$
\left|\alpha(t) \quad \alpha^{\prime}(t) \quad \alpha^{\prime \prime}(t)\right|=\mathrm{Cr}_{4}\left(x_{0-3}, y_{0-3}, w_{0-3}\right) \cdot \mathrm{Cr}_{4}\left(B_{3}(t), B_{3}^{\prime}(t), B_{3}^{\prime \prime}(t)\right)
$$

CUBICS

$$
\text { Let } B_{3}(t)=\left[\begin{array}{llll}
(1-t)^{3} & 3(1-t)^{2} t & 3(1-t) t^{2} & t^{3}
\end{array}\right]^{\top}
$$

For cubics, we have

$$
\left|\alpha(t) \quad \alpha^{\prime}(t) \quad \alpha^{\prime \prime}(t)\right|=\left|\left[\begin{array}{llll}
p_{0} & p_{1} & p_{2} & p_{3}
\end{array}\right]\left[\begin{array}{lll}
B_{3}(t) & B_{3}^{\prime}(t) & B_{3}^{\prime \prime}(t)
\end{array}\right]\right|
$$

Maybe we should give up because the expression is unwieldy...
Or we use Lagrange's identity to make it treatable

$$
\left|\alpha(t) \quad \alpha^{\prime}(t) \quad \alpha^{\prime \prime}(t)\right|=\operatorname{cr}_{4}\left(x_{0-3}, y_{0-3}, w_{0-3}\right) \cdot \operatorname{cr}_{4}\left(B_{3}(t), B_{3}^{\prime}(t), B_{3}^{\prime \prime}(t)\right)
$$

This the inflection polynomial-a cubic!
Inflections happen when t is a root

IN MATHEMATICA...

Show the inflection polynomial
A cubic that reduces to a quadratic in the integral case Show that inflection points are collinear

DOUBLE-POINTS IN MATHEMATICA

Given $t_{1} t_{2}$ of double-point, then $\gamma\left(t_{1}\right), \gamma\left(t_{2}\right), \gamma\left(t_{3}\right)$ are collinear for all t_{3}

DOUBLE-POINTS IN MATHEMATICA

Given $t_{1} t_{2}$ of double-point, then $\gamma\left(t_{1}\right), \gamma\left(t_{2}\right), \gamma\left(t_{3}\right)$ are collinear for all t_{3}
Falls into the same type of determinant

DOUBLE-POINTS IN MATHEMATICA

Given $t_{1} t_{2}$ of double-point, then $\gamma\left(t_{1}\right), \gamma\left(t_{2}\right), \gamma\left(t_{3}\right)$ are collinear for all t_{3}
Falls into the same type of determinant
This time, however, we have that the cr_{4} of the control points in the power basis must be collinear with the powers of t_{1} and t_{2}.

DOUBLE-POINTS IN MATHEMATICA

Given $t_{1} t_{2}$ of double-point, then $\gamma\left(t_{1}\right), \gamma\left(t_{2}\right), \gamma\left(t_{3}\right)$ are collinear for all t_{3}
Falls into the same type of determinant
This time, however, we have that the cr_{4} of the control points in the power basis must be collinear with the powers of t_{1} and t_{2}.

Applying row-reduction, we obtain two symmetric bivariate polynomials on t_{1}, t_{2} that must vanish simultaneously

DOUBLE-POINTS IN MATHEMATICA

Given $t_{1} t_{2}$ of double-point, then $\gamma\left(t_{1}\right), \gamma\left(t_{2}\right), \gamma\left(t_{3}\right)$ are collinear for all t_{3}
Falls into the same type of determinant
This time, however, we have that the cr_{4} of the control points in the power basis must be collinear with the powers of t_{1} and t_{2}.

Applying row-reduction, we obtain two symmetric bivariate polynomials on t_{1}, t_{2} that must vanish simultaneously

Use resultants to eliminate one of them and solve for the other

DOUBLE-POINTS IN MATHEMATICA

Given $t_{1} t_{2}$ of double-point, then $\gamma\left(t_{1}\right), \gamma\left(t_{2}\right), \gamma\left(t_{3}\right)$ are collinear for all t_{3}
Falls into the same type of determinant
This time, however, we have that the cr_{4} of the control points in the power basis must be collinear with the powers of t_{1} and t_{2}.

Applying row-reduction, we obtain two symmetric bivariate polynomials on t_{1}, t_{2} that must vanish simultaneously

Use resultants to eliminate one of them and solve for the other
Results in the double-point polynomial: a quadratic

DOUBLE-POINTS IN MATHEMATICA

Given $t_{1} t_{2}$ of double-point, then $\gamma\left(t_{1}\right), \gamma\left(t_{2}\right), \gamma\left(t_{3}\right)$ are collinear for all t_{3} Falls into the same type of determinant

This time, however, we have that the cr_{4} of the control points in the power basis must be collinear with the powers of t_{1} and t_{2}.

Applying row-reduction, we obtain two symmetric bivariate polynomials on t_{1}, t_{2} that must vanish simultaneously

Use resultants to eliminate one of them and solve for the other Results in the double-point polynomial: a quadratic Compare the discriminants of the inflection polynomial and the double-point polynomial and use them to classify the cubics

References

J. F. Blinn. Uppers and downers. IEEE Computer Graphics and Applications, 12(2):85-92, 1992a.
J. F. Blinn. Uppers and downers: Part 2. IEEE Computer Graphics and Applications, 12(3):80-85, 1992b.
J. F. Blinn. How many rational parametric cubic curves are there? Part 1: Inflection points. IEEE Computer Graphics and Applications, 19(4): 84-87, 1999a.
J. F. Blinn. How many different parametric cubic curves are there? Part 2: The "same" game. IEEE Computer Graphics and Applications, 19(6): 88-92, 1999b.
J. F. Blinn. How many rational parametric cubic curves are there? Part 3: The catalog. IEEE Computer Graphics and Applications, 20(2):85-88, 2000.

